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RECAP OF LAST TIME
Automatic Differentiation: Forward Mode (basics)

Evaluation trace

The computational graph

Computing derivatives of one variable using the forward mode

Computing derivatives in higher dimensions using the forward mode

Beyond the basics:

The Jacobian in forward mode

What the forward mode actually computes

Implementation approaches



OUTLINE
Review of complex numbers and introduction of dual numbers

Implementation of forward mode AD: operator overloading

Reverse mode of AD

Examples for application



REVIEW OF COMPLEX NUMBERS



REVIEW OF COMPLEX NUMBERS
A complex number has the form:

: is the real part,

: is the imaginary part.

z = x + iy

x

y

The imaginary unit  gives the complex number  the special
property that de�nes the square root of a negative number

such that .

i z ∈ C

i = ,−1−−−
√

= −1i2



You can think of  as a two-
dimensional vector.

The imaginary unit  extends the
real line with an orthogonal
imaginary axis.

REVIEW OF COMPLEX NUMBERS
A complex number has the form:

: is the real part,

: is the imaginary part.

z = x + iy

x

y

z

i



REVIEW OF COMPLEX NUMBERS
Complex numbers have several properties that we can use:

Complex conjugate: = x − iyz∗

Magnitude: |z = z = (x + iy)(x − iy) = +|2 z∗ x2 y2

Polar form: 

: is called radius, 

: is called angle, 

z = reiφ

r r = |z|

φ φ = arctan(y/x)

If you compute the product

what happens to the radius and angle of ?

z = z1z2

z

Can you see why  is a real number?z ∈ Rz∗



TOWARDS DUAL NUMBERS
A  has similarity to a complex number but the unit that

gives the number its special property is de�ned differently.

A dual number consists of a real part and a dual part and is written as

where  and  is a special ( ) number such that
 and . Note:  is not a real number.

Disclaimer: the following provides some ideas on how you can go about implementing an automatic differentiation code.
You are free to make other choices for your project as long as you stick with the python  programming language.

dual number

z = a + bϵ,

a, b ∈ R ϵ nilpotent
= 0ϵ2 ϵ ≠ 0 ϵ

https://en.wikipedia.org/wiki/Dual_number
https://en.wikipedia.org/wiki/Nilpotent


DUAL NUMBERS
Dual numbers have several useful properties:

Dual conjugate: = a − bϵz∗

Magnitude: |z = z = (a + bϵ)(a − bϵ) =|2 z∗ a2

Polar decomposition: 

where  for 

z = a(1 + mϵ)

m = b
a

a ≠ 0

= 1 + mϵ + (mϵ + … = 1 + mϵemϵ 1
2 )2

What is more interesting: dual numbers have the following properties
for addition and multiplication:

+ = ( + ϵ) + ( + ϵ)z1 z2 a1 b1 a2 b2

= ( + ϵ)( + ϵ)z1z2 a1 b1 a2 b2

= ( + ) + ( + )ϵa1 a2 b1 b2

= ( ) + ( + )ϵa1a2 a1b2 a2b1



DUAL NUMBERS

Let us now introduce two functions  and  and let  and 
 be their derivative with respect to .

We substitute ,  and ,  and �nd:

+ = ( + ϵ) + ( + ϵ)z1 z2 a1 b1 a2 b2

= ( + ϵ)( + ϵ)z1z2 a1 b1 a2 b2

= ( + ) + ( + )ϵa1 a2 b1 b2

= ( ) + ( + )ϵa1a2 a1b2 a2b1

u(x) v(x) (x)u′

(x)v′ x

= ua1 =b1 u′ = va2 =b2 v′

+ = (u + ϵ) + (v + ϵ)z1 z2 u′ v′

= (u + ϵ)(v + ϵ)z1z2 u′ v′

= (u + v) + ( + )ϵu′ v′

= (uv) + (u + v)ϵv′ u′

Observe:

1. Adding dual numbers together resembles the linearity of addition and results
in adding the functions in the real part and adding the derivatives in the dual part.

2. Multiplication results in multiplication of the functions in the real part and the
correct product rule for the derivatives in the dual part.



DUAL NUMBERS
If you think of  and  as intermediate variables  and  in the primal

trace of forward mode AD, then their derivatives correspond to the
tangent trace  and .

A dual number can therefore be used as a data structure in
automatic differentiation. In forward mode AD, we always evaluate 

 and  simultaneously, we carry them forward as a pair, where

the real part corresponds to the primal trace and the dual part
corresponds to the tangent trace:

u v vi vj

Dpvi Dpvj

vj Dpvj

= + ϵzj vj Dpvj



DUAL NUMBERS
So far, dual numbers seem to have all the properties we are looking for in
a data structure that is useful for an automatic differentiation algorithm.

But they are useless if we can not use them with the chain rule.

We can expand any analytic function , where  is a dual

number, using a Taylor series expansion. In the following we expand
the series around the point  which is the real part of :

(notation: the -th derivative  is with respect to )

f( )zj zj

= + 0ϵζj vj zj

κ ( )f (κ) zj zj

f( ) = f( + ϵ)zj vj Dpvj = ( − = ( ϵ∑
κ=0

∞ ( )f (κ) ζj

κ!
zj ζj)κ ∑

κ=0

∞ ( )f (κ) vj

κ!
Dpvj )κ

= f( ) + ( ) ϵvj f ′ vj Dpvj

All higher order terms vanish because of the de�nition .= 0ϵ2



DUAL NUMBERS

Recall: last lecture we were studying the forward primal and tangent traces of

. The �rst two intermediate variables are shown again below:

Forward primal trace Forward tangent trace Numerical value: ; 

1.963495e-01; 1.000000e+00

7.853982e-01; 4.000000e+00

7.071068e-01; 2.828427e+00

f( ) = f( + ϵ)zj vj Dpvj = ( − = ( ϵ∑
κ=0

∞ ( )f (κ) ζj

κ!
zj ζj)κ ∑

κ=0

∞ ( )f (κ) vj

κ!
Dpvj )κ

= f( ) + ( ) ϵvj f ′ vj Dpvj

f(x) = x − exp(−2(sin(4x) ))
2

vj Dpvj

= =v0 x1
π
16 = 1Dpv0

= 4v1 v0 = 4Dpv1 Dpv0

= sin( )v2 v1 = cos( )Dpv2 v1 Dpv1

Let us now de�ne the dual number . To compute  we

apply the result from the Taylor series above (chain rule):

= + ϵz1 v1 Dpv1 = f( ) = sin( )z2 z1 z1

= sin( ) = + ϵz2 z1 sin( )v1
  

v2

cos( )v1 Dpv1
  

Dpv2



DUAL NUMBERS: EXERCISE
We are given the following function :

Perform the following tasks (~20 minutes, use the next slide for your solution):

1. Draw the computational graph for . The last intermediate variable is  

(  is the point where we evaluate ).

2. Show that  takes the form

for  (hint: chain rule).

3. Compute the last intermediate state with dual numbers . Note that the
function  is the same as in item 2 above, we just replace the intermediate (primal)
variable  with dual numbers . Depending on how you draw the graph, the

arguments to  may have different subscripts.

f(x) : R ↦ R

f(x) =
sin(x)

(cos(x) + 1)
2

f(x) = f( )v5 x1

x1 f

Dpv5

= ( − )Dpv5
1

v2
4

v4Dpv1 v1Dpv4

= g( , )v5 v1 v4

= g( , )z5 z1 z4

g
vj zj

g



DUAL NUMBERS: EXERCISE SOLUTION



IMPLEMENTATION: OPERATOR OVERLOADING
There are different implementation techniques for automatic

differentiation. Two techniques often used are

1. Code translation on the level of .
This happens on the compiler level and is therefore very ef�cient.

intermediate representation (IR)

2. Operator-overloading on the software level. We have already
touched this topic when we studied the python  data model.

The �rst technique is not in the scope of this class. We will focus on
operator-overloading which is related to the special (dunder) methods

that we already know about.

https://en.wikipedia.org/wiki/Intermediate_representation


IMPLEMENTATION: OPERATOR OVERLOADING
What is meant by "operator overloading"?

You are already very familiar with it. Consider for example :
here the sine is a mathematical operator that acts on an argument .

sin(x)
x

The operator  acts on a real number , this is your
common perception of the operator .

sin x ∈ R
sin

We have just learned about dual numbers. What should be the
action of the  operator acting on a dual number . That is, what
should be the result of ? (By now we know the answer to this
question.)

sin z
sin(z)

Operator overloading is a form of polymorphism where an
operator may have different implementations depending on the
argument it acts on.



IMPLEMENTATION: OPERATOR OVERLOADING
Recall Lecture 7: we were adding our custom Thing 's together.

Let us revisit what we did there using a Complex  type instead:
class Complex:
    """Complex number type"""
    def __init__(self, real, imag):
        """Construct a complex number from real and imaginary parts"""
        self.real = real
        self.imag = imag

1
2
3
4
5
6

>>> z1 = Complex(1, 1)
>>> z2 = Complex(2, 2)
>>> z3 = z1 + z2
Traceback (most recent call last):
  File "/home/fabs/CS107/lecture11/code/complex.py", line 14, in <module>
    z3 = z1 + z2
TypeError: unsupported operand type(s) for +: 'Complex' and 'Complex'

1
2
3
4
5
6
7

You already knew that this does not work! 🤣



IMPLEMENTATION: OPERATOR OVERLOADING
The �x is easy:

class Complex:
    """Complex number type"""
    def __init__(self, real, imag):
        """Construct a complex number from real and imaginary parts"""
        self.real = real
        self.imag = imag
 
    def __add__(self, other):
        """Adding complex numbers together"""
        return Complex(self.real + other.real, self.imag + other.imag)

1
2
3
4
5
6
7
8
9

10

>>> z1 = Complex(1, 1)
>>> z2 = Complex(2, 2)
>>> z3 = z1 + z2
>>> vars(z3)
{'real': 3, 'imag': 3}

1
2
3
4
5

The interface is of course very incomplete. What about
multiplication or division?

Another operation that you may come across often may be this: 
z4 = 1 + z3 .



IMPLEMENTATION: OPERATOR OVERLOADING
Another operation that you may come across often may be this: 
z4 = 1 + z3 .

You know that python  resolves the right-hand side to 1.__add__(z3) .

It is unlikely that integer objects support your custom Complex  type.
This operation will fail with a NotImplementedError .

In that case python  checks if the other object implements the
 special method which will then be called instead. (The "r"

stands for re�ected or swapped.)
__radd__

You can simply call __add__  from within __radd__  if the operator is
commutative, but be careful to handle the type of other  correctly (here
other  is an integer and not a Complex  type).

You may want to checkout the  built-in function.isinstance

https://docs.python.org/3/reference/datamodel.html#object.__radd__
https://docs.python.org/3/library/functions.html#isinstance


IMPLEMENTATION: OPERATOR OVERLOADING
The last example implements multiplication of Complex  numbers:

class Complex:
    """Complex number type"""
    def __init__(self, real, imag):
        """Construct a complex number from real and imaginary parts"""
        self.real = real
        self.imag = imag
 
    def __add__(self, other):
        """Adding complex numbers together"""
        return Complex(self.real + other.real, self.imag + other.imag)
 
    def __mul__(self, other):
        """Multiplying complex numbers together"""
        r1, r2 = self.real, other.real
        i1, i2 = self.imag, other.imag
        return Complex(r1 * r2 - i1 * i2, r1 * i2 + r2 * i1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

>>> z1 = Complex(1, 1)
>>> z2 = Complex(1, -1)
>>> z3 = z1 * z2
>>> vars(z3)
{'real': 2, 'imag': 0}

1
2
3
4
5

Don't forget that your AD library must also handle overloaded elementary
transcendental functions like , ,  or  for example.sin cos exp ln



AUTOMATIC DIFFERENTIATION: REVERSE MODE
References for automatic differentiation:

P. H.W. Hoffmann, A Hitchhiker's Guide to Automatic Differentiation, Springer 2015,
(You can access this paper through the Harvard network.)

Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic
differentiation, SIAM 2008, Vol. 105

Nocedal, J. and Wright, S., Numerical Optimization, Springer 2006, 2nd Edition

Baydin, A., Pearlmutter, B., Radul, A. and Siskind, J., 
, Journal of Machine Learning 2017

doi:10.1007/s11075-015-0067-6 

Automatic Differentiation in Machine Learning:
A Survey

https://link.springer.com/article/10.1007/s11075-015-0067-6
https://www.jmlr.org/papers/v18/17-468.html


AUTOMATIC DIFFERENTIATION: REVERSE MODE
The reverse mode of automatic differentiation is a two-pass process as
opposed to the -pass forward mode.m

Reverse mode does not evaluate  and  simultaneously!vj Dpvj

For this reason the useful properties of dual numbers in forward mode are
not useful in reverse mode.

Reverse mode recovers the partial derivatives of the -th output  with
respect to the  variables  with  by traversing the

computational graph backwards. The partial derivatives describe the
sensitivity of the output with respect to the intermediate variable :

We call  the adjoint of .

i fi

n vj−m j = 1, 2, … , n

vj−m

= .v̄j−m

∂fi

∂vj−m

v̄j−m vj−m



AUTOMATIC DIFFERENTIATION: REVERSE MODE
Reverse mode recovers the partial derivatives of the -th output  with
respect to the  variables  with  by traversing the

computational graph backwards. The partial derivatives describe the
sensitivity of the output with respect to the intermediate variable :

We call  the adjoint of .

Recall: we have de�ned  for . So the �rst 

adjoints in the reverse mode are the  components of the gradient  (the
same gradient we get from the forward mode).

i fi

n vj−m j = 1, 2, … , n

vj−m

= .v̄j−m

∂fi

∂vj−m

v̄j−m vj−m

=vj−m xj j = 1, 2, … , m m

m ∇fi



AUTOMATIC DIFFERENTIATION: REVERSE MODE
What is the difference between forward and reverse mode?

Forward mode computes the gradient  with respect to the independent
variable .

Reverse mode computes the sensitivity  of  with respect to the

independent and intermediate variables . We therefore recover the

gradient  in reverse mode as well.

∇f
x

v̄j−m f

vj−m

∇f

Compared to the forward mode, the reverse mode has a signi�cantly
smaller arithmetic operation count for mappings of the form 

 if  is very large. Arti�cial neural networks have exactly
this property.
f(x) : ↦ RRm m

There is no free lunch: we have to store the full computational graph in
reverse mode.



AUTOMATIC DIFFERENTIATION: REVERSE MODE
The two passes in reverse mode: Forward pass

Computes the primal values  and the partial derivatives  with respect to its

parent node(s) . Note: the partial derivatives here are the factors that show up in the
chain rule, not the chain rule itself. We do not need to apply the chain rule explicitly in

reverse mode, we will "build it up" in the reverse pass instead! That is why we do not
compute  in the forward pass of the reverse mode.

Compare what is being computed:
Forward mode:  and  (chain rule)

Forward pass in reverse mode:  and  (this is not the chain rule)

vj
∂vj

∂vi

vi

Dpvj

= sin( )vj vi = = cos( )Dpvj
∂vj

∂vi
Dpvi vi Dpvi

= sin( )vj vi = cos( )
∂vj

∂vi
vi

i j
Parent Child The partial derivative  describes the

change in a child node with respect to its
parent node . This is not the chain rule.

In reverse mode, we must know the relationship between parent and child:
∂vj

∂vi

vi



AUTOMATIC DIFFERENTIATION: REVERSE MODE
The two passes in reverse mode: Reverse pass

In the reverse pass we reconstruct the chain rule that we ignored in the forward pass.

The goal is to compute the following quantity for each node :

The partial derivatives  are computed during the forward pass. At the start of the

reverse pass, we initialize  and update the values with

as we iterate over the children  of node . Once all contributions from child nodes are
accumulated in node , we can proceed with updating its parent node(s). If  for a

particular child node is not complete we can not proceed with  and must continue with
another node instead.

vi

= = =v̄i

∂f

∂vi

∑
j a child of i

∂f

∂vj

∂vj

∂vi

∑
j a child of i

v̄j

∂vj

∂vi

∂vj

∂vi

= 0v̄i

= + = +v̄i v̄i

∂f

∂vj

∂vj

∂vi

v̄i v̄j

∂vj

∂vi

j i
i v̄j

v̄i



AUTOMATIC DIFFERENTIATION: REVERSE MODE
The two passes in reverse mode: Reverse pass

Recall that for the very last intermediate state we have  with 
 and this last node obviously has no children (recall:  is the sum of

the independent variables (the number ) and dependent variables).

We therefore know the initial value of the adjoint :

Which we need to get started as in the reverse pass we traverse the
computational graph backwards, from the right (outputs) to the left (inputs).

= f(x)vn−m

x ∈ Rm n
m

v̄n−m

= = = 1v̄n−m

∂f

∂vn−m

∂vn−m

∂vn−m

During the reverse pass, we only work with numerical values not with
formulae or overloaded operators.



REVERSE MODE: EXAMPLE
Consider the following function 

We want to evaluate the gradient  at the point . Computing
the gradient by hand is easy:

f(x) : ↦ RR2

f(x) = +x1x2 ex1x2

∇f x = [1, 2]⊺

∇f = (1 + )[ ] = (1 + )[ ]ex1x2
x2

x1
e2 2

1

Its computational graph is given by:



REVERSE MODE: EXAMPLE

Let's do forward mode �rst:

Forward primal trace Forward tangent trace Pass with Pass with 

independent variables dependent variables

p = [1, 0]⊺ p = [0, 1]⊺

= = 1v−1 x1 =Dpv−1 p1 = 1Dpv−1 = 0Dpv−1

= = 2v0 x2 =Dpv0 p2 = 0Dpv0 = 1Dpv0

= = 2v1 v−1v0 = +Dpv1 v0Dpv−1 v−1Dpv0 = 2Dpv1 = 1Dpv1

= =v2 ev1 e2 =Dpv2 ev1 Dpv1 = 2Dpv2 e2 =Dpv2 e2

= +v3 v1 v2 = +Dpv3 Dpv1 Dpv2 = 2 + 2Dpv3 e2 = 1 +Dpv3 e2

Note that we need  passes in forward mode to compute the gradient m = 2 ∇f



Forward pass:
Intermediate Partial Derivatives

independent variables dependent variables

Reverse pass:
Adjoint

REVERSE MODE: EXAMPLE

Now reverse mode:

= = 1v−1 x1

= = 2v0 x2

 = = 2v1 v−1v0 = = 2∂v1

∂v−1
v0

= = 1∂v1

∂v0
v−1

= =v2 ev1 e2 = =∂v2

∂v1
ev1 e2

 = + = 2 +v3 v1 v2 e2 = 1∂v3

∂v1

= 1∂v3

∂v2

= = = (1 + ) ⋅ 2 = =v̄−1
∂f

∂v1

∂v1

∂v−1
v̄1

∂v1

∂v−1
e2 ∂f

∂v−1

∂f

∂x1

= = = 1 + = =v̄0
∂f

∂v1

∂v1

∂v0
v̄1

∂v1

∂v0
e2 ∂f

∂v0

∂f

∂x2

 (second child update)= + = + = 1 +v̄1 v̄1
∂f

∂v2

∂v2

∂v1
v̄1 v̄2

∂v2

∂v1
e2

 (�rst child)= = = 1v̄1
∂f

∂v3

∂v3

∂v1
v̄3

∂v3

∂v1

= = = 1v̄2
∂f

∂v3

∂v3

∂v2
v̄3

∂v3

∂v2

= = = 1v̄3
∂f

∂v3

∂v3

∂v3



Forward pass:
Intermediate Partial Derivatives

 

 

independent variables dependent variables

Reverse pass:
Adjoint

 (second child update)

 (�rst child)

REVERSE MODE: EXAMPLE
Now reverse mode:

We only need 1 reverse mode pass to compute the gradient  (forward + reverse
pass is considered one reverse mode pass). Compare this to forward mode if .

= = 1v−1 x1

= = 2v0 x2

= = 2v1 v−1v0 = = 2∂v1

∂v−1
v0

= = 1∂v1

∂v0
v−1

= =v2 ev1 e2 = =∂v2

∂v1
ev1 e2

= + = 2 +v3 v1 v2 e2 = 1∂v3

∂v1

= 1∂v3

∂v2

= = = (1 + ) ⋅ 2 = =v̄−1
∂f

∂v1

∂v1

∂v−1
v̄1

∂v1

∂v−1
e2 ∂f

∂v−1

∂f

∂x1

= = = 1 + = =v̄0
∂f

∂v1

∂v1

∂v0
v̄1

∂v1

∂v0
e2 ∂f

∂v0

∂f

∂x2

= + = + = 1 +v̄1 v̄1
∂f

∂v2

∂v2

∂v1
v̄1 v̄2

∂v2

∂v1
e2

= = = 1v̄1
∂f

∂v3

∂v3

∂v1
v̄3

∂v3

∂v1

= = = 1v̄2
∂f

∂v3

∂v3

∂v2
v̄3

∂v3

∂v2

= = = 1v̄3
∂f

∂v3

∂v3

∂v3

∇f
m ≫ 1



REVERSE MODE: EXAMPLE
Observations:

Forward mode computes the gradient with respect to the
independent variables: .f∇x

Reverse mode computes the gradient with respect to the
coordinates : . Because we have chosen  for 

, the gradient  is a subset of !
v f∇v =vj−m xj

j = 1, 2, … , m f∇x f∇v

The computational cost of forward mode depends on the number of
independent variables . The computational cost of reverse mode
is independent of that number.

m



REVERSE MODE: EXAMPLE
Observations:

In machine learning, the objective function is a scalar function with
possibly a very large number  of input arguments.m

The gradient of the objective function is needed to train the model. A
popular and ef�cient algorithm for this task is called back-propagation,
which is a special case of reverse mode AD. Special in the sense that the
function is scalar and it represents an error between the computed output
(hence we compute  in the forward pass too) and an expected output.vj

If there are many more outputs  forward mode AD is more
ef�cient.

n ≫ m

If there are many more inputs  reverse mode AD is more ef�cient.m ≫ n



AUTOMATIC DIFFERENTIATION: EXERCISE
Given the function  with

compute the gradient  evaluated at the point .

1. Draw the computational graph.

2. Compute the gradient using forward mode. Note: you need  passes with
different seed vectors. Write your solution in a evaluation table similar to what
we did earlier.

3. Compute the gradient using reverse mode. Write your results in another
evaluation table (with possibly fewer columns than forward mode above).

4. For both, forward and reverse mode, calculate the number of arithmetic
operations (addition, subtraction, multiplication, division).

You may use the next two pages to write down your solution. 
Work together with your neighbors.

f(x) : ↦ RR5

f(x) = ,x1x2x3x4x5

∇f x = [2, 1, 1, 1, 1]⊺

m = 5



AUTOMATIC DIFFERENTIATION: EXERCISE (SOLUTION)



AUTOMATIC DIFFERENTIATION: EXERCISE (SOLUTION)



EXAMPLES FOR EXTENSIONS AND APPLICATIONS
Up to this point we have discussed the math behind automatic
differentiation (chain rule and splitting up a function (evaluation)
into elementary parts resulting in computational graph).

Many extensions and applications exist for an automatic
differentiation algorithm.

We will outline a few here to give you some ideas for your project.



EXAMPLES FOR EXTENSIONS
Higher order and mixed derivatives:

Laplacian operator 

Mixed derivatives 

Hessian matrix which is the Jacobian of the gradient of a scalar function , that
is 

Δf = ∇ ⋅ (∇f)
f∂ 2

∂ ∂x1 x2

f
∇(∇f)

Computational optimizations:

Ef�cient graph storage and data structure design/traversal

Hybrid graph storage model: writing parts of a large graph to (slow) disks and
keeping "hot" graph parts in memory

Combining forward mode and reverse mode

Exploiting sparsity in the Jacobian and/or Hessian matrices (graph
coloring)

Non-differentiable functions



EXAMPLES FOR APPLICATIONS
There are many applications of AD, below are just a few. See also .

Numerical solution of Ordinary Differential Equations (ODEs):

integration of stiff ode systems

Newton's method for the solution of non-linear systems of equations (requires
Jacobian-vector products)

autodiff.org

Optimization:

Optimize an object function (also know as loss or cost function)

These techniques require the gradient of the loss function with respect to its
parameters

Solution of linear systems:

Iterative methods are powerful algorithms for solving linear systems

Some iterative methods require information obtained through derivatives, for
example, steepest gradient descent, conjugate gradient or biconjugate gradient
methods.

http://www.autodiff.org/?module=Applications


RECAP
Review of complex numbers and introduction of dual numbers

Implementation of forward mode AD: operator overloading

Reverse mode of AD

Examples for application


