CS107 / AC207

SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 10

Thursday, October 7th 2021
Fabian Wermelinger
Harvard University

RECAP OF LAST TIME

- Towards automatic differentiation
- The Jacobian and Newton's method (root-finding)
- Numerical computation of derivatives
- Finish Newton's method with exact and approximate Jacobian representations (catch up)

OUTLLNE

Automatic Differentiation: Forward Mode (basics)

- Evaluation trace
- The computational graph
- Computing derivatives of one variable using the forward mode
- Computing derivatives in higher dimensions using the forward mode

Beyond the basics:

- The Jacobian in forward mode
- What the forward mode actually computes
- Implementation approaches

INTRODUCTION AND MOTIVATION

References for automatic differentiation:

- P. H.W. Hoffmann, A Hitchhiker's Guide to Automatic Differentiation, Springer 2015, doi:10.1007/s11075-015-0067-6 (You can access this paper through the Harvard network.)
- Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic differentiation, SIAM 2008, Vol. 105
- Nocedal, J. and Wright, S., Numerical Optimization, Springer 2006, 2nd Edition

INTRODUCTION AND MOTIVATION

Differentiation is one of the most important operations in science.

- Finding extrema of functions and determining zeros of functions are central to optimization.
- Linearization of non-linear equations requires a prediction for a change in a small neighborhood which involves derivatives.
- Numerically solving differential equations forms a cornerstone of modern science and engineering and is intimately linked with predictive science.

THE BASIC IDEAS OF AUTOMATIC DIFFERENTIATION

- In the introduction, we motivated the need for computational techniques to compute derivatives.
- We have discussed the computation of J with symbolic math which is accurate but may not always be applicable depending on $f(x)$ or may be too costly to evaluate.
- Numerical computation of J may be an alternative method at the cost of accuracy reduction and possible stability issues.
- Automatic differentiation (AD) overcomes both of these deficiencies. It is
- less costly than symbolic differentiation
- evaluates derivatives to machine precision
- There are two modes of AD: forward and reverse. The back-propagation algorithm in machine learning is a special case of the reverse AD mode.

REVIEW OF THE CHAIN RULE

At the heart of AD is the chain rule that you know from Calculus.

REVIEW OF THE CHAIN RULE

Suppose we have a function $h(u(t))$ and we want to compute the derivative of h with respect to t. This derivative is given by

$$
\frac{d h}{d t}=\frac{\partial h}{\partial u} \frac{d u}{d t}
$$

$$
\begin{gathered}
\text { Example: } h(u(t))=\sin (4 t) \text { and } u(t)=4 t \\
\frac{\partial h}{\partial u}=\cos (u), \quad \frac{d u}{d t}=4 \quad \Rightarrow \quad \frac{d h}{d t}=4 \cos (4 t)
\end{gathered}
$$

REVIEW OF THE CHAIN RULE

The total change of h is given by the sum of the partial changes in each coordinate direction.

Suppose h has another coordinate $v(t)$ so that we have $h(u(t), v(t))$. Once again, we want to compute the derivative of h with respect to t. Applying the chain rule in this case gives

$$
\frac{d h}{d t}=\frac{\partial h}{\partial u} \frac{d u}{d t}+\frac{\partial h}{\partial v} \frac{d v}{d t}
$$

REVIEW OF THE CHAIN RULE

$$
\frac{d h}{d t}=\frac{\partial h}{\partial u} \frac{d u}{d t}+\frac{\partial h}{\partial v} \frac{d v}{d t}
$$

Examples:

$$
\begin{aligned}
h(u(t), v(t))=u+v & \Rightarrow \frac{d h}{d t}=\frac{d u}{d t}+\frac{d v}{d t} \\
h(u(t), v(t))=u v & \Rightarrow \frac{d h}{d t}=v \frac{d u}{d t}+u \frac{d v}{d t} \\
h(u(t), v(t))=\sin (u v) & \Rightarrow \frac{d h}{d t}=v \cos (u v) \frac{d u}{d t}+u \cos (u v) \frac{d v}{d t}
\end{aligned}
$$

REVIEW OF THE CHAIN RULE

The gradient operator ∇ :

In vector calculus, the gradient describes the fastest increase of a scalar function $h(x)$ along a certain spatial direction given by coordinates $x \in \mathbb{R}^{m}$. In our 3D world $m=3$ but in general the coordinate x is m-dimensional. In 3D with coordinates $x=\left[x_{1}, x_{2}, x_{3}\right]^{\top}$, the gradient operator is given by

$$
\nabla=\left[\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right]^{\top}
$$

REVIEW OF THE CHAIN RULE

The gradient operator ∇ :

Think of h as the temperature field T, then the temperature gradient ∇T describes the fastest increase of temperature T in a certain direction. Therefore, the temperature gradient is a vector field.

REVIEW OF THE CHAIN RULE

The gradient operator ∇ (back to chain rule):

What happens if we replace the parameter $t \in \mathbb{R}$ from before with new coordinates $x \in \mathbb{R}^{m}$? We now want to compute the gradient of h with respect to x. We write $h(u(x), v(x))$ and we replace the $d / d t$ operator from before with the gradient ∇ :

$$
\nabla_{x} h=\frac{\partial h}{\partial u} \nabla u+\frac{\partial h}{\partial v} \nabla v,
$$

where we emphasize on the left side that the gradient is with respect to x. We do not write this on the right hand side because of $u=u(x)$ and $v=v(x)$ it is clear that the only possible gradient is with respect to x.

REVIEW OF THE CHAIN RULE

The gradient operator ∇ (back to chain rule):

$$
\nabla_{x} h=\frac{\partial h}{\partial u} \nabla u+\frac{\partial h}{\partial v} \nabla v
$$

The chain rule still holds, all we did is replace the single coordinate t with an m-dimensional vector of coordinates x. This required us to replace the differential operator $d / d t$ with the differential vector operator ∇.

REVIEW OF THE CHAIN RULE

The gradient operator ∇ (back to chain rule):

$$
\nabla_{x} h=\frac{\partial h}{\partial u} \nabla u+\frac{\partial h}{\partial v} \nabla v
$$

Example:

Let $x=\left[x_{1}, x_{2}\right]^{\top} \in \mathbb{R}^{2}, u=u(x)=x_{1} x_{2}$ and $v=v(x)=x_{1}+x_{2}$.
Our function is given by $h(u, v)=\sin (u)-\cos (v)$

$$
\nabla u=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right], \nabla v=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow \nabla_{x} h=\cos \left(x_{1} x_{2}\right)\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]+\sin \left(x_{1}+x_{2}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

REVIEW OF THE CHAIN RULE

The (almost) general chain rule:

Let us now further generalize to not only $u=u(x)$ and $v=v(x)$ but many functions $y(x)=\left[y_{1}(x), \ldots, y_{n}(x)\right]^{\top}$ where all y_{i} take arguments $x \in \mathbb{R}^{m}$. Now $h=h(y(x))$ is a scalar function (therefore "almost" general chain rule) of possibly n other functions y_{i}, each themselves a function of m variables. The gradient of h is now given by:

$$
\nabla_{x} h=\sum_{i=1}^{n} \frac{\partial h}{\partial y_{i}} \nabla y_{i}(x)
$$

This is again the chain rule with n partial terms.

Relate to the example in the previous slide: $m=2$ and $n=2$ with

$$
y_{1}=u=x_{1} x_{2} \text { and } y_{2}=v=x_{1}+x_{2} .
$$

REVIEW OF THE CHAIN RULE

Spend 10 minutes with your neighbors:

- Make sure you feel comfortable with this notation.
- Help each other refresh on the ideas.
- Don't be scared of the general notation, the math behind simply is the chain rule.
- We just applied it assuming our function h depends on many other functions y_{i} which in turn are functions of many coordinates x_{k}.

EVALUATION (FORWARD) TRACE OF A FUNCTION

After the chain rule discussion above, let us apply the notation introduced and look at the evaluation trace of a scalar function $f(x)$
with a single argument $x \in \mathbb{R}(m=1)$. Consider again the same function from the previous lecture:

$$
f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)
$$

We would like to evaluate the function at an arbitrary point x_{1}. Let us define $x_{1}=\frac{\pi}{16}$.

EVALUATION (FORWARD) TRACE OF A FUNCTION

The correct evaluation of $f\left(x_{1}\right)$ involves a partial ordering of the operations associated with the function f.

For example: before we can evaluate $\sin (4 x)$ we must evaluate the intermediate result $4 x$ and before we can evaluate the exponential function we must evaluate the intermediate result $-2(\sin (4 x))^{2}$.

The evaluation trace introduces intermediate results v_{j} for
$j=1,2, \ldots$ of elementary binary operations like multiplying two numbers together or unary operations like computing $\sin \left(v_{j}\right)$.

EVALUATION (FORWARD) TRACE OF A FUNCTION

A word on notation: the coordinates $x=\left[x_{1}, \ldots, x_{m}\right]^{\top}$ that is $x \in \mathbb{R}^{m}$ are called independent variables, whereas the intermediate results v_{j} are dependent variables, they depend on x. We further define the independent variables as $v_{k-m}=x_{k}$ for $k=1,2, \ldots, m$ in the following evaluation trace.

Recall: $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$ and we are interested in the value of $f\left(x_{1}=\frac{\pi}{16}\right)$:

EVALUATION (FORWARD) TRACE OF A FUNCTION

Recall: $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$ and we are interested in the value of $f\left(x_{1}=\frac{\pi}{16}\right)$:

Intermediate

$v_{0}=x_{1}$	$\frac{\pi}{16}$	$1.963495 \mathrm{e}-01$
v_{1}	$4 v_{0}$	$7.853982 \mathrm{e}-01$
v_{2}	$\sin \left(v_{1}\right)$	$7.071068 \mathrm{e}-01$
v_{3}	v_{2}^{2}	$5.000000 \mathrm{e}-01$
v_{4}	$-2 v_{3}$	$-1.000000 \mathrm{e}+00$
v_{5}	$\exp \left(v_{4}\right)$	$3.678794 \mathrm{e}-01$
v_{6}	$-v_{5}$	$-3.678794 \mathrm{e}-01$
$v_{7}=f\left(x_{1}\right)$	$v_{0}+v_{6}$	$-1.715299 \mathrm{e}-01$

Input variables (independent variables)
Intermediate variables (dependent variables, $v_{j}=v_{j}(x)$)

COMPUTATIONAL (FORWARD) GRAPH

We can think of each intermediate result v_{j} as a node in a graph. By doing so, we can get a visual interpretation of the partial ordering of elementary operations in $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$:

COMPUTATIONAL (FORWARD) GRAPH

The first key observation is that we worked from the inside out when developing the forward evaluation trace. We started from the value we want to evaluate $x_{1}=\frac{\pi}{16}$ and built out to the actual function value $f\left(x_{1}\right)$. The second key observation is that in each evaluation step, we only carried out elementary operations between intermediate results v_{j}.

Later when we look at the reverse mode we will observe that it goes in the opposite direction.

COMPUTING THE DERIVATIVE AS WE GO ALONG

We are half-way through the forward mode of automatic differentiation:

- We have identified a partial ordering of elementary operations when evaluating an arbitrary function f.
- By breaking down the problem into smaller parts, we have computed intermediate results v_{j} for $j=1,2, \ldots$ where each $v_{j}=v_{j}(x)$ evaluated at point $x=x_{1}$.
- We have associated each v_{j} to a node in a graph for a visualization of the partial ordering. (Try to think about that in terms of a data structure as well.)

COMPUTING THE DERIVATIVE AS WE GO ALONG

Let us now return to the gradient ∇ :

In the forward mode of automatic differentiation, we evaluate and carry forward a directional derivative of each intermediate variable v_{j} in a given direction $p \in \mathbb{R}^{m}$, simultaneously with the evaluation of v_{j} itself. (The latter is what we just did above.)

What does "direction" mean:

- Recall the linearization of the Euler equations (Lecture 9): the direction was the one that gave the best linear approximation.
- The flow rate through a surface is given by the flow velocity normal to the surface times the surface area. To get the normal velocity, we have to project it in the direction of the surface normal vector.
- In the forward AD mode: the direction is the one of a particular derivative we are interested in.

COMPUTING THE DERIVATIVE AS WE GO ALONG

Let us now return to the gradient ∇ :

In the forward mode of automatic differentiation, we evaluate and carry forward a directional derivative of each intermediate variable v_{j} in a given direction $p \in \mathbb{R}^{m}$, simultaneously with the evaluation of v_{j} itself. (The latter is what we just did above.)

Therefore, let us define the gradient operator in a slightly different way than we did before. Here we project the gradient from before in the direction of p :

$$
D_{p} y_{i} \stackrel{\text { def }}{=}\left(\nabla y_{i}\right)^{\top} p=\sum_{j=1}^{m} \frac{\partial y_{i}}{\partial x_{j}} p_{j}
$$

COMPUTING THE DERIVATIVE AS WE GO ALONG

$$
D_{p} y_{i} \stackrel{\text { def }}{=}\left(\nabla y_{i}\right)^{\top} p=\sum_{j=1}^{m} \frac{\partial y_{i}}{\partial x_{j}} p_{j} .
$$

Is the quantity $D_{p} y_{i}$ a vector or a scalar?

COMPUTING THE DERIVATIVE AS WE GO ALONG

$$
D_{p} y_{i} \stackrel{\text { def }}{=}\left(\nabla y_{i}\right)^{\top} p=\sum_{j=1}^{m} \frac{\partial y_{i}}{\partial x_{j}} p_{j} .
$$

We now return to our example function from before

$$
f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)
$$

evaluated at the point $x=x_{1}=\frac{\pi}{16}$. Be reminded that $x \in \mathbb{R}$ so $m=1$. There is only one possible direction of interest. Therefore, the natural choice is $p=1$ and we simply find:

$$
D_{p} y_{i}=\frac{\partial y_{i}}{\partial x_{1}}
$$

COMPUTING THE DERIVATIVE AS WE GO ALONG

Obviously we are after $D_{p} y_{i}$ in the forward mode of AD.
The y_{i} in $D_{p} y_{i}$ is just a function that depends on x. Let us say these functions correspond to the variables:

$$
y_{i}=v_{i-m} \quad \text { for } i=1,2, \ldots, n
$$

where n is the sum of independent variables (the number m) and intermediate variables. In the forward trace we computed above for our example function we have $n=8$ and $y_{1}=v_{0}, y_{2}=v_{1}$ up to $y_{8}=v_{7}$.

COMPUTING THE DERIVATIVE AS WE GO ALONG

Before we continue and recompute the forward trace including the derivatives of the intermediate variables v_{j}, lets pick a few arbitrary intermediate steps and see how the last missing ingredient enters the forward mode of AD, that is the chain rule.

COMPUTING THE DERIVATIVE AS WE GO ALONG

What is the value of ∇v_{0} ?

Note: from now on we no longer write ∇_{x} to indicate that the differentials are with respect to the independent coordinates x. We always assume this is the case.

We know that $v_{0}=x_{1}$. Furthermore, we are only interested in the direction $p=1$. Applying the result from before we find:

$$
D_{p} v_{0}=\left(\nabla v_{0}\right)^{\top} p=\frac{\partial x_{1}}{\partial x_{1}} \cdot 1=1
$$

COMPUTING THE DERIVATIVE AS WE GO ALONG

What is the value of ∇v_{2} ?

We know that $v_{2}=v_{2}\left(v_{1}\right)=\sin \left(v_{1}\right)$. Because all v_{j} are functions of the independent coordinates x, we must apply the chain rule here:

$$
\nabla v_{2}=\frac{\partial v_{2}}{\partial v_{1}} \nabla v_{1}=\cos \left(v_{1}\right) \nabla v_{1}
$$

Again, we are only interested in the direction $p=1$. Applying the result from before we find:

$$
D_{p} v_{2}=\left(\nabla v_{2}\right)^{\top} p=\cos \left(v_{1}\right)\left(\nabla v_{1}\right)^{\top} p=\cos \left(v_{1}\right) D_{p} v_{1}
$$

Observe: we can compute the derivative of v_{j} with knowledge of v_{i} and $D_{p} v_{i}$ for $i<j$.

COMPUTING THE DERIVATIVE AS WE GO ALONG

What is the value of ∇v_{7} ?

We apply what we know: $v_{7}=v_{7}\left(v_{0}, v_{6}\right)=v_{0}+v_{6}$. Nothing new here except that we further know $v_{7}=f\left(x_{1}\right)$ such that $\nabla v_{7}=\nabla f$ and the directional derivative $D_{p} v_{7}=D_{p} f$ is exactly the derivative we are after, evaluated at coordinate x_{1} :

$$
\nabla v_{7}=\frac{\partial v_{7}}{\partial v_{0}} \nabla v_{0}+\frac{\partial v_{7}}{\partial v_{6}} \nabla v_{6}
$$

Projection in direction of p yields:

$$
D_{p} v_{7}=D_{p} v_{0}+D_{p} v_{6}
$$

where $\partial\left(v_{0}+v_{6}\right) / \partial v_{0}=1$ and $\partial\left(v_{0}+v_{6}\right) / \partial v_{6}=1$.

COMPUTING THE DERIVATIVE AS WE GO ALONG

We now repeat the computation of the forward trace for our test function $f(x)$. What we did earlier is called the forward primal trace, we extend it this time with the forward tangent trace which corresponds to the derivatives of the intermediate variables.

In the forward mode of automatic differentiation, we evaluate and carry forward a directional derivative $D_{p} v_{j}$ of each intermediate variable v_{j} in a given direction $p \in \mathbb{R}^{m}$, simultaneously with the evaluation of v_{j} itself.

Recall: $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$ and we are interested in the value of $\left.\frac{\partial f}{\partial x}\right|_{x=x_{1}}$:

AUTOMATIC DIFFERENTIATION: FORWARD MODE

Recall: $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$ and we are interested in the value of $\left.\frac{\partial f}{\partial x}\right|_{x=x_{1}}$:

Forward primal trace	Forward tangent trace	Numerical value: $v_{j} ; D_{p} v_{j}$
$v_{0}=x_{1}=\frac{\pi}{16}$	$D_{p} v_{0}=1$	$1.963495 \mathrm{e}-01 ; 1.000000 \mathrm{e}+00$
$v_{1}=4 v_{0}$	$D_{p} v_{1}=4 D_{p} v_{0}$	$7.853982 \mathrm{e}-01 ; 4.000000 \mathrm{e}+00$
$v_{2}=\sin \left(v_{1}\right)$	$D_{p} v_{2}=\cos \left(v_{1}\right) D_{p} v_{1}$	$7.071068 \mathrm{e}-01 ; 2.828427 \mathrm{e}+00$
$v_{3}=v_{2}^{2}$	$D_{p} v_{3}=2 v_{2} D_{p} v_{2}$	$5.000000 \mathrm{e}-01 ; 4.000000 \mathrm{e}+00$
$v_{4}=-2 v_{3}$	$D_{p} v_{4}=-2 D_{p} v_{3}$	$-1.000000 \mathrm{e}+00 ;-8.000000 \mathrm{e}+00$
$v_{5}=\exp \left(v_{4}\right)$	$D_{p} v_{5}=\exp \left(v_{4}\right) D_{p} v_{4}$	$3.678794 \mathrm{e}-01 ;-2.943036 \mathrm{e}+00$
$v_{6}=-v_{5}$	$D_{p} v_{6}=-D_{p} v_{5}$	$-3.678794 \mathrm{e}-01 ; 2.943036 \mathrm{e}+00$
$v_{7}=f\left(x_{1}\right)=v_{0}+v_{6}$	$D_{p} v_{7}=\left.\frac{\partial f}{\partial x}\right\|_{x=x_{1}}=D_{p} v_{0}+D_{p} v_{6}$	$-1.715299 \mathrm{e}-01 ; 3.943036 \mathrm{e}+00$

AUTOMATIC DIFFERENTIATION: FORWARD MODE

Recall: $f(x)=x-\exp \left(-2(\sin (4 x))^{2}\right)$ and we are interested in the value of $\left.\frac{\partial f}{\partial x}\right|_{x=x_{1}}$:
Forward primal trace
Forward tangent trace
Numerical value: $v_{j} ; D_{p} v_{j}$
$v_{0}=x_{1}=\frac{\pi}{16} \quad D_{p} v_{0}=1$
$1.963495 \mathrm{e}-01$; $1.000000 \mathrm{e}+00$
$v_{7}=f\left(x_{1}\right)=v_{0}+v_{6} \quad D_{p} v_{7}=\left.\frac{\partial f}{\partial x}\right|_{x=x_{1}}=D_{p} v_{0}+D_{p} v_{6} \quad-1.715299 \mathrm{e}-01 ; 3.943036 \mathrm{e}+00$
We have computed the derivative last time on paper and with sympy. You are encouraged to check that we indeed compute the correct result.

AUTOMATIC DIFFERENTIATION: FORWARD MODE

That is all there is to forward mode AD. The key observations are the following:

- We have broken down the evaluation of an arbitrary function $f(x)$ into smaller pieces, each only consists of elementary operations like addition, multiplication, division, subtraction, exponentiation, trigonometric functions and so on.
- Forward mode works from the inside out.
- We have computed a primal trace of intermediate variables v_{j} and a tangent trace of their directional derivatives $D_{p} v_{j}$ both simultaneously in the same step.
- Since we only work with elementary functions, we know their derivatives and computing $D_{p} v_{j}$ is a trivial task.

AUTOMATIC DIFFERENTIATION: FORWARD MODE

Some comments on implementation:

- The computational graph we studied earlier identifies the nodes associated to intermediate variables v_{j}. The evaluation of v_{j} depends on its parents in the graph. Node v_{i} is a parent of the child node v_{j} whenever there is a directed arc from i to j. This implies a (data) structure that you will need to work with in your AD library.
- There is no need to construct the computational graph, break down the problem into its partial ordering or identify intermediate variables manually. Automatic (or a better word is algorithmic) differentiation software can perform these tasks implicitly via the implemented algorithm and data structure.
- Once a child node is evaluated, its parent node(s) are no longer needed (if the parent has no more other children that must be evaluated) and can therefore be overwritten or discarded. There is no need to store the full graph of v_{j} and $D_{p} v_{j}$ pairs. This is a strength of the forward mode as the computational graph can become very large for non-trivial functions $f(x)$.

AUTOMATIC DIFFERENTIATION: FORWARD MODE

Another word on notation: in the literature you may come across the notation \dot{v}_{j} to denote the directional derivative of v_{j}, instead of the notation $D_{p} v_{j}$ that we have used here. In physics, the "dot" notation refers
to differentiation with respect to time, which can only advance in one direction. Our direction is given by the m-dimensional vector p for which the notation $D_{p} v_{j}$ seems more precise.
Read it as: derivative of v_{j} in direction of p.
Of course you are free to choose whichever notation you are most comfortable with.

FORWARD MODE AD: HICHER DIMENSIONS

So far we have been looking at a scalar function $f(x)$ with a single argument $x \in \mathbb{R}$. In the following slides we extend our discussion to:

- Multivariate scalar function $f(x): \mathbb{R}^{m} \mapsto \mathbb{R}$
- Multivariate vector function $f(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$

The mathematics we covered up to here remains exactly the same, what changes is the number of inputs and outputs in the computational graph.

FORWARD MODE AD: HICHER DIMENSIONS

We start by looking at the case $f(x): \mathbb{R}^{m} \mapsto \mathbb{R}$, where $x \in \mathbb{R}^{m}$.

- We deal with more than one input $x=\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{\top}$.
- This means we have m independent variables. If you recall the table for the primal and tangent traces, we have m gray rows instead of just one. Similarly, the computational graph will have m input nodes on the left side.
- The direction $p \in \mathbb{R}^{m}$ has m components too.

FORWARD MODE AD: HICHER DIMENSIONS

More notation: the vector $p \in \mathbb{R}^{m}$ is called the seed vector. We have introduced it when we defined our directional derivative:

$$
D_{p} y_{i} \stackrel{\text { def }}{=}\left(\nabla y_{i}\right)^{\top} p=\sum_{j=1}^{m} \frac{\partial y_{i}}{\partial x_{j}} p_{j} .
$$

This definition is just a weighted sum (inner product) of derivatives with respect to the independent variables. The "direction" is given by the seed vector p.

The seed vector allows us to cherry-pick a certain derivative of interest (choose a "direction"). If we were interested in $\partial y_{i} / \partial x_{1}$ we would choose $p_{1}=1$ and $p_{k}=0 \forall k \neq 1$. We can even choose a weighted combination of derivatives $\partial y_{i} / \partial x_{j}$ if we needed to.

We are free to choose the seed vector p.

FORWARD MODE AD: HICHER DIMENSIONS

Example: 2-dimensional input ($m=2$)
Consider the independent coordinates $x=\left[x_{1}, x_{2}\right]^{\top}$ with

$$
f(x)=x_{1} x_{2} .
$$

It is easy to compute the gradient right away:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]
$$

FORWARD MODE AD: HICHER DIMENSIONS

Example: 2-dimensional input ($m=2$)
The primal trace consists of simply one intermediate variable

$$
f(x)=v_{1}=v_{-1} v_{0}=x_{1} x_{2}
$$

The tangent trace requires the computation of $D_{p} v_{1}$, where now $p=\left[p_{1}, p_{2}\right]^{\top}$:

$$
D_{p} v_{1}=\left(\nabla v_{1}\right)^{\top} p=\frac{\partial v_{1}}{\partial x_{1}} p_{1}+\frac{\partial v_{1}}{\partial x_{2}} p_{2}=x_{2} p_{1}+x_{1} p_{2}
$$

- How do you choose p if you are interested in $\frac{\partial f}{\partial x_{1}} ? p=[1,0]^{\top}$
- How do you choose p if you are interested in $\frac{\partial f}{\partial x_{2}} ? p=[0,1]^{\top}$

FORWARD MODE AD: HICHER DIMENSIONS

Example: 2-dimensional input ($m=2$)
Consider now the function

$$
f(x)=\sin \left(x_{1} x_{2}\right)
$$

The primal trace consists of two intermediate variables

$$
\begin{aligned}
v_{1} & =v_{-1} v_{0}=x_{1} x_{2} \\
f(x)=v_{2} & =\sin \left(v_{1}\right)
\end{aligned}
$$

From the previous slide you know that:

$$
D_{p} v_{1}=x_{2} p_{1}+x_{1} p_{2}
$$

Spend 10 minutes with your neighbors and go through the seed vector slides for our $m=2$ example. Draw the computational graph of the problem. What is the value of $D_{p} v_{2}$?

FORWARD MODE AD: HICHER DIMENSIONS

From this example we see that what the forward mode in AD really computes is:

$$
\nabla f \cdot p
$$

If the mapping is of the most general form $f(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$, that is, f is a vector function, then the product ∇f is an outer product that turns a vector into a rank-2 tensor (think of it as matrix that has a direction). The elements of that matrix are given by $\frac{\partial f_{i}}{\partial x_{j}}$ and we know from the previous lecture that this is called the Jacobian J.

In the general case, forward mode in AD computes the inner product of the Jacobian with the seed vector p

$$
\begin{gathered}
J \cdot p, \\
\text { where } J \in \mathbb{R}^{n \times m} \text { and } p \in \mathbb{R}^{m} .
\end{gathered}
$$

FORWARD MODE AD: HICHER DIMENSIONS

In this last example we consider the mapping $f(x): \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$, that is $m=2$ and $n=2$. The vector valued function is given by:

$$
\begin{gathered}
f(x)=\left[\begin{array}{c}
x_{1} x_{2}+\sin \left(x_{1}\right) \\
x_{1}+x_{2}+\sin \left(x_{1} x_{2}\right)
\end{array}\right], \\
\text { where } x=\left[x_{1}, x_{2}\right]^{\top} .
\end{gathered}
$$

The first derivatives for this function are easy to compute:

$$
\nabla f=J=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
x_{2}+\cos \left(x_{1}\right) & x_{1} \\
1+x_{2} \cos \left(x_{1} x_{2}\right) & 1+x_{1} \cos \left(x_{1} x_{2}\right)
\end{array}\right]
$$

FORWARD MODE AD: HICHER DIMENSIONS

In this last example we consider the mapping $f(x): \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$, that is $m=2$ and $n=2$. The vector valued function is given by:

$$
\begin{gathered}
f(x)=\left[\begin{array}{c}
x_{1} x_{2}+\sin \left(x_{1}\right) \\
x_{1}+x_{2}+\sin \left(x_{1} x_{2}\right)
\end{array}\right], \\
\text { where } x=\left[x_{1}, x_{2}\right]^{\top}
\end{gathered}
$$

FORWARD MODE AD: HICHER DIMENSIONS

We want to compute the directional derivative $D_{p} v_{5}=D_{p} f_{1}$, that is the first component of the vector function. By drawing the computational graph we should have found that $v_{5}=v_{1}+v_{2}$:

$$
D_{p} v_{5}=\left(\nabla v_{5}\right)^{\top} p=(\underbrace{\frac{\partial v_{5}}{\partial v_{1}} \nabla v_{1}+\frac{\partial v_{5}}{\partial v_{2}} \nabla v_{2}}_{\text {chain rule }})^{\top} p=\left(\nabla v_{1}+\nabla v_{2}\right)^{\top} p
$$

$$
=D_{p} v_{1}+D_{p} v_{2}
$$

FORWARD MODE AD: HICHER DIMENSIONS

$$
D_{p} v_{5}=D_{p} v_{1}+D_{p} v_{2}
$$

We need $D_{p} v_{1}$ and $D_{p} v_{2}$. From the graph we know $v_{1}=v_{-1} v_{0}$:

$$
\begin{gathered}
D_{p} v_{1}=D_{p}\left(v_{-1} v_{0}\right)=\underbrace{v_{0} D_{p} v_{-1}+v_{-1} D_{p} v_{0}}_{\text {product rule }} \\
\text { but } v_{-1}=x_{1} \text { and } v_{0}=x_{2}: \\
D_{p} v_{-1}=\left(\nabla v_{-1}\right)^{\top} p=\left[\begin{array}{c}
\frac{\partial x_{1}}{\partial x_{1}} \\
\frac{\partial x_{1}}{\partial x_{2}}
\end{array}\right]^{\top} p=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2}
\end{array}\right]=p_{1}
\end{gathered}
$$

If you do the same math for $D_{p} v_{0}$ you find:

$$
D_{p} v_{1}=x_{2} p_{1}+x_{1} p_{2}
$$

FORWARD MODE AD: HICHER DIMENSIONS

$$
D_{p} v_{5}=D_{p} v_{1}+D_{p} v_{2}
$$

If you follow the same procedure for $D_{p} v_{2}$ where $v_{2}=\sin \left(v_{-1}\right)$ you find the following solution:

$$
D_{p} v_{5}=D_{p} f_{1}=\left(x_{2}+\cos \left(x_{1}\right)\right) p_{1}+x_{1} p_{2}
$$

If we choose $p=[1,0]^{\top}$ (the unit vector for coordinate x_{1}) then $D_{p} v_{5}=\frac{\partial f_{1}}{\partial x_{1}}$, which is exactly the first element in the first row of the Jacobian J. If we choose $p=[0,1]^{\top}$ then we get the second element of the first row. The elements of the second row are obtained by computing $D_{p} v_{6}$ in the same way.
Take-home message: we can form the full Jacobian by using m unit vectors (as seed vectors) where m is the number of independent variables.

RECAP

Automatic Differentiation: Forward Mode (basics)

- Evaluation trace
- The computational graph
- Computing derivatives of one variable using the forward mode
- Computing derivatives in higher dimensions using the forward mode

Beyond the basics:

- The Jacobian in forward mode
- What the forward mode actually computes
- Implementation approaches

