(3107 / AG207

SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE
LECTURE 1

Tuesday, September 7th 2021

Fabian Wermelinger
Harvard University



1920s

1925 First high-fidelity
sound recording

The reproducible sound
range is extended by
more than an octave at
each end of the scale.

1925 Fax service First
commercially successful

L OO

A selection of its mast important innovations in the decades leading up ta the breakup of its parent company, AT&T, in 1984, and how they helped lead to some of the latest technologies.

RECAP OF LAST TIME

ourse introduction and policies
ell labs and its impact on the computer as we
entle transition from Unix to Linux
ow to list content with the 1s command (list

Bell Labs: A Hive of Invention

e

1930s

1932 Radio astronomy Earliest
detection of radio noise coming from

1932 Wide-range audio
reproduction A speaker
system is divided into three

the center of the Milky Way galaxy.

1940s

1950s 1951 Direct-distance dialing
No operator necessary for
long-distance calls.

1960s

1962 Digital transmission,
switching First digital transmis-
sion of multiple veice signals.

1970s and "80s

bands using bass woofers,
midrange horms and tweeters,

1940 First long-distance
computing Remote
aperation of a computer,
at Bell Labs in New York,
by a teletypewriter in
New Hampshire.

1947 The transistor
Alandmark invention, s
Replaced vacuum tubes i
and mechanical relays,; |seged
transformed electronics,

1954 Solar cells First use of
the sun's energy to create a
practical level of electricity.

facsimile or -
phy system in the U.S.; an
early data network.

1927 Negative
feedback amplifier

Cuts distortion in
long-distance telephony;
also aids development of
radio and high-fidelity
amplifiers.

1927 First long-distance
television transmission
Live television images of
Herbert Hoover are sent

vig phone lines from
Washington to New York.

Source: Alcatel-Lucent

1933 First transmission
of stereo sound

A symphony concert is.
broadeast live over
telephone lines from

Philadelphia to Washington.

1946 First

mobile phone service

At most, three subscrib- =

ers per city ceuld make
calls at one time; each
caller's phone apparatus

theory
Calculates maximum
capacity for any commu-
nications system and
shows how lo send
digital MESSARES  |em—

1956 First

1960-62 First communications satellites
Echo is first to reflect a voice signal from
coast to coast; Telstar | shows an orbiting

relay can amplify and resend multiple
phone and TV transmissicns.

1969-72 UNIX operating system
and C programming language
Makes large-scale networking of
varied computing systems, and
the Internet, practical.

telephone cable

Designed and implemented
by Bell Labs; could carry up
10 36 simultaneous calls.

1957 Digitized music First

1962 Paging system Bellboy pager is |

1976 Fiber-optic network
The first test of Bell Labs'

introduced at the Seattle World's Fair. |

-t L

1963 Tc

experimental lightwave
communication system

Enables voice mail and call centers. |

begins in Atlanta, Information
is carried by pulses of light

1978 First commercial cellular network

Installed by Bell Labs in Chicago.

beceme the home of Bell Labs in 1925,

R S

vacated in 2007

welghed almost 80 essentially error-free. demonstrations of digitized and - 1965 Evidence of the Big Bang
pounds. Enabled data compres- computer-synthesized music. Discovery of cosmic background
sion and cryptography. radiation from beyond the Milky Way.
\. | A
S
1937 First electronic 1947 Cellular 1958 The laser "Light Amplification by Stimulated 1969 Charge-coupled device
h Emission of Radiation” was described in a Bell A solid-state chip that transforms
Recreates human speech A Bell Labs paper was the | the murray Hill, Labs paper. It is crucial for communications, patterns of light into information. Vital
first to propese a network of | N, buldings surgical and DVD technologies. to digital cameras, high-definition
1939 First binary digital computer small interlocking cell sites | opened in 1941 television, medical endoscopes
Mathematical operations performed in tracking users as they maove, and video conferencing.
binary form, using on-off relays. It taok passing their calls from one
30 secands to determine the quotient site Io another without
of two eight-digit numbers. dropping the connection. Bell Labs opened
in Haimdel, N.J.,
B This building, on West Strest in Manhattan, in 1962, It was

1979 Digital signal processor
An essential component of cellphones,
modems, PCs and video game systems.

1980 Digital cellular phone
Better sound guality, greater
channel capacity, lower cost.

1982 Fractional quantum hall
effect Discovery of a new
state of subatomic matter that
wins the Nobel Prize.

know it to

ay

PHONES

INTERNET

il

u)

BILL MARSH,/THE NEW YORK TIMES
LEFT AND CENTER PHOTOS COURTESY OF ALCATEL-LUCENT USA INC. AND THE AT&T ARCHIVES AND HISTORY CENTER; RIGHT PHOTO: EZRA STOLLER/ESTO



OUTLINE

More on Linux commands and the man -pages
Working with the shell

Regular expressions and grep

File attributes and finding files

Short journey into text editors



PAIR-PROGRAMMING SECTIONS

e Pair-programming is attendance graded and we check the work
you push to your GitHub account.

e You must attend one section per week (cycle).

. | We implement a 5-minute late tolerance. |After 5 minutes past the

section start it will not be possible anymore to join the ongoing
section.

The pair-programming cycles start on Friday morning (new PP-
exercises handed out) and end on Thursday after the last section.
Hand-in deadline of the PP-exercise is the following Thursday.




YOUR GITHUB REPO FOR THE CLASS

Your GitHub repo for the class should be private and follow the naming convention
. It should look similar to this:

tree cs107_fabian_wermelinger
cs107_fabian_wermelinger/

—— homework

| L—— HWi
| L—— Hw1-final

—— lectures

—— pair_programming
| L—— PP

| L README.md
L README.md

For the HW, you work on a branch called where n is the homework
number. For the current homework the branch is HW1-dev .

You do not need to create pull-requests for pair-programming exercises.

Put your HW solution file(s) inside the HWn-final directory and commit it on the
HWn-dev branch. Create a pull-request for merging branch HWn-dev into your main
or master branch.

The teaching staff will grade and provide feedback to you via the open pull-
request. Do not merge this pull-request until you have received our feedback.

See https://harvard-iacs.github.io/2021-CS107/pages/coursework.html


https://harvard-iacs.github.io/2021-CS107/pages/coursework.html

LINUX COMMANDS AND GETTING HELP

UNIX / LINUX CHEAT SHEET

SYSTEM

PROCESS MANAGEMENT

PERMISSIONS

NETWORKING

FILE SYSTEM

— list items in current directory

— list items in current directory and show in long
format to see perimissions, size, and modification date
— list all items in current directory, including
hidden files

— list all items in current directory and show

directories with a slash and executables with a star
— list all items in directory dir

— change directory to dir

m — go up one directory

— go to the root directory

— go to to your home directory

— go to the last directory you were just in
m — show present working directory

— make directory dir

— remove file

— remove directory dir recursively
— copy filel to file2

— copy directory dir1 to dir2

recursively

— move (rename) file1 to file2

— create symbolic link to file
— create or update file

— output the contents of file

— view file with page navigation

— output the first 10 lines of file

— output the last 10 lines of file

— output the contents of file as it

grows, starting with the last 10 lines

vim file [ElClaigill}
alias name 'comman — create an alias for a

command

— shut down machine
— restart machine

— who you are logged in as

— display information about user
— show the manual for command

— show disk usage

show the current date and time

m — show directory space usage
— show memory and swap usage

— show possible locations of app

— show which app will be run by default

COMPRESSION

tar cf file.tar files [EoleEEICEREEIENES]

file.tar containing files

LS I SR TR — extract the files from file.tar
tar czf file.tar.gz files B CEICEREIRNIG]

Gzip compression

Lt g SR - EV M- PY — exiract a tar using Gzip

CEF-JEFAEY — compresses file and renames it to file.gz

CESIE-IESB WY — cdecompresses file.gz back to

file

E — display your currently active processes

— display all running processes
JSRRRR-ETY — kill process id pid
J SRRt — force kill process id pid

SEARCHING

i A= W #BEY-] — search for pattern in files
L I - Ch S -8 — search recursively for

pattern in dir

i e 3 W=l Wbkl — Search recursively for

pattern in dir and show the line number found

grep -r pattern dir --include="*.ext [&d
search recursively for pattern in dir and only search in
files with .ext extension

[ EL T R - s S W LYY — search for pattern in

the output of command
pEL LR FBEY — find all instances of file in real system

JELECERE $8EY — find all instances of file using indexed

database built from the updatedb command. Much faster
than find

s/day/night/ j8ry — find all
occurrences of day in a file and replace them with night -

s means substitude and g means global - sed also
supports regular expressions

— list items in current directory and show
permissions

— change permissions of file to ugo
- u is the user's permissions, g is the group's
permissions, and o is everyone else's permissions. The
values of u, g, and o can be any number between 0 and
7.

— full permissions

n — read and write only

— read and execute only

n — read only
— write and execute only
— write only

— execute only

n — NO permissions

[ SR — vou can read and write - good for

files

[t VIS BEY — vou can read, write, and execute

- good for scripts

(S8 LY YREIREY — you can read and write, and

everyone else can only read - good for web pages
(o0 L WL RESREY — you can read, write, and execute,
and everyone else can read and execute - good for
programs that you want to share

— download a file

it aRg SREY — download a file

ESIEE TS FR bR — secure copy a file from

remote server to the dir directory on your machine

scp file user@host:dir [EEEECNERLeIOERIlRilely]

your machine to the dir directory on a remote server

scp -r user@host:dir dir [ElEIeIERelsl AT

directory dir from remote server to the directory dir on
your machine

EELWEE Al — connect to host as user
ssh -p port user@host [Eleellilte RleNlo el Nelelsd

as user

EE el e - WPELT JbERY — add your key to host for

user to enable a keyed or passwordless login

— ping host and output results

— get information for domain

— get DNS information for domain

— reverse lookup host

— list all processes running on

port 1337

SHORTCUTS

— move cursor to beginning of line
— move cursor to end of line

— move cursor forward 1 word

— move cursor backward 1 word



LINUX COMMANDS AND GETTING HELP

There are numerous commands available in Linux. They are so
numerous because of the core Unix philosophy:

Every command in Unix/Linux does exactly one job. In other words,
this implies modularity and reusability. Once you have digested
this principle, you will love it!

Ken and Dennis, 1973 (wiki)



https://en.wikipedia.org/wiki/Unix_philosophy

LINUX COMMANDS

The commands you will likely need most often:

1s List directory contents

cd Change directories

mkdir Createdirectories

rm Remove files and directories. Be very mindful with this command! Unlike other OSs,
there is no trash bin in Linux.

cp Copy files and directories

rsync  Remote (and local) file sync tool. This tool will be your friend.

1n Create links to files and directories

grep  Search file contents for a pattern. This tool is very important and you will use it
often. A faster alternative might be ripgrep.

find Find files in the file system

cat Concatenate files and print to stdout


https://github.com/BurntSushi/ripgrep

LINUX COMMANDS

These are already 10 commands. Looking at all of them in detail is not
efficient. You will learn these commands most efficiently by practice.
Once you use them daily, they will become second nature to you.

Command names in Unix/Linux are a mnemonic of what they do (recall:
they have only one job to do). The ancient ones are 2-3 letters short
because typing on the Teletype Model 33 was a finger gym.

Finally, one very important command is missing: man gives you the
manual pages (documentation) of every Linux command.



GETTING HELP

Manual pages are obtained using: man <command name>

e The manual page of man is:

man man
MAN(1) Manual pager utils MAN(1)

NAME
man - an interface to the system reference manuals

e man pages are splitinto 9 numbered sections (see man man ):
1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within program libraries)
4. Special files (usually found in /dev)
5. File formats and conventions, e.g. /etc/passwd
6. Games
7. Miscellaneous (including macro packages and conventions)
8. System administration commands (usually only for root )
9. Kernel routines (Non standard)




GETTING HELP

If you do not specify a section, man will default to section 1:

man printf
PRINTF(1) User Commands PRINTF(1)

NAME
printf - format and print data

SYNOPSIS
printf FORMAT [ARGUMENT]...
printf OPTION




GETTING HELP

Or you can specify the section number explicitly:

man printf
PRINTF(1) User Commands PRINTF(1)

NAME
printf - format and print data

SYNOPSIS
printf FORMAT [ARGUMENT]...
printf OPTION

man 3 printf
PRINTF(3) Linux Programmer's Manual PRINTF(3)

NAME
printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf,
vsnprintf - formatted output conversion

SYNOPSIS




GETTING HELP

You can use the whatis command to find out more about particular
man -page entries for a command:

whatis whatis

whatis (1) display one-line manual page descriptions
whatis printf

printf (3) formatted output conversion
printf (1) format and print data
printf (1p) write formatted output
printf (3p) print formatted output




GETTING HELP

Try out the man command with your neighbors:

e Pick a Linux command that you would like to investigate. A few
examples are given below.

e Read about it using the man command

e Make sure you can all provide a short summary of what it does

e What is one interesting option that this command provides?

ls, cp, mv, 1In, rm, du, df, wc, ps, id, w, vi, bc, pwd, sh, chsh, bash, csh, ksh, env, ssh,

ssh-keygen, man, whatis, whereis, which, stat, info, make, sudo, echo, sort, cut, uniq, sed,
awk, cat, tac, tar, zip, unzip, head, tail, gcc, top, dstat, ulimit, history, passwd,

useradd, usermod, userdel, mkdir, rmdir, touch, rsync, grep, find, diff, jobs, kill, chmod,

chown, time, date, sleep, mount, ping, ex, pico, nano, vim, reboot, shutdown, halt




WORKING WITH THE SHELL

There is this long lasting joke...

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF,
SUDO MAKE ME /
A SANDWICH.
OKaY.

L
& A

Which translates to this in the shell:

make sandwich

make: cannot make target 'sandwich': Permission denied
sudo make sandwich

https://en.wikipedia.org/wiki/Sudo


https://en.wikipedia.org/wiki/Sudo

RUNNING A PROGRAM

Recall: the shell offers you a prompt to input a character sequence
which will be interpreted after you press enter.

e The shell reads the character sequence, locates the program(s) and
executes it by passing the argument(s) you have specified
e There are three standard |/O streams:

1. Standard input: stdin (associated to file descriptor O)

2. Standard output: stdout (associated to file descriptor 1)

3. Standard erro: stderr (associated to file descriptor 2)
Also see: man stdin (covers all three)

e Filedescriptor:is areference in the kernel for open files. There is a
limit to how many files you can have open at the same time.
See ulimit -a for how many. (The currently open file descriptors are listed in
the /dev/fd directory.)



UNIX PIPES

| Recall: Unix philosophy is one program for a particular task

Traditional Unix programs therefore act like filters

Most of the time you need multiple filters to achieve the desired
transformation of your data.

How would you achieve that?

You need a notion to connect the stdout/stderr (either one or
both) to the stdin of the following program

| The notion for thisis the " | " character (Unix pipe)

progl [args] | prog2 [args]

Cvont | w1 o |-

stdout :
stderr stdin



UNIX PIPES

Pipes are extremely powerful and comprise a core component in
the Unix philosophy.

This is a wonderful trip down memory lane: https:/www.youtube.com/watch?v=tc4ROCJYbmO&t

Assume you have the following list of students:

cat student_list.txt
FirstName LastName Seniority Major
Jane Smith Grad CompSci

Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math
John Doe Grad MechEng

You want to create a new list with grad students only and you would
like them sorted by last name.
What filter steps are required to achieve this goal?


https://www.youtube.com/watch?v=tc4ROCJYbm0&t

UNIX PIPES

Assume you have the following list of students:

cat student_list.txt
FirstName LastName Seniority Major
Jane Smith Grad CompSci

Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math
John Doe Grad MechEng

Solution:

1. Print only lines which have seniority Grad
2. Sort the second column of input alphabetically
3. Redirect result to a file

cat student_list.txt | grep Grad | sort -k2 >grad_student_list.txt
cat grad_student_list.txt

John Doe Grad MechEng
Jane Smith Grad CompSci




UNIX PIPES

Solution:

1. Print only lines which have seniority Grad
2. Sort the second column of input alphabetically
3. Redirect result to a file

cat student_list.txt | grep Grad | sort -k2 >grad_student_list.txt
cat grad_student_list.txt

John Doe Grad MechEng
Jane Smith Grad CompSci

Question: Would it be a good idea to sort first and then filter Grad ?

Answer: Sorting can be an expensive task. If your input data is
Megabytes or even larger, reducing the input size for sort canbe a

more efficient approach.



MORE USEFUL COMMANDS
COUNTING WORDS, LINES OR CHARACTERS

If you need to count words, lines or characters in a document, you can
use the wc utility:

wc -1 grad_student_list.txt
2 grad_student_list.txt
wc -w grad_student_list.txt

8 grad_student_list.txt
wc -c grad_student_list.txt
84 grad_student_list.txt

e When counting words, be careful with markup languages like
ETEX (see detex)

e Note that wc -c counts bytes. (Also works with binary files.)

ls -1 grad_student_list.txt

-rw-r--r-- 1 fabs fabs 84 Aug 27 13:42 grad_student_list.txt



https://www.ctan.org/pkg/detex

MORE USEFUL COMMANDS
FINDING FILES

The find command is a powerful tool to search for files in your
system. You will need it often, especially in scripts.

e Search for files or directories using the -type f or -type d
options, respectively
e Use asearch pattern to only match specific file names

e | The " x"is called wildcard, your shell expands it to match
anything
Example: to match any python script use find . -name "x.py"

e You can execute commands on matches that find reports using
the -exec option



MORE USEFUL COMMANDS
FINDING FILES

e Finddirectories in current directory:

find . -type d

find . -maxdepth 2 -type d

e Same for files only:

. —type f
. —type f -name "*x.py"
. —type f -name "test*.py"

. —maxdepth 1 -type f

e Execute acommand on the returned match

find . -type f -name "x.py" -exec wc -1 {3} \;

What does the above command do?



MORE USEFUL COMMANDS
FINDING FILES

e Execute acommand on the returned match

find . -type f -name "*.py" -exec wc -1 {3} \;

What does the above command do?

1. Find files (-type f)using pattern(-name "x.py"),i.e. all
python scripts
2. 0On a match execute ( -exec) the command wc -1 (count lines)

= The" {} "isaplaceholder for the current match

= The" ; "terminates the inline command passed to -exec
= |t must be escaped because it belongs to the inline command, not to the find command
itself

= |t isusually not needed for single commands or if you use the pipe | . You could have
written this however:

find . -type f -name "*.py" -exec wc -1 {} \;;




GREP

e grep isahistorical tool for searching content in files

e |t was written by Ken Thompson, where it was originally part of the
ed text editor

e ed uses atext processing language to operate on single lines or
globally. The command g/re/p searches globally for a regular
expression pattern re and then prints (p) every line containing the
pattern

e The command was so useful that the corresponding ed code was
refactored into a standalone tool called grep

e grep is absolutely essential for searching code bases efficiently

e When your code base is really large a faster alternative could be
ripgrep (l use it every day)


https://github.com/BurntSushi/ripgrep

GREP

Note that grep is case-sensitive by default:

grep Grad student_list.txt
Jane Smith CompSci
John Doe MechEng

grep grad student_list.txt
Joe Bloggs Under
Ruth Schmoe Under

grep -i grad student_list.txt
Jane Smith CompSci
Joe Bloggs Under Bio
Ruth Schmoe Under Math
John Doe MechEng




REGULAR EXPRESSIONS

A regular expression (regex) is a notation for specifying a pattern of text
Many commands make use of this powerful (but confusing) syntax. E.g.
grep, awk, sed, perl, vim,...

Any character is a match, but there are certain special characters that
are interpreted differently if they are not escaped:

Matches any one character except a newline

*x  Matches zero or more occurrences of the preceding character

+ Matches one or more occurrences of the preceding character

?  Matches exactly zero or one occurrences of the preceding character

Potential confusion 1: your shell has a set of special characters too.
Recall the shell wildcard *, it behaves not the same as the x in aregex!
What is the regex equivalent of the shell wildcard?

Answer: (more info on shell wildcards)


https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

REGULAR EXPRESSIONS

e | Any character is a match, but there are certain special characters that

are interpreted differently if they are not escaped:
Matches any one character except a newline

*x  Matches zero or more occurrences of the preceding character

+ Matches one or more occurrences of the preceding character

?  Matches exactly zero or one occurrences of the preceding character

e To match a special character, you must escape it with the backslash \
= a.c matches aac, abc, acc,...
= a\.c matches a.c literally



REGULAR EXPRESSIONS

More special characters:

() Capture group: (abc) matches" abc " where you can back-reference the match with \1
(does not work in all regex dialects)

| Logical "OR": ab|cd matches ab or cd

{3+ Numeral range of occurrences: a{5} match exactly five times, a{2,} match two or more
times, a{1, 3} between one and three times

[1 Character group: [abc] matchanyof a, b or ¢ once, [abc]*x same as before but many

different combinations possible, [*abc] match anything except a, b or ¢, [a-g] match
any character between a and g.Thecaret" » " after the opening [ means negation. The
hyphen " - " specifies a range, e.g., [0-91 any number between 0 and 9 once



REGULAR EXPRESSIONS

Convenience classes:

\d Matchesadigit [0-9]

\D Matches anon-digit [*0-9]

\w Matches aword including letters and digits

\W Matches a non-word

\s Matches whitespace including space, tab, carriage return, newline, vertical tab, form feed
(Windows)

\S Matches non-whitespace

A Matches the beginning of a line

$ Matchestheendofaline

\b Matches aword boundary

\B Matches a non-word boundary

Character classes

Boundary classes



REGULAR EXPRESSIONS

Going back to our earlier example:

grep grad student_list.txt

Joe Bloggs Under
Ruth Schmoe Under

...does match sub-words.

Adding word-boundaries:

grep '\bgrad\b' student_list.txt

..does match nothing. (Because grep is case-sensitive by default,
"Grad" is not a match.)



REGULAR EXPRESSIONS

o you must be mindful with escape sequences.
The backslash \ in the shell acts as an escape sequence as well!
e This will not work:

grep \bgrad\b student_list.txt

Why: \b will be escaped before it is passed as an argument to
grep. grep will see this pattern: where your regex escape
sequence has been eaten up by the shell.

e Solution 1: escape the escape (horror)

grep \\bgrad\\b student_list.txt

e Solution 2: pass the pattern as a hard-quoted string (prefer this)

grep '\bgrad\b' student_list.txt



REGULAR EXPRESSIONS

e Regular expressions can be exhausting...
e But they will do the job for you when you are confronted with
complex search and replace tasks

e | It will require iterations to get your pattern right, especially for
complex stuff (at least | do)

e Watch out for different dialects, they behave slightly different
regarding special characters, e.g. compare the REGULAR

EXPRESSIONS sectionin man grep and vim -c ':h regexp |
only'

Helpful References



FILE ATTRIBUTES
=I"WAXTWXIrwX

owner group other




FILE ATTRIBUTES

Files in Linux have useful attributes:

There are three timestamps:
m atime:last accesstime
= mtime:last modification time (content changed)
= ctime:last time file metadata changed (not content)
= You can use them with find too!
File size obviously
Ownership and group access (because of time-sharing)
File permissions (consequence of time-sharing again)



FILE ATTRIBUTES

You get complete information for a file with stat (see man stat):

stat my_file

File: my_file

Size: 13 Blocks: 8 I0 Block: 4096 regular file
Device: 10303h/66307d Inode: 28969249 Links: 1
Access: (0644/-rw-r--r--) Uid: ( 1000/ fabs) Gid: ( 1000/ fabs)

Access: 2021-08-27 20:03:32.760407309 -0400
Modify: 2021-08-27 20:01:40.397072908 -0400
Change: 2021-08-27 20:01:40.403739575 -0400
Birth: 2021-08-27 20:01:40.397072908 -0400

You can also sort by time with the 1s command:

1s -1t
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:01 my_file
ls -1tu

-rw-r--r-- 1 fabs fabs 13 Aug 27 20:03 my_file
1s -1tc
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:01 my_file




FILE ATTRIBUTES

Timetolook at 1s -1 in more detail:

13 Aug 27 20:01 my_file

From left to right:

e Hard link count (see man 1n)

e Ownership
e Group access

e Filename



FILE PERMISSIONS

e Files (and directories) have a set of permissions that control who

can access the data
e There are three permission categories:

= r:read permission
m w:write permission
m x:execute permission

e There are three types of people you can trust (or not):

= owner: thisisyou
= group: thisis a group name of other users that you set up

= other:everybody else




FILE PERMISSIONS
—IrWXTWXTrWwWX

owner group other
e The first entry specifies the type of file:

- isaplainfile

d isadirectory

C is a character device. (The driver communicates with this device by characters, i.e. bytes. E.g. serial ports (Arduino), parallel ports, sound cards.)

b is a block device. (The driver communicates with entire blocks of data. E.g. hard disks, several USB devices.)

1 isasymboliclink (see man 1n)

e The following are permission categories for the three types of people (we
distinguish between files and directories):

Permission category Set for files Set for directories
r allowed to read allowed to see the filenames
W allowed to write allowed to add and remove files

X allowed to execute allowed to enter the directory



CHANGING FILE PERMISSIONS

The chmod command is used to change file permissions (see ):

CHMOD(1) User Commands CHMOD(1)

NAME
chmod - change file mode bits

SYNOPSIS
chmod [OPTION]... MODE[,MODE]... FILE...
chmod [OPTION]... OCTAL-MODE FILE...

The can be specified in two ways:

1. Symbolic representation

2. Octal number (base-8 number system: 0 to 7)
Sometimes one method is better suited than the other. You should know
both of them.
Multiple symbolic modes can be specified, separated by commas
(MODE[,MODE]. .. )



SYMBOLIC MODE

General form: [ugoa]l [+-=1 [rwxX]

u:user, g:group, o:other, a: all

+:add permission, -: remove permission, =: set permission
r:read, w:write, x: execute

X : set to execute only if the file is a directory or already has
execute permission. This flag is useful with the -R option for

recursion.
There are a few more permissions not discussed here, see man

chmod for all details.
See also man umask for default file mode creation mask.



SYMBOLIC MODE EXAMPLE

Directory permissions:

14 touch new_file && 1s -1
1 fabs fabs 0 Aug 28 11:23 file
16 -rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file




SYMBOLIC MODE EXAMPLE

File permissions:

9 chmod ut+w file && echo 'World!' >> file && cat file
10 Hello
11 World!




OCTAL MODE

Octal mode uses a single octal number for each of the three types
of people (3 octal numbers, each can take values 0-7)

While symbolic mode allows relative permission settings (+ and -
operators), octal mode is absolute

Setting permissions relative can be convenient in some cases

Base permissions are assigned the following octal values:
= 4:read
= 2:write
= 1:execute

Combinations of base permissions are obtained by summing their
octal values



OCTAL MODE

e | Base permissions are assigned the following octal values:
= 4:read

= 2:write

= 1:execute

e Combinations of base permissions are obtained by summing their
octal values

0 : Nno permissions 4:read only

1:execute only 5:read and execute (4+1)
2 :write only 6 :read and write (4+2)
3:write and execute 7 :read, write and execute
(2+1) (4+2+1)




OCTAL MODE EXAMPLE

9 1s -1 directory/
10 -rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file




FILE PERMISSIONS

e Assume you start with the following file

1 fabs fabs 0 Aug 28 12:22 file

What is the octal mode equivalent of chmod a+r,u+w file?
e What does chmod 777 do? Discuss some of the repercussions.



TEXT EDITORS



TEXT EDITORS

e You can not get around the task of editing text files

e Because you spend the majority of time editing files, you need an
editor you feel most comfortable with. The choice is personal.

e There are many text editor in Linux and you will meet them in the

pair-programming sections:

pico and nano, easy to get started and minimal.

vim, powerful but steep learning curve.
emacs, powerful but also much more than just an editor.

ne, offers three user interfaces, one via menus.


https://www.nano-editor.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://ne.di.unimi.it/

HISTORICAL EVOLUTION OF VI(M)

We met ed before when talking about grep. Very first line based
Unix editor written and used by Ken Thompson.

ex is an extended version of ed.

vi is afull screen version of ex (before that there were
teleprinters not screens!)

vim is an improved version of vi.

vi or vim are tools that you will have at your disposal on any *nix
type operating system.

Because vi/vim are ancestors of ed/ex, they inherit similar
syntax that is found in other tools such as sed or awk (learn one
use by many).



VIM

vim is a modal editor. It has 7 basic modes and 7 variations of the
basic modes. The 3 most important ones are:

1. Normal mode
2. Insert mode

3. Command-line mode

Normal mode is the default and used for navigation and operations
on text(-objects).
Insert mode allows you to enter text with the keyboard (press i to

enter insert mode and ESC to return to normal mode).
Command-line mode allows to enter ex commands that operate
on the file contents (e.g. pattern substitutions, writing the file or
quitting the editor). Enter command-line by pressing : in normal
mode.




VIM



USEFUL VIM COMMANDS

All of these commands are typed in normal mode:

:q! Exit without saving the document. Your changes will be lost.
:WQ Save and quit
:wQa Save all open files and quit

/pattern Search for pattern.This can be aregextoo. Type n for the next forward match and
N for the next backward match.

dd Delete the line where the cursor is on

yy Copy (yank) the line where the cursor is on

I, i, a, Inserttext:atbeginningofline (I ), beforethe cursor(1i),afterthecursor(a),at
A end of the line (A)

D Paste the last yank/cut/deleted text

gg Gotofirstline

G Gotolast line



VIM RESOURCES

vim tutor: type vimtutor inyour shell

Practical Vim: Edit Text at the Speed of Thought 2nd Edition
Cheat sheet

Vimcasts.org

git pluginfor vim: vim-fugitive and screencasts


https://www.amazon.com/Practical-Vim-Edit-Speed-Thought/dp/1680501275
https://devhints.io/vim
http://vimcasts.org/episodes/
https://github.com/tpope/vim-fugitive
https://github.com/tpope/vim-fugitive#screencasts

A NOTE ON IDE

e |DEs are Integrated Development Environments. They are graphical
tools that combine many development tasks in the same graphical
environment. (All of these tools exist in the shell as well.)

e They can be convenient and powerful but often require Gigabytes
after installation and can take a while to start up. Examples are:

= Spyder

= Eclipse

= Visual Studio

= PyCharm

= Jupyter (somewhat)

Assume you are a performance engineer at Netflix and an expert

Eclipse user. Saturday 2AM the phone rings due to an emergency

situation on an important Netflix server. You must fix the problem
ASAP on the remote machine without Eclipse. Stay calm.



https://www.spyder-ide.org/
https://www.eclipse.org/ide/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/

RECAP

Linux man -pages

The Unix philosophy and pipes

Regular expressions (practice!)

Linux file attributes and permissions

Find an editor you are comfortable with and make it your own
When you own it, get matching key caps...




