
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

Containers
AC295

 CS107/AC207

1

Outline

1. Recap
2. Motivation / Tutorial
3. What is a Container
4. Tutorial: Building & Running Containers using Docker
5. Why use Containers?

2

Virtual Environments

3

Cons
• Difficulty setting up your environment
• Not isolation
• Does not always work across different

OS

Pros
• Reproducible research
• Explicit dependencies
• Improved engineering collaboration

Virtual Machines

Cons
• Uses hardware in local machine
• Not very portable since size of

VMs are large
• There is an overhead associated

with virtual machines

Pros
• Full autonomy
• Very secure
• Lower costs
• Used by all Cloud providers for on

demand server instances

4

Wish List

● Automatically set up (installs) all OS and extra
libraries and set up the python environment

● It is isolated
● Uses less resources
● Startups quickly

5

Containers

We want a system that:

What is a CONTAINER

• Extremely portable and lightweight
• Fully packaged software with all dependencies included
• Can be used for development, training, and deployment
• Development teams can easily share containers

Docker is an open source platform for building, deploying, and
managing containerized applications.

6

Environments vs Virtualization vs Containerization

7

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Tutorial

● Let us run the simple-translate app using Docker
● For this we will do the following:

○ Create a VM Instance
○ SSH into the VM
○ Install Docker inside the VM
○ Run the Containerized simple-translate app

● Full instructions can be found here

8

https://github.com/dlops-io/simple-translate

What is a Container

• Standardized packaging for software
dependencies

• Isolate apps from each other
• Works for all major Linux distributions,

MacOS, Windows

9

Docker

Kernel

Static Binary

Container

Alpine

.Net

Container

Ubuntu

SQL Server

Java

Container

Debian

Tomcat

What Makes Containers so Small?

10

Container = User Space of OS

• User space refers to all of the code in an operating system that lives
outside of the kernel

How to run a docker container

11

• We use a simple text file, the Dockerfile, to build the
Docker Image, which consists of an iso file and other files.

• We run the Docker Image to get Docker Container.

What is the difference between an image and container

12

Docker Image is a template aka a blueprint to create a running
Docker container. Docker uses the information available in the
Image to create (run) a container.

Image is like a recipe, container is like a dish.

Alternatively, you can think of an image as a class and a
container is an instance of that class.

Inside the Dockerfile

13

FROM: This instruction in the Dockerfile tells the daemon, which
base image to use while creating our new Docker image. In the
example here, we are using a very minimal OS image called alpine
(just 5 MB of size). You can also replace it with Ubuntu, Fedora,
Debian or any other OS image.

RUN: This command instructs the Docker daemon to run the given
commands as it is while creating the image. A Dockerfile can have
multiple RUN commands, each of these RUN commands create a
new layer in the image.

ENTRYPOINT: The ENTRYPOINT instruction is used when you
would like your container to run the same executable every time.
Usually, ENTRYPOINT is used in scenarios where you want the
container to behave exclusively as if it were the executable it's
wrapping.

CMD: The CMD sets default commands and/or parameters when a
docker container runs. CMD can be overwritten from the command
line via the docker run command.

.

Multiple containers from same image

14

How can you run multiple containers from the same image?
Yes, you could think of an image as instating a class.

Wouldn’t they all be identical?
Not necessarily. You could instate it with different parameters using the CMD and
therefore different containers will be different.

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

> docker build -t hello_world_cmd:first -f Dockerfile_cmd .

> docker run -it hello_world_cmd:first
> Hello world
> docker run -it hello_world_cmd:first Pavlos
> Hello Pavlos

Docker Image as Layers

15

When we execute the build command, the daemon reads the Dockerfile
and creates a layer for every command.

Image Layering

16

Container
(Writable, running application)

Layered Image 2

Layered Image 1

Platform Image
(Runtime Environment)

An Image that has no parent
- Platform images define the runtime environment, packages

and utilities necessary for containerized application to run

A static snapshot of the container configuration
- Layer images are read-only
- Each image depends on one or more parent images

A application sandbox
- Each container is based on an image that holds necessary

config data
- When you launch a container, a writable layer is added on

top of the image

Image Layering - Example

17

Debian Linux

Kernel

Install Python & Pip

Upgrade Pip

Install Pipenv

Pipenv Sync

Docker layers for a container running debian and a python environment using
Pipenv

Some Docker Vocabulary

18

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

Containers
How you run your

application

Images
How you store
your application

Tutorial

19

Installing Docker Desktop

1. Install Docker Desktop. Use one of the links below to download the proper Docker application
depending on your operating system.
○ For Mac users, follow this link- https://docs.docker.com/docker-for-mac/install/.
○ For Windows users, follow this link- https://docs.docker.com/docker-for-windows/install/

Note: You will need to install Hyper-V to get Docker to work.
○ For Linux users, follow this link- https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Once installed run the docker desktop.
3. Open a Terminal window and type docker run hello-world to make sure Docker is installed

properly.

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Tutorial

● Let us build the simple-translate app Docker Container
● For this we will do the following:

○ Clone or download code
○ Build a container
○ Run a container
○ Pavlos will update a container on Docker Hub
○ You will pull the new container and run it

● For detail instruction go here

20

https://github.com/dlops-io/simple-translate
https://github.com/dlops-io/simple-translate#developing-app-using-containers

Tutorial: Docker commands

Check what version of Docker

21

docker --version

docker command
Get version of Docker CLI

Tutorial: Docker commands

22

List all running docker containers

docker container ls

docker command
Docker command for container

Docker command option to list all containers

Tutorial: Docker commands

23

List all docker images

docker image ls

docker command
Docker command for image

Docker command option to list all images

Tutorial: Docker commands

24

Build an image based on a Dockerfile

docker build -t ac215-d1 -f Dockerfile .

docker command
Build the image

Name the image
Name of docker file and “.” means look at

the current working directory

Tutorial

25

Run a docker container using an image from Docker Hub

docker run --rm --name ac215-d1 -ti --entrypoint /bin/bash ac215-d1

Run the container

automatically clean up the container and
remove the file system when the container

exit

Name of the container

‘t’ is to give us a terminal and ‘i’ is for
interactive mode

Default command to execute on
startup

Name of the image to use

Tutorial

26

Open another command prompt and check how many container
and images we have

docker container ls

docker image ls

Tutorial

27

Exit from all containers and let us clear of all images

docker system prune -a

docker command
Docker command for system

Docker command option to remove all images not
referenced by any containers

Tutorial

28

Check how many containers and images we have currently

docker container ls

docker image ls

Docker Image as Layers

29

>docker build -t hello_world_cmd -f Dockerfile_cmd .

Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
latest: Pulling from library/ubuntu
54ee1f796a1e: Already exists
f7bfea53ad12: Already exists
46d371e02073: Already exists
b66c17bbf772: Already exists
Digest: sha256:31dfb10d52ce76c5ca0aa19d10b3e6424b830729e32a89a7c6eee2cda2be67a5
Status: Downloaded newer image for ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Running in e3e1a87e8d6e
Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:2 http://security.ubuntu.com/ubuntu focal-security InRelease [107 kB]
Get:3 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [67.5 kB]
Get:4 http://archive.ubuntu.com/ubuntu focal-updates InRelease [111 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal-backports InRelease [98.3 kB]
Get:6 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [231 kB]
Get:7 http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]
Get:8 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]
Get:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [1078 B]
…

Step1: Instruction
1

Step2: Instruction
2

Docker Image as Layers

30

>docker build -t hello_world_cmd -f Dockerfile_cmd .

….
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Running in 52c7a98397ad
Removing intermediate container 52c7a98397ad
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Running in 353adb968c2b
Removing intermediate container 353adb968c2b
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Step3: Instruction 3

Step4: Instruction 4

Docker Image as Layers

31

> docker image history hello_world_cmd
IMAGE CREATED CREATED BY SIZE COMMENT
a89172ee2876 8 minutes ago /bin/sh -c #(nop) CMD ["world"] 0B
7e4f8b0774de 8 minutes ago /bin/sh -c #(nop) ENTRYPOINT ["/bin/echo" "… 0B
cfc0c414a914 8 minutes ago /bin/sh -c apt-get update 22.8MB
4e2eef94cd6b 3 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 3 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do… 7B
<missing> 3 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /… 811B
<missing> 3 weeks ago /bin/sh -c [-z "$(apt-get indextargets)"] 1.01MB
<missing> 3 weeks ago /bin/sh -c #(nop) ADD file:9f937f4889e7bf646… 72.9MB

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_cmd latest a89172ee2876 7 minutes ago 96.7MB
ubuntu latest 4e2eef94cd6b 3 weeks ago 73.9MB

Why Layers

32

Why build an image with multiple layers when we can just build it in a single layer?
Let’s take an example to explain this concept better, let us try to change the Dockerfile_cmd we
created and rebuild a new Docker image.

> docker build -t hello_world_cmd -f Dockerfile_cmd .
Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Using cache
 ---> cfc0c414a914
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Using cache
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Using cache
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Have seen this before. Use
cache

As you can see that the image was built using the existing layers from our previous docker image
builds. If some of these layers are being used in other containers, they can just use the existing layer
instead of recreating it from scratch.

Why use Containers?

33

• Imagine you are building a large complex application (e.g.
Online Store)

• Traditionality you would build this using a Monolithic
Architecture

Monolithic Architecture

34

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Monolithic Architecture

35

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

Monolithic Architecture - Advantages

36

Simple to Develop, Test, Deploy and Scale:

1. Simple to develop because all the tools and IDEs support the
applications by default

2. Easy to deploy because all components are packed into one
bundle

3. Easy to scale the whole application

Monolithic Architecture - Disadvantages

37

1. Very difficult to maintain

2. One component failure will cause the whole system to fail

3. Very difficult to create the patches for monolithic architecture

4. Adapting to new technologies is challenging

5. Take a long time to startup because all the components needs to
get started

Applications have changed dramatically

38

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server

Applications have changed dramatically

39

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

Data Science

Apps are being integrated with various
data types/sources and models

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server

Today: Microservice Architecture

40

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

Software Development Workflow (no Docker)

41

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Software Development Workflow (no Docker)

42

GitHub

Source Control

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control

Software Development Workflow (no Docker)

43

GitHub

Source Control

Build Server

Linux

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control Build server needs to be

installed with all required
softwares/frameworks

Production build is performed
by pulling code from source
control

Software Development Workflow (no Docker)

44

GitHub

Source Control

Build Server

Linux

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control Build server needs to be

installed with all required
softwares/frameworks

Production build is performed
by pulling code from source
control

Production / Test Servers

LinuxLinux

Production server needs to
be installed with all required
softwares/frameworks

Production server will be
different OS version than
development machines

Software Development Workflow (with Docker)

45

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Software Development Workflow (with Docker)

46

GitHub

Source Control

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control

Software Development Workflow (with Docker)

47

GitHub

Source Control

Build Server

Linux

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control Build server only needs

Docker installed

Docker images are built for a
release and pushed to
container registry

Software Development Workflow (with Docker)

48

GitHub

Source Control

Build Server

Linux

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control Build server only needs

Docker installed

Docker images are built for a
release and pushed to
container registry

Production/ Test Servers

LinuxLinux

Production server only needs
Docker installed

Production server pulls
Docker images from
container registry and runs
them

Comparison

49

THANK YOU

50

