AUTOMATIC DIFFERENTIATION: EXERCISE

Given the function $f(x): \mathbb{R}^{5} \mapsto \mathbb{R}$ with

$$
f(x)=x_{1} x_{2} x_{3} x_{4} x_{5},
$$

compute the gradient ∇f evaluated at the point $x=[2,1,1,1,1]^{\top}$.

1. Draw the computational graph.
2. Compute the gradient using forward mode. Note: you need $m=5$ passes with different seed vectors. Write your solution in a evaluation table similar to what we did earlier.
3. Compute the gradient using reverse mode. Write your results in another evaluation table (with possibly fewer columns than forward mode above).
4. For both, forward and reverse mode, calculate the number of arithmetic operations (addition, subtraction, multiplication, division).

You may use the next two pages to write down your solution. Work together with your neighbors.

AD: COMPUTATIONAL GRAPH

AD: FORWARD MODE

In the following the elements of the seed vectors are given by $p_{i}^{(j)}=\delta_{i j}$ with $i=1,2, \ldots, m$ and $\delta_{i j}$ the Kronecker delta.

Forward primal trace	Forward tangent trace	Pass with $p^{(1)}$	Pass with $p^{(2)}$	Pass with $p^{(3)}$	Pass with $p^{(4)}$	Pass with $p^{(5)}$
$v_{-4}=x_{1}=2$	$D_{p} v_{-4}=p_{1}^{(j)}$	$D_{p} v_{-4}=1$	$D_{p} v_{-4}=0$	$D_{p} v_{-4}=0$	$D_{p} v_{-4}=0$	$D_{p} v_{-4}=0$
$v_{-3}=x_{2}=1$	$D_{p} v_{-3}=p_{2}^{(j)}$	$D_{p} v_{-3}=0$	$D_{p} v_{-3}=1$	$D_{p} v_{-3}=0$	$D_{p} v_{-3}=0$	$D_{p} v_{-3}=0$
$v_{-2}=x_{3}=1$	$D_{p} v_{-2}=p_{3}^{(j)}$	$D_{p} v_{-2}=0$	$D_{p} v_{-2}=0$	$D_{p} v_{-2}=1$	$D_{p} v_{-2}=0$	$D_{p} v_{-2}=0$
$v_{-1}=x_{4}=1$	$D_{p} v_{-1}=p_{4}^{(j)}$	$D_{p} v_{-1}=0$	$D_{p} v_{-1}=0$	$D_{p} v_{-1}=0$	$D_{p} v_{-1}=1$	$D_{p} v_{-1}=0$
$v_{0}=x_{5}=1$	$D_{p} v_{0}=p_{5}^{(j)}$	$D_{p} v_{0}=0$	$D_{p} v_{0}=0$	$D_{p} v_{0}=0$	$D_{p} v_{0}=0$	$D_{p} v_{0}=1$
$v_{1}=v_{-1} v_{0}=1$	$D_{p} v_{1}=v_{0} D_{p} v_{-1}+v_{-1} D_{p} v_{0}$	$D_{p} v_{1}=0$	$D_{p} v_{1}=0$	$D_{p} v_{1}=0$	$D_{p} v_{1}=1$	$D_{p} v_{1}=1$
$v_{2}=v_{-2} v_{1}=1$	$D_{p} v_{2}=v_{1} D_{p} v_{-2}+v_{-2} D_{p} v_{1}$	$D_{p} v_{2}=0$	$D_{p} v_{2}=0$	$D_{p} v_{2}=1$	$D_{p} v_{2}=1$	$D_{p} v_{2}=1$
$v_{3}=v_{-3} v_{2}=1$	$D_{p} v_{3}=v_{2} D_{p} v_{-3}+v_{-3} D_{p} v_{2}$	$D_{p} v_{3}=0$	$D_{p} v_{3}=1$	$D_{p} v_{3}=1$	$D_{p} v_{3}=1$	$D_{p} v_{3}=1$
$v_{4}=v_{-4} v_{3}=2$	$D_{p} v_{4}=v_{3} D_{p} v_{-4}+v_{-4} D_{p} v_{3}$	$D_{p} v_{4}=1$	$D_{p} v_{4}=2$	$D_{p} v_{4}=2$	$D_{p} v_{4}=2$	$D_{p} v_{4}=2$

AD: REVERSE MODE

Forward pass:
Intermediate Partial Derivatives

$v_{-4}=x_{1}=2$	
$v_{-3}=x_{2}=1$	$\bar{v}_{-4}=\frac{\partial f}{\partial v_{4}} \frac{\partial v_{4}}{\partial v_{-4}}=\bar{v}_{4} \frac{\partial v_{4}}{\partial v_{-4}}=1$
$v_{-2}=x_{3}=1$	$\bar{v}_{-3}=\frac{\partial f}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-3}}=\bar{v}_{3} \frac{\partial v_{3}}{\partial v_{-3}}=2$
$v_{-1}=x_{4}=1$	
$v_{0}=x_{5}=1$	$\bar{v}_{-2}=\frac{\partial f}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{-2}}=\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{-2}}=2$
$v_{1}=v_{-1} v_{0}=1$	$\frac{\partial v_{1}}{\partial v_{-1}}=v_{0}=1 ; \frac{\partial v_{1}}{\partial v_{0}}=v_{-1}=1$
$v_{2}=v_{-2} v_{1}=1$	$\frac{\partial v_{2}}{\partial v_{-2}}=v_{1}=1 ; \frac{\partial v_{2}}{\partial v_{1}}=v_{-2}=1$
$v_{3}=v_{-3} v_{2}=1$	$\frac{\partial v_{3}}{\partial v_{-3}}=v_{2}=1 ; \frac{\partial v_{3}}{\partial v_{2}}=v_{-3}=1$
$v_{4}=v_{-4} v_{3}=2$	$\frac{\partial v_{4}}{\partial v_{-4}}=v_{3}=1 ; \frac{\partial v_{4}}{\partial v_{3}}=v_{-4}=2$
independent variables	$\bar{v}_{0}=\frac{\partial f}{\partial v_{1}} \frac{\partial v_{1}}{\partial v_{0}}=\bar{v}_{1} \frac{\partial v_{1}}{\partial v_{-1}}=2$
	$\bar{v}_{1} \frac{\partial v_{1}}{\partial v_{0}}=\frac{\partial f}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{1}}=\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{1}}=2$

AD: COMPUTATIONAL COMPLEXITY

- Forward mode:
- Computation of v_{j} for $j=1,2,3,4$: 4 mul
- Computation of $D_{p} v_{j}$ for $j=1,2,3,4: 4 \times(2 \mathrm{mul}+1$ add $)=12 \mathrm{ops}$
- Computation of $D_{p} v_{j}$ depends on $j=1,2, \ldots, m$ passes with $p^{(j)}$.
- Total: $4 \mathrm{mul}+m \times 12 \mathrm{ops}=4+5 \times 12=64 \mathrm{ops}$
- Reverse mode:
- Computation of v_{j} for $j=1,2,3,4$: 4 mul
- Reverse pass: 8 mul
- Total: $4 \mathrm{mul}+8 \mathrm{mul}=12 \mathrm{ops}$

