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RECAP OF LAST TIME
Towards automatic differentiation

The Jacobian and Newton's method (root-�nding)

Numerical computation of derivatives

Finish Newton's method with exact and approximate Jacobian
representations (catch up)



OUTLINE
Automatic Differentiation: Forward Mode (basics)

Evaluation trace

The computational graph

Computing derivatives of one variable using the forward mode

Computing derivatives in higher dimensions using the forward mode

Beyond the basics:

The Jacobian in forward mode

What the forward mode actually computes

Implementation approaches



INTRODUCTION AND MOTIVATION
References for automatic differentiation:

P. H.W. Hoffmann, A Hitchhiker's Guide to Automatic Differentiation, Springer 2015,
(You can access this paper through the Harvard network.)

Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic
differentiation, SIAM 2008, Vol. 105

Nocedal, J. and Wright, S., Numerical Optimization, Springer 2006, 2nd Edition

doi:10.1007/s11075-015-0067-6 

https://link.springer.com/article/10.1007/s11075-015-0067-6


INTRODUCTION AND MOTIVATION
Differentiation is one of the most important operations in science.

Finding extrema of functions and determining zeros of functions
are central to optimization.

Linearization of non-linear equations requires a prediction for a
change in a small neighborhood which involves derivatives.

Numerically solving differential equations forms a cornerstone of
modern science and engineering and is intimately linked with
predictive science.



THE BASIC IDEAS OF AUTOMATIC DIFFERENTIATION
In the introduction, we motivated the need for computational techniques
to compute derivatives.

We have discussed the computation of  with symbolic math which is
accurate but may not always be applicable depending on  or may be
too costly to evaluate.

J
f(x)

Numerical computation of  may be an alternative method at the cost of
accuracy reduction and possible stability issues.

J

Automatic differentiation (AD) overcomes both of these de�ciencies. It is

less costly than symbolic differentiation

evaluates derivatives to machine precision

There are two modes of AD: forward and reverse. The back-propagation
algorithm in machine learning is a special case of the reverse AD mode.



REVIEW OF THE CHAIN RULE
At the heart of AD is the chain rule that you know from Calculus.



REVIEW OF THE CHAIN RULE
Suppose we have a function  and we want to compute the

derivative of  with respect to . This derivative is given by

Example:  and 

h(u(t))
h t

=
dh

dt

∂h

∂u

du

dt

h(u(t)) = sin(4t) u(t) = 4t

= cos(u), = 4 ⇒ = 4 cos(4t)
∂h

∂u

du

dt

dh

dt



REVIEW OF THE CHAIN RULE
The total change of  is given by the sum of the partial changes in

each coordinate direction.

Suppose  has another coordinate  so that we have
. Once again, we want to compute the derivative of 

with respect to . Applying the chain rule in this case gives

h

h v(t)
h(u(t), v(t)) h

t

= +
dh

dt

∂h

∂u

du

dt

∂h

∂v

dv

dt



REVIEW OF THE CHAIN RULE

Examples:

= +
dh

dt

∂h

∂u

du

dt

∂h

∂v

dv

dt

h(u(t), v(t)) = u + v

h(u(t), v(t)) = uv

h(u(t), v(t)) = sin(uv)

⇒ = +
dh

dt

du

dt

dv

dt

⇒ = v + u
dh

dt

du

dt

dv

dt

⇒ = v cos(uv) + u cos(uv)
dh

dt

du

dt

dv

dt



REVIEW OF THE CHAIN RULE
The gradient operator :

In vector calculus, the gradient describes the fastest increase of a
scalar function  along a certain spatial direction given by

coordinates . In our 3D world  but in general the
coordinate  is -dimensional. In 3D with coordinates

, the gradient operator is given by

∇

h(x)
x ∈ Rm m = 3

x m
x = [ , ,x1 x2 x3]⊺

∇ = .[ , , ]
∂

∂x1

∂

∂x2

∂

∂x3

⊺



Temperature �eld 

REVIEW OF THE CHAIN RULE
The gradient operator :

Think of  as the temperature �eld , then the temperature gradient 
 describes the fastest increase of temperature  in a certain

direction. Therefore, the temperature gradient is a vector �eld.

∇

h T
∇T T

T Temperature gradient ∇T



REVIEW OF THE CHAIN RULE
The gradient operator  (back to chain rule):

What happens if we replace the parameter  from before with new
coordinates ? We now want to compute the gradient of  with

respect to . We write  and we replace the 
operator from before with the gradient :

where we emphasize on the left side that the gradient is with respect to 
. We do not write this on the right hand side because of  and 

 it is clear that the only possible gradient is with respect to .

∇

t ∈ R
x ∈ Rm h
x h(u(x), v(x)) d/dt

∇

h = ∇u + ∇v,∇x

∂h

∂u

∂h

∂v

x u = u(x)
v = v(x) x



REVIEW OF THE CHAIN RULE
The gradient operator  (back to chain rule):

The chain rule still holds, all we did is replace the single coordinate  with an
-dimensional vector of coordinates . This required us to replace the

differential operator  with the differential vector operator .

∇

h = ∇u + ∇v∇x

∂h

∂u

∂h

∂v

t
m x

d/dt ∇



REVIEW OF THE CHAIN RULE
The gradient operator  (back to chain rule):

Example: 
Let ,  and . 

Our function is given by 

∇

h = ∇u + ∇v∇x

∂h

∂u

∂h

∂v

x = [ , ∈x1 x2]⊺ R2 u = u(x) = x1x2 v = v(x) = +x1 x2

h(u, v) = sin(u) − cos(v)

∇u = [ ] , ∇v = [ ] ⇒ h = cos( ) [ ] + sin( + ) [ ]
x2

x1

1

1
∇x x1x2

x2

x1

x1 x2
1

1



REVIEW OF THE CHAIN RULE
The (almost) general chain rule:

Let us now further generalize to not only  and  but many
functions  where all  take arguments . Now

 is a scalar function (therefore "almost" general chain rule) of possibly 
 other functions , each themselves a function of  variables. The gradient of 

is now given by:

This is again the chain rule with  partial terms.

u = u(x) v = v(x)
y(x) = [ (x), … , (x)y1 yn ]⊺ yi x ∈ Rm

h = h(y(x))
n yi m h

h = ∇ (x)∇x ∑
i=1

n ∂h

∂yi
yi

n

Relate to the example in the previous slide:  and  with 
 and .

m = 2 n = 2
= u =y1 x1x2 = v = +y2 x1 x2



REVIEW OF THE CHAIN RULE
Spend 10 minutes with your neighbors:

Make sure you feel comfortable with this notation.

Help each other refresh on the ideas.

Don't be scared of the general notation, the math behind simply
is the chain rule.

We just applied it assuming our function  depends on many
other functions  which in turn are functions of many
coordinates .

h
yi

xk



EVALUATION (FORWARD) TRACE OF A FUNCTION
After the chain rule discussion above, let us apply the notation

introduced and look at the evaluation trace of a scalar function 
with a single argument  ( ). Consider again the same

function from the previous lecture:

We would like to evaluate the function at an arbitrary point . Let us
de�ne .

f(x)
x ∈ R m = 1

f(x) = x − exp(−2(sin(4x) ).)
2

x1

=x1
π
16



EVALUATION (FORWARD) TRACE OF A FUNCTION
The correct evaluation of  involves a partial ordering of the

operations associated with the function .

For example: before we can evaluate  we must evaluate the
intermediate result  and before we can evaluate the exponential

function we must evaluate the intermediate result .

f( )x1

f

sin(4x)
4x

−2(sin(4x))
2

The evaluation trace introduces intermediate results  for 
 of elementary binary operations like multiplying two

numbers together or unary operations like computing .

vj
j = 1, 2, …

sin( )vj



EVALUATION (FORWARD) TRACE OF A FUNCTION
A word on notation: the coordinates  that is

 are called independent variables, whereas the intermediate
results  are dependent variables, they depend on . We further

de�ne the independent variables as  for 
in the following evaluation trace.

Recall:  and we are interested in the value of :

x = [ , … ,x1 xm]⊺

x ∈ Rm

vj x

=vk−m xk k = 1, 2, … ,m

f(x) = x− exp(−2(sin(4x) ))
2

f( = )x1
π
16



EVALUATION (FORWARD) TRACE OF A FUNCTION
Recall:  and we are interested in the value of :

Intermediate Elementary Operation Numerical value

1.963495e-01

Input variables (independent variables) Intermediate variables (dependent variables, )

f(x) = x− exp(−2(sin(4x) ))
2

f( = )x1
π
16

=v0 x1
π
16

7.853982e-01v1 4v0

7.071068e-01v2 sin( )v1

5.000000e-01v3 v2
2

-1.000000e+00v4 −2v3

3.678794e-01v5 exp( )v4

-3.678794e-01v6 −v5

-1.715299e-01= f( )v7 x1 +v0 v6

= (x)vj vj



COMPUTATIONAL (FORWARD) GRAPH
We can think of each intermediate result  as a node in a graph. By

doing so, we can get a visual interpretation of the partial ordering of

elementary operations in :

vj

f(x) = x − exp(−2(sin(4x) ))
2



COMPUTATIONAL (FORWARD) GRAPH
The �rst key observation is that we worked from the inside out when

developing the forward evaluation trace. We started from the value
we want to evaluate  and built out to the actual function

value . The second key observation is that in each evaluation
step, we only carried out elementary operations between

intermediate results .

Later when we look at the reverse mode we will observe that it goes in
the opposite direction.

=x1
π
16

f( )x1

vj



COMPUTING THE DERIVATIVE AS WE GO ALONG
We are half-way through the forward mode of automatic

differentiation:

We have identi�ed a partial ordering of elementary operations
when evaluating an arbitrary function .f

By breaking down the problem into smaller parts, we have
computed intermediate results  for  where each 

 evaluated at point .

vj j = 1, 2, …
= (x)vj vj x = x1

We have associated each  to a node in a graph for a visualization

of the partial ordering. (Try to think about that in terms of a data
structure as well.)

vj



COMPUTING THE DERIVATIVE AS WE GO ALONG
Let us now return to the gradient :

In the forward mode of automatic differentiation, we evaluate and
carry forward a directional derivative of each intermediate variable 

 in a given direction , simultaneously with the evaluation

of  itself. (The latter is what we just did above.)

∇

vj p ∈ Rm

vj

What does "direction" mean:
Recall the linearization of the Euler equations (Lecture 9): the direction was the one
that gave the best linear approximation.

The �ow rate through a surface is given by the �ow velocity normal to the surface
times the surface area. To get the normal velocity, we have to project it in the
direction of the surface normal vector.

In the forward AD mode: the direction is the one of a particular derivative we are
interested in.



COMPUTING THE DERIVATIVE AS WE GO ALONG
Let us now return to the gradient :

In the forward mode of automatic differentiation, we evaluate and
carry forward a directional derivative of each intermediate variable 

 in a given direction , simultaneously with the evaluation

of  itself. (The latter is what we just did above.)

Therefore, let us de�ne the gradient operator in a slightly different way than
we did before. Here we project the gradient from before in the direction of :

∇

vj p ∈ Rm

vj

p

p = .Dpyi =
def

(∇ )yi
⊺ ∑

j=1

m ∂yi
∂xj

pj



COMPUTING THE DERIVATIVE AS WE GO ALONG

Is the quantity  a vector or a scalar?

p = .Dpyi =
def

(∇ )yi
⊺ ∑

j=1

m ∂yi
∂xj

pj

Dpyi



COMPUTING THE DERIVATIVE AS WE GO ALONG

We now return to our example function from before

evaluated at the point . Be reminded that  so . There is

only one possible direction of interest. Therefore, the natural choice is  and we
simply �nd:

p = .Dpyi =
def

(∇ )yi
⊺ ∑

j=1

m ∂yi
∂xj

pj

f(x) = x − exp(−2(sin(4x) ),)
2

x = =x1
π
16 x ∈ R m = 1

p = 1

=Dpyi
∂yi
∂x1



COMPUTING THE DERIVATIVE AS WE GO ALONG
Obviously we are after  in the forward mode of AD.

The  in  is just a function that depends on . Let us say these functions
correspond to the variables:

where  is the sum of independent variables (the number ) and
intermediate variables. In the forward trace we computed above for our
example function we have  and ,  up to .

Dpyi

yi Dpyi x

= for i = 1, 2, … ,n,yi vi−m

n m

n = 8 =y1 v0 =y2 v1 =y8 v7



COMPUTING THE DERIVATIVE AS WE GO ALONG
Before we continue and recompute the forward trace including the

derivatives of the intermediate variables , lets pick a few arbitrary

intermediate steps and see how the last missing ingredient enters the
forward mode of AD, that is the chain rule.

vj



COMPUTING THE DERIVATIVE AS WE GO ALONG
What is the value of ?

Note: from now on we no longer write  to indicate that the differentials are with
respect to the independent coordinates . We always assume this is the case.

∇v0

∇x

x

We know that . Furthermore, we are only interested in the
direction . Applying the result from before we �nd:

=v0 x1

p = 1

= (∇ p = ⋅ 1 = 1Dpv0 v0)⊺ ∂x1

∂x1



COMPUTING THE DERIVATIVE AS WE GO ALONG
What is the value of ?∇v2

We know that . Because all  are functions of the

independent coordinates , we must apply the chain rule here:

Again, we are only interested in the direction . Applying the result
from before we �nd:

Observe: we can compute the derivative of  with knowledge of  and  for .

= ( ) = sin( )v2 v2 v1 v1 vj
x

∇ = ∇ = cos( )∇v2
∂v2

∂v1
v1 v1 v1

p = 1

= (∇ p = cos( )(∇ p = cos( )Dpv2 v2)⊺ v1 v1)⊺ v1 Dpv1

vj vi Dpvi i < j



COMPUTING THE DERIVATIVE AS WE GO ALONG
What is the value of ?∇v7

We apply what we know: . Nothing new here except
that we further know  such that  and the directional

derivative  is exactly the derivative we are after, evaluated at

coordinate :

Projection in direction of  yields:

where  and .

= ( , ) = +v7 v7 v0 v6 v0 v6

= f( )v7 x1 ∇ = ∇fv7

= fDpv7 Dp

x1

∇ = ∇ + ∇ .v7
∂v7

∂v0
v0

∂v7

∂v6
v6

p

= + ,Dpv7 Dpv0 Dpv6

∂( + )/∂ = 1v0 v6 v0 ∂( + )/∂ = 1v0 v6 v6



COMPUTING THE DERIVATIVE AS WE GO ALONG
We now repeat the computation of the forward trace for our test

function . What we did earlier is called the forward primal trace,
we extend it this time with the forward tangent trace which

corresponds to the derivatives of the intermediate variables.

In the forward mode of automatic differentiation, we evaluate and
carry forward a directional derivative  of each intermediate

variable  in a given direction , simultaneously with the

evaluation of  itself.

Recall:  and we are interested in the value of :

f(x)

Dpvj
vj p ∈ Rm

vj

f(x) = x− exp(−2(sin(4x) ))
2 ∂f

∂x
∣
∣x=x1



AUTOMATIC DIFFERENTIATION: FORWARD MODE
Recall:  and we are interested in the value of :

Forward primal trace Forward tangent trace Numerical value: ; 

1.963495e-01; 1.000000e+00

Input variables (independent variables) Intermediate variables (dependent variables, )

f(x) = x− exp(−2(sin(4x) ))
2 ∂f

∂x
∣
∣x=x1

vj Dpvj

= =v0 x1
π
16

= 1Dpv0

7.853982e-01; 4.000000e+00= 4v1 v0 = 4Dpv1 Dpv0

7.071068e-01; 2.828427e+00= sin( )v2 v1 = cos( )Dpv2 v1 Dpv1

5.000000e-01; 4.000000e+00=v3 v2
2 = 2Dpv3 v2Dpv2

-1.000000e+00;-8.000000e+00= −2v4 v3 = −2Dpv4 Dpv3

3.678794e-01;-2.943036e+00= exp( )v5 v4 = exp( )Dpv5 v4 Dpv4

-3.678794e-01; 2.943036e+00= −v6 v5 = −Dpv6 Dpv5

-1.715299e-01; 3.943036e+00= f( ) = +v7 x1 v0 v6 = = +Dpv7
∂f

∂x
∣
∣x=x1

Dpv0 Dpv6

= (x)vj vj



AUTOMATIC DIFFERENTIATION: FORWARD MODE
Recall:  and we are interested in the value of :

Forward primal trace Forward tangent trace Numerical value: ; 

1.963495e-01; 1.000000e+00

-1.715299e-01; 3.943036e+00

We have computed the derivative last time on paper and with . You
are encouraged to check that we indeed compute the correct result.

f(x) = x− exp(−2(sin(4x) ))
2 ∂f

∂x
∣
∣x=x1

vj Dpvj

= =v0 x1
π
16

= 1Dpv0

= f( ) = +v7 x1 v0 v6 = = +Dpv7
∂f

∂x
∣
∣x=x1

Dpv0 Dpv6

sympy

https://www.sympy.org/en/index.html


AUTOMATIC DIFFERENTIATION: FORWARD MODE
That is all there is to forward mode AD. The key observations are the following:

We have broken down the evaluation of an arbitrary function  into smaller
pieces, each only consists of elementary operations like addition, multiplication,
division, subtraction, exponentiation, trigonometric functions and so on.

f(x)

Forward mode works from the inside out.

We have computed a primal trace of intermediate variables  and a tangent

trace of their directional derivatives  both simultaneously in the same step.

vj
Dpvj

Since we only work with elementary functions, we know their derivatives and
computing  is a trivial task.Dpvj



AUTOMATIC DIFFERENTIATION: FORWARD MODE
Some comments on implementation:

The computational graph we studied earlier identi�es the nodes associated to
intermediate variables . The evaluation of  depends on its parents in the graph.

Node  is a parent of the child node  whenever there is a directed arc from  to .

This implies a (data) structure that you will need to work with in your AD library.

vj vj
vi vj i j

There is no need to construct the computational graph, break down the problem into
its partial ordering or identify intermediate variables manually. Automatic (or a
better word is algorithmic) differentiation software can perform these tasks
implicitly via the implemented algorithm and data structure.

Once a child node is evaluated, its parent node(s) are no longer needed (if the parent
has no more other children that must be evaluated) and can therefore be
overwritten or discarded. There is no need to store the full graph of  and  pairs.
This is a strength of the forward mode as the computational graph can become very
large for non-trivial functions .

vj Dpvj

f(x)



AUTOMATIC DIFFERENTIATION: FORWARD MODE
Another word on notation: in the literature you may come across the
notation  to denote the directional derivative of , instead of the

notation  that we have used here. In physics, the "dot" notation refers

to differentiation with respect to time, which can only advance in one
direction. Our direction is given by the -dimensional vector  for which

the notation  seems more precise. 

Read it as: derivative of  in direction of .

Of course you are free to choose whichever notation you are most
comfortable with.

v̇j vj
Dpvj

m p
Dpvj

vj p



FORWARD MODE AD: HIGHER DIMENSIONS
So far we have been looking at a scalar function  with a single

argument . In the following slides we extend our discussion to:

Multivariate scalar function 

Multivariate vector function 

The mathematics we covered up to here remains exactly the same,
what changes is the number of inputs and outputs in the

computational graph.

f(x)
x ∈ R

f(x) : ↦ RRm

f(x) : ↦Rm Rn



FORWARD MODE AD: HIGHER DIMENSIONS
We start by looking at the case , where .

We deal with more than one input .

f(x) : ↦ RRm x ∈ Rm

x = [ , , … ,x1 x2 xm]⊺

This means we have  independent variables. If you recall the table
for the primal and tangent traces, we have  gray rows instead of
just one. Similarly, the computational graph will have  input
nodes on the left side.

m
m

m

The direction  has  components too.p ∈ Rm m



FORWARD MODE AD: HIGHER DIMENSIONS
More notation: the vector  is called the seed vector. We have introduced it

when we de�ned our directional derivative:

This de�nition is just a weighted sum (inner product) of derivatives with respect
to the independent variables. The "direction" is given by the seed vector .

p ∈ Rm

p = .Dpyi =
def

(∇ )yi
⊺ ∑

j=1

m ∂yi
∂xj

pj

p

The seed vector allows us to cherry-pick a certain derivative of interest (choose
a "direction"). If we were interested in  we would choose 

and . We can even choose a weighted combination of
derivatives  if we needed to.

We are free to choose the seed vector .

∂ /∂yi x1 = 1p1

= 0 ∀k ≠ 1pk
∂ /∂yi xj

p



FORWARD MODE AD: HIGHER DIMENSIONS
Example: 2-dimensional input ( )

Consider the independent coordinates  with

m = 2

x = [ ,x1 x2]⊺

f(x) = .x1x2

It is easy to compute the gradient right away:

∇f = = [ ] .
⎡

⎣

∂f
∂x1

∂f
∂x2

⎤

⎦

x2

x1



FORWARD MODE AD: HIGHER DIMENSIONS
Example: 2-dimensional input ( )

The primal trace consists of simply one intermediate variable 
.

m = 2

f(x) = = =v1 v−1v0 x1x2

The tangent trace requires the computation of , where now :Dpv1 p = [ ,p1 p2]⊺

= (∇ p = + = +Dpv1 v1)⊺ ∂v1

∂x1
p1

∂v1

∂x2
p2 x2p1 x1p2

How do you choose  if you are interested in ? p
∂f
∂x1

p = [1, 0]⊺

How do you choose  if you are interested in ? p
∂f
∂x2

p = [0, 1]⊺



FORWARD MODE AD: HIGHER DIMENSIONS
Example: 2-dimensional input ( )

Consider now the function

The primal trace consists of two intermediate variables

From the previous slide you know that:

Spend 10 minutes with your neighbors and go through the seed vector slides for
our  example. Draw the computational graph of the problem. What is the

value of ?

m = 2

f(x) = sin( ).x1x2

v1

f(x) = v2

= =v−1v0 x1x2

= sin( )v1

= +Dpv1 x2p1 x1p2

m = 2
Dpv2



FORWARD MODE AD: HIGHER DIMENSIONS
From this example we see that what the forward mode in AD really computes is:

If the mapping is of the most general form , that is,  is a vector
function, then the product  is an outer product that turns a vector into a rank-2
tensor (think of it as matrix that has a direction). The elements of that matrix are

given by  and we know from the previous lecture that this is called the

Jacobian .

In the general case, forward mode in AD computes the inner product of the
Jacobian with the seed vector 

where  and .

∇f ⋅ p

f(x) : ↦Rm Rn f
∇f

∂fi
∂xj

J

p

J ⋅ p,

J ∈ Rn×m p ∈ Rm



FORWARD MODE AD: HIGHER DIMENSIONS
In this last example we consider the mapping , that is 

and . The vector valued function is given by:

where .

The �rst derivatives for this function are easy to compute:

f(x) : ↦R2 R2 m = 2
n = 2

f(x) = [ ] ,
+ sin( )x1x2 x1

+ + sin( )x1 x2 x1x2

x = [ ,x1 x2]⊺

∇f = J = = [ ]
⎡

⎣

∂f1

∂x1

∂f2

∂x1

∂f1

∂x2

∂f2

∂x2

⎤

⎦

+ cos( )x2 x1

1 + cos( )x2 x1x2

x1

1 + cos( )x1 x1x2



FORWARD MODE AD: HIGHER DIMENSIONS
In this last example we consider the mapping , that is 

and . The vector valued function is given by:

where .

What is the computational graph for this problem?

f(x) : ↦R2 R2 m = 2
n = 2

f(x) = [ ] ,
+ sin( )x1x2 x1

+ + sin( )x1 x2 x1x2

x = [ ,x1 x2]⊺



FORWARD MODE AD: HIGHER DIMENSIONS
We want to compute the directional derivative , that is the �rst

component of the vector function. By drawing the computational graph we should
have found that :

=Dpv5 Dpf1

= +v5 v1 v2

Dpv5 = (∇ p = ( p = (∇ + ∇ pv5)⊺ ∇ + ∇
∂v5

∂v1
v1

∂v5

∂v2
v2

  
chain rule

)

⊺

v1 v2)⊺

= +Dpv1 Dpv2



FORWARD MODE AD: HIGHER DIMENSIONS

We need  and . From the graph we know :

but  and :

If you do the same math for  you �nd:

= +Dpv5 Dpv1 Dpv2

Dpv1 Dpv2 =v1 v−1v0

= ( ) =Dpv1 Dp v−1v0 +v0Dpv−1 v−1Dpv0
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FORWARD MODE AD: HIGHER DIMENSIONS

If you follow the same procedure for  where  you �nd the

following solution:

If we choose  (the unit vector for coordinate ) then ,

which is exactly the �rst element in the �rst row of the Jacobian . If we choose
 then we get the second element of the �rst row. The elements of

the second row are obtained by computing  in the same way. 

Take-home message: we can form the full Jacobian by using  unit vectors (as
seed vectors) where  is the number of independent variables.

= +Dpv5 Dpv1 Dpv2

Dpv2 = sin( )v2 v−1

= = ( + cos( )) +Dpv5 Dpf1 x2 x1 p1 x1p2

p = [1, 0]⊺ x1 =Dpv5
∂f1

∂x1

J
p = [0, 1]⊺

Dpv6

m
m



RECAP
Automatic Differentiation: Forward Mode (basics)

Evaluation trace

The computational graph

Computing derivatives of one variable using the forward mode

Computing derivatives in higher dimensions using the forward mode

Beyond the basics:

The Jacobian in forward mode

What the forward mode actually computes

Implementation approaches


