
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 1
Tuesday, September 7th 2021

Fabian Wermelinger
Harvard University

RECAP OF LAST TIME
Course introduction and policies
Bell labs and its impact on the computer as we know it today
Gentle transition from Unix to Linux
How to list content with the ls command (list)

OUTLINE
More on Linux commands and the man -pages
Working with the shell
Regular expressions and grep
File attributes and find ing �les
Short journey into text editors

PAIR-PROGRAMMING SECTIONS
Pair-programming is attendance graded and we check the work
you push to your GitHub account.
You must attend one section per week (cycle).

We implement a 5-minute late tolerance. After 5 minutes past the
section start it will not be possible anymore to join the ongoing
section.

The pair-programming cycles start on Friday morning (new PP-
exercises handed out) and end on Thursday after the last section.

Hand-in deadline of the PP-exercise is the following Thursday.

YOUR GITHUB REPO FOR THE CLASS
Your GitHub repo for the class should be private and follow the naming convention
cs107_firstname_lastname . It should look similar to this:

For the HW, you work on a branch called HWn-dev where n is the homework
number. For the current homework the branch is HW1-dev .
You do not need to create pull-requests for pair-programming exercises.

$ tree cs107_fabian_wermelinger
cs107_fabian_wermelinger/
├── homework
│ └── HW1
│ └── HW1-final
├── lectures
├── pair_programming
│ └── PP1
│ └── README.md
└── README.md

Put your HW solution �le(s) inside the HWn-final directory and commit it on the
HWn-dev branch. Create a pull-request for merging branch HWn-dev into your main

or master branch.

The teaching staff will grade and provide feedback to you via the open pull-
request. Do not merge this pull-request until you have received our feedback.

See https://harvard-iacs.github.io/2021-CS107/pages/coursework.html

https://harvard-iacs.github.io/2021-CS107/pages/coursework.html

LINUX COMMANDS AND GETTING HELP

LINUX COMMANDS AND GETTING HELP
There are numerous commands available in Linux. They are so

numerous because of the core Unix philosophy:

Every command in Unix/Linux does exactly one job. In other words,
this implies modularity and reusability. Once you have digested

this principle, you will love it!

Ken and Dennis, 1973 ()wiki

https://en.wikipedia.org/wiki/Unix_philosophy

LINUX COMMANDS
The commands you will likely need most often:

ls List directory contents

cd Change directories

mkdir Create directories

rm Remove �les and directories. Be very mindful with this command! Unlike other OSs,
there is no trash bin in Linux.

cp Copy �les and directories

rsync Remote (and local) �le sync tool. This tool will be your friend.

ln Create links to �les and directories

grep Search �le contents for a pattern. This tool is very important and you will use it
often. A faster alternative might be .ripgrep

find Find �les in the �le system

cat Concatenate �les and print to stdout

https://github.com/BurntSushi/ripgrep

LINUX COMMANDS
These are already 10 commands. Looking at all of them in detail is not
ef�cient. You will learn these commands most ef�ciently by practice.

Once you use them daily, they will become second nature to you.

Command names in Unix/Linux are a mnemonic of what they do (recall:
they have only one job to do). The ancient ones are 2-3 letters short

because typing on the Teletype Model 33 was a �nger gym.

Finally, one very important command is missing: man gives you the
manual pages (documentation) of every Linux command.

GETTING HELP
Manual pages are obtained using: man <command name>

The manual page of man is:

$ man man # get the manual page for man itself. MAN(1) refers to section 1
MAN(1) Manual pager utils MAN(1)

NAME
 man - an interface to the system reference manuals
...

man pages are split into 9 numbered sections (see man man):
1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within program libraries)
4. Special �les (usually found in /dev)
5. File formats and conventions, e.g. /etc/passwd
6. Games
7. Miscellaneous (including macro packages and conventions)
8. System administration commands (usually only for root)
9. Kernel routines (Non standard)

GETTING HELP
If you do not specify a section, man will default to section 1:

$ man printf
PRINTF(1) User Commands PRINTF(1)

NAME
 printf - format and print data

SYNOPSIS
 printf FORMAT [ARGUMENT]...
 printf OPTION
...

GETTING HELP
Or you can specify the section number explicitly:

$ man printf
PRINTF(1) User Commands PRINTF(1)

NAME
 printf - format and print data

SYNOPSIS
 printf FORMAT [ARGUMENT]...
 printf OPTION
...

$ man 3 printf # explicitly specify the section number with the first argument
PRINTF(3) Linux Programmer's Manual PRINTF(3)

NAME
 printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf,
 vsnprintf - formatted output conversion

SYNOPSIS
#i l d tdi h

GETTING HELP
You can use the whatis command to �nd out more about particular

man -page entries for a command:

$ whatis whatis
whatis (1) - display one-line manual page descriptions
$ whatis printf
printf (3) - formatted output conversion
printf (1) - format and print data
printf (1p) - write formatted output
printf (3p) - print formatted output

GETTING HELP
Try out the man command with your neighbors:

Pick a Linux command that you would like to investigate. A few
examples are given below.
Read about it using the man command
Make sure you can all provide a short summary of what it does
What is one interesting option that this command provides?

ls, cp, mv, ln, rm, du, df, wc, ps, id, w, vi, bc, pwd, sh, chsh, bash, csh, ksh, env, ssh,

ssh-keygen, man, whatis, whereis, which, stat, info, make, sudo, echo, sort, cut, uniq, sed,

awk, cat, tac, tar, zip, unzip, head, tail, gcc, top, dstat, ulimit, history, passwd,

useradd, usermod, userdel, mkdir, rmdir, touch, rsync, grep, find, diff, jobs, kill, chmod,

chown, time, date, sleep, mount, ping, ex, pico, nano, vim, reboot, shutdown, halt

WORKING WITH THE SHELL
There is this long lasting joke...

Which translates to this in the shell:

[wife@husband]$ make sandwich # husband@wife would also be valid user and host names ;)
make: cannot make target 'sandwich': Permission denied
[wife@husband]$ sudo make sandwich # see also `man sudo` and `man make`

https://en.wikipedia.org/wiki/Sudo

https://en.wikipedia.org/wiki/Sudo

RUNNING A PROGRAM
Recall: the shell offers you a prompt to input a character sequence

which will be interpreted after you press enter .

The shell reads the character sequence, locates the program(s) and
executes it by passing the argument(s) you have speci�ed
There are three standard I/O streams:

1. Standard input: stdin (associated to �le descriptor 0)
2. Standard output: stdout (associated to �le descriptor 1)
3. Standard erro: stderr (associated to �le descriptor 2)

Also see: man stdin (covers all three)

File descriptor: is a reference in the kernel for open �les. There is a
limit to how many �les you can have open at the same time.
See ulimit -a for how many. (The currently open �le descriptors are listed in

the /dev/fd directory.)

UNIX PIPES
Recall: Unix philosophy is one program for a particular task

Traditional Unix programs therefore act like �lters
Most of the time you need multiple �lters to achieve the desired
transformation of your data.
How would you achieve that?
You need a notion to connect the stdout/stderr (either one or
both) to the stdin of the following program

The notion for this is the " | " character (Unix pipe)

prog1 [args] | prog2 [args]

prog1 prog2|

stdinstdout
stderr

...pipe

UNIX PIPES
Pipes are extremely powerful and comprise a core component in

the Unix philosophy.
This is a wonderful trip down memory lane: https://www.youtube.com/watch?v=tc4ROCJYbm0&t

Assume you have the following list of students:

You want to create a new list with grad students only and you would
like them sorted by last name.

What �lter steps are required to achieve this goal?

$ cat student_list.txt
FirstName LastName Seniority Major
Jane Smith Grad CompSci
Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math
John Doe Grad MechEng

https://www.youtube.com/watch?v=tc4ROCJYbm0&t

UNIX PIPES
Assume you have the following list of students:

Solution:

1. Print only lines which have seniority Grad
2. Sort the second column of input alphabetically
3. Redirect result to a �le

$ cat student_list.txt
FirstName LastName Seniority Major
Jane Smith Grad CompSci
Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math
John Doe Grad MechEng

$ cat student_list.txt | grep Grad | sort -k2 >grad_student_list.txt
$ cat grad_student_list.txt
John Doe Grad MechEng
Jane Smith Grad CompSci

UNIX PIPES
Solution:

1. Print only lines which have seniority Grad
2. Sort the second column of input alphabetically
3. Redirect result to a �le

Question: Would it be a good idea to sort �rst and then �lter Grad ?

$ cat student_list.txt | grep Grad | sort -k2 >grad_student_list.txt
$ cat grad_student_list.txt
John Doe Grad MechEng
Jane Smith Grad CompSci

Answer: Sorting can be an expensive task. If your input data is
Megabytes or even larger, reducing the input size for sort can be a

more ef�cient approach.

MORE USEFUL COMMANDS
COUNTING WORDS, LINES OR CHARACTERS

If you need to count words, lines or characters in a document, you can
use the wc utility:

$ wc -l grad_student_list.txt # lines
2 grad_student_list.txt
$ wc -w grad_student_list.txt # words
8 grad_student_list.txt
$ wc -c grad_student_list.txt # characters (bytes; 1 ASCII char = 1 byte)
84 grad_student_list.txt

When counting words, be careful with markup languages like
 (see)

Note that wc -c counts bytes. (Also works with binary �les.)
LT XA

E detex

$ ls -l grad_student_list.txt # check the file size
-rw-r--r-- 1 fabs fabs 84 Aug 27 13:42 grad_student_list.txt

https://www.ctan.org/pkg/detex

MORE USEFUL COMMANDS
FINDING FILES

The find command is a powerful tool to search for �les in your
system. You will need it often, especially in scripts.

Search for �les or directories using the -type f or -type d
options, respectively
Use a search pattern to only match speci�c �le names

The " * " is called wildcard, your shell expands it to match
anything
Example: to match any python script use find . -name "*.py"

You can execute commands on matches that find reports using
the -exec option

MORE USEFUL COMMANDS
FINDING FILES

Find directories in current directory:

$ find . -type d # recursively
$ find . -maxdepth 2 -type d # only current directory and 1 level down

Same for �les only:

$ find . -type f # recursively, all files
$ find . -type f -name "*.py" # recursively, only files ending with .py
$ find . -type f -name "test*.py" # recursively, files starting with "test" followed by
 # any char (zero or more times) and ending with ".py"
$ find . -maxdepth 1 -type f # only current directory

Execute a command on the returned match

What does the above command do?

$ find . -type f -name "*.py" -exec wc -l {} \;

MORE USEFUL COMMANDS
FINDING FILES

Execute a command on the returned match

What does the above command do?

1. Find �les (-type f) using pattern (-name "*.py"), i.e. all
python scripts

2. On a match execute (-exec) the command wc -l (count lines)
The " {} " is a placeholder for the current match

The " ; " terminates the inline command passed to -exec
It must be escaped because it belongs to the inline command, not to the find command

itself
It is usually not needed for single commands or if you use the pipe | . You could have

written this however:

$ find . -type f -name "*.py" -exec wc -l {} \;

$ find . -type f -name "*.py" -exec wc -l {} \;; # the second ";" terminates find

GREP
grep is a historical tool for searching content in �les
It was written by Ken Thompson, where it was originally part of the
ed text editor
ed uses a text processing language to operate on single lines or
globally. The command g/re/p searches globally for a regular
expression pattern re and then prints (p) every line containing the
pattern
The command was so useful that the corresponding ed code was
refactored into a standalone tool called grep
grep is absolutely essential for searching code bases ef�ciently
When your code base is really large a faster alternative could be

 (I use it every day)ripgrep

https://github.com/BurntSushi/ripgrep

GREP
Note that grep is case-sensitive by default:

$ grep Grad student_list.txt
Jane Smith Grad CompSci
John Doe Grad MechEng

$ grep grad student_list.txt
Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math

$ grep -i grad student_list.txt # use the -i option to ignore case
Jane Smith Grad CompSci
Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math
John Doe Grad MechEng

REGULAR EXPRESSIONS
A regular expression (regex) is a notation for specifying a pattern of text
Many commands make use of this powerful (but confusing) syntax. E.g.
grep , awk , sed , perl , vim , ...

Any character is a match, but there are certain special characters that
are interpreted differently if they are not escaped:

. Matches any one character except a newline

* Matches zero or more occurrences of the preceding character

+ Matches one or more occurrences of the preceding character

? Matches exactly zero or one occurrences of the preceding character

Potential confusion 1: your shell has a set of special characters too.
Recall the shell wildcard * , it behaves not the same as the * in a regex!
What is the regex equivalent of the shell wildcard?
Answer: .* (more info on)shell wildcards

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

REGULAR EXPRESSIONS
Any character is a match, but there are certain special characters that
are interpreted differently if they are not escaped:

. Matches any one character except a newline

* Matches zero or more occurrences of the preceding character

+ Matches one or more occurrences of the preceding character

? Matches exactly zero or one occurrences of the preceding character

To match a special character, you must escape it with the backslash \
a.c matches aac , abc , acc , ...
a\.c matches a.c literally

REGULAR EXPRESSIONS
More special characters:

() Capture group: (abc) matches " abc " where you can back-reference the match with \1
(does not work in all regex dialects)

| Logical "OR": ab|cd matches ab or cd

{} Numeral range of occurrences: a{5} match exactly �ve times, a{2,} match two or more
times, a{1,3} between one and three times

[] Character group: [abc] match any of a , b or c once, [abc]* same as before but many
different combinations possible, [^abc] match anything except a , b or c , [a-g] match
any character between a and g . The caret " ^ " after the opening [means negation. The
hyphen " - " speci�es a range, e.g., [0-9] any number between 0 and 9 once

REGULAR EXPRESSIONS
Convenience classes:

\d Matches a digit [0-9]

\D Matches a non-digit [^0-9]

\w Matches a word including letters and digits

\W Matches a non-word

\s Matches whitespace including space, tab, carriage return, newline, vertical tab, form feed
(Windows)

\S Matches non-whitespace

Character classes

^ Matches the beginning of a line

$ Matches the end of a line

\b Matches a word boundary

\B Matches a non-word boundary

Boundary classes

REGULAR EXPRESSIONS
Going back to our earlier example:

...does match sub-words.

$ grep grad student_list.txt
Joe Bloggs Undergrad Bio
Ruth Schmoe Undergrad Math

Adding word-boundaries:

...does match nothing. (Because grep is case-sensitive by default,
"Grad" is not a match.)

$ grep '\bgrad\b' student_list.txt

REGULAR EXPRESSIONS
Potential confusion 2: you must be mindful with escape sequences.
The backslash \ in the shell acts as an escape sequence as well!
This will not work:

$ grep \bgrad\b student_list.txt

Why: \b will be escaped before it is passed as an argument to
grep . grep will see this pattern: bgradb where your regex escape
sequence has been eaten up by the shell.
Solution 1: escape the escape (horror)

$ grep \\bgrad\\b student_list.txt

Solution 2: pass the pattern as a hard-quoted string (prefer this)

$ grep '\bgrad\b' student_list.txt

REGULAR EXPRESSIONS
Regular expressions can be exhausting...
But they will do the job for you when you are confronted with
complex search and replace tasks

It will require iterations to get your pattern right, especially for
complex stuff (at least I do)

Watch out for different dialects, they behave slightly different
regarding special characters, e.g. compare the REGULAR
EXPRESSIONS section in man grep and vim -c ':h regexp |
only'

Helpful References

FILE ATTRIBUTES

-rwxrwxrwx
owner group other

FILE ATTRIBUTES
Files in Linux have useful attributes:

There are three timestamps:
atime : last access time
mtime : last modi�cation time (content changed)
ctime : last time �le metadata changed (not content)
You can use them with find too!

File size obviously
Ownership and group access (because of time-sharing)
File permissions (consequence of time-sharing again)

FILE ATTRIBUTES
You get complete information for a �le with stat (see man stat):

$ stat my_file
 File: my_file
 Size: 13 Blocks: 8 IO Block: 4096 regular file
Device: 10303h/66307d Inode: 28969249 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ fabs) Gid: (1000/ fabs)
Access: 2021-08-27 20:03:32.760407309 -0400
Modify: 2021-08-27 20:01:40.397072908 -0400
Change: 2021-08-27 20:01:40.403739575 -0400
 Birth: 2021-08-27 20:01:40.397072908 -0400

You can also sort by time with the ls command:

$ ls -lt # mtime by default [long format -l and sort by time -t (newest first)]
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:01 my_file
$ ls -ltu # -u: atime
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:03 my_file
$ ls -ltc # -c: ctime
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:01 my_file

FILE ATTRIBUTES
Time to look at ls -l in more detail:

From left to right:

File permissions
Hard link count (see man ln)
Ownership
Group access
File size
Timestamp
Filename

$ ls -l
-rw-r--r-- 1 fabs fabs 13 Aug 27 20:01 my_file

FILE PERMISSIONS
Files (and directories) have a set of permissions that control who
can access the data
There are three permission categories:

r : read permission
w : write permission
x : execute permission

There are three types of people you can trust (or not):

owner : this is you
group : this is a group name of other users that you set up
other : everybody else

FILE PERMISSIONS

-rwxrwxrwx
owner group other

The �rst entry speci�es the type of �le:
- is a plain �le

d is a directory

c is a character device. (The driver communicates with this device by characters, i.e. bytes. E.g. serial ports (Arduino), parallel ports, sound cards.)

b is a block device. (The driver communicates with entire blocks of data. E.g. hard disks, several USB devices.)

l is a symbolic link (see man ln)

The following are permission categories for the three types of people (we
distinguish between �les and directories):

Permission category Set for �les Set for directories

r allowed to read allowed to see the �lenames

w allowed to write allowed to add and remove �les

x allowed to execute allowed to enter the directory

CHANGING FILE PERMISSIONS
The chmod command is used to change �le permissions (see man chmod):

The mode can be speci�ed in two ways:

1. Symbolic representation
2. Octal number (base-8 number system: 0 to 7)

Sometimes one method is better suited than the other. You should know
both of them.
Multiple symbolic modes can be speci�ed, separated by commas
(MODE[,MODE]...)

CHMOD(1) User Commands CHMOD(1)

NAME
 chmod - change file mode bits

SYNOPSIS
 chmod [OPTION]... MODE[,MODE]... FILE...
 chmod [OPTION]... OCTAL-MODE FILE...

SYMBOLIC MODE
General form: [ugoa] [+-=] [rwxX]
u : user, g : group, o : other, a : all
+ : add permission, - : remove permission, = : set permission
r : read, w : write, x : execute
X : set to execute only if the �le is a directory or already has
execute permission. This �ag is useful with the -R option for
recursion.
There are a few more permissions not discussed here, see man
chmod for all details.
See also man umask for default �le mode creation mask.

SYMBOLIC MODE EXAMPLE
Directory permissions:

$ ls -l
total 4.0K
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory

1
2
3

$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5
$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7
$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9
$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11
$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13
$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ ls directory/
ls: cannot open directory 'directory/': Permission denied

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3

4
5

$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7
$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9
$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11
$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13
$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ chmod a+x directory/ && ls -l
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3
$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5

6
7

$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9
$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11
$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13
$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ cd directory/ && ls # && means execute second command only if first succeeded
ls: cannot open directory '.': Permission denied

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3
$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5
$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7

8
9

$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11
$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13
$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3
$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5
$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7
$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9

10
11

$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13
$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ ls -l # works because we set the a+r permission
---------- 1 fabs fabs 0 Aug 28 11:23 file

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3
$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5
$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7
$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9
$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11

12
13

$ touch new_file && ls -l # works because we set the u+w permission14
---------- 1 fabs fabs 0 Aug 28 11:23 file15
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask16

$ touch new_file && ls -l # works because we set the u+w permission
---------- 1 fabs fabs 0 Aug 28 11:23 file
-rw-r--r-- 1 fabs fabs 0 Aug 28 11:33 new_file # new file default perm defined by umask

$ ls -l1
total 4.0K2
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory3
$ ls directory/4
ls: cannot open directory 'directory/': Permission denied5
$ chmod a+x directory/ && ls -l6
d--x--x--x 2 fabs fabs 4096 Aug 28 11:23 directory/7
$ cd directory/ && ls # && means execute second command only if first succeeded8
ls: cannot open directory '.': Permission denied9
$ chmod a+r,u+w ../directory/ && ls -ld . # the -d option only lists directories10
drwxr-xr-x 2 fabs fabs 4096 Aug 28 11:33 .11
$ ls -l # works because we set the a+r permission12
---------- 1 fabs fabs 0 Aug 28 11:23 file13

14
15
16

SYMBOLIC MODE EXAMPLE
File permissions:

$ ls -l # works because we set the a+r permission for the directory before
---------- 1 fabs fabs 0 Aug 28 11:23 file

1
2

$ cat file3
cat: file: Permission denied4
$ chmod a+r file && cat file5
Hello6
$ echo 'World!' >> file7
bash: file: Permission denied8
$ chmod u+w file && echo 'World!' >> file && cat file9
Hello10
World!11

$ cat file
cat: file: Permission denied

$ ls -l # works because we set the a+r permission for the directory before1
---------- 1 fabs fabs 0 Aug 28 11:23 file2

3
4

$ chmod a+r file && cat file5
Hello6
$ echo 'World!' >> file7
bash: file: Permission denied8
$ chmod u+w file && echo 'World!' >> file && cat file9
Hello10
World!11

$ chmod a+r file && cat file
Hello

$ ls -l # works because we set the a+r permission for the directory before1
---------- 1 fabs fabs 0 Aug 28 11:23 file2
$ cat file3
cat: file: Permission denied4

5
6

$ echo 'World!' >> file7
bash: file: Permission denied8
$ chmod u+w file && echo 'World!' >> file && cat file9
Hello10
World!11

$ echo 'World!' >> file
bash: file: Permission denied

$ ls -l # works because we set the a+r permission for the directory before1
---------- 1 fabs fabs 0 Aug 28 11:23 file2
$ cat file3
cat: file: Permission denied4
$ chmod a+r file && cat file5
Hello6

7
8

$ chmod u+w file && echo 'World!' >> file && cat file9
Hello10
World!11

$ chmod u+w file && echo 'World!' >> file && cat file
Hello
World!

$ ls -l # works because we set the a+r permission for the directory before1
---------- 1 fabs fabs 0 Aug 28 11:23 file2
$ cat file3
cat: file: Permission denied4
$ chmod a+r file && cat file5
Hello6
$ echo 'World!' >> file7
bash: file: Permission denied8

9
10
11

OCTAL MODE
Octal mode uses a single octal number for each of the three types
of people (3 octal numbers, each can take values 0-7)
While symbolic mode allows relative permission settings (+ and -
operators), octal mode is absolute
Setting permissions relative can be convenient in some cases

Base permissions are assigned the following octal values:
4 : read
2 : write
1 : execute

Combinations of base permissions are obtained by summing their
octal values

OCTAL MODE
Base permissions are assigned the following octal values:

4 : read
2 : write
1 : execute

Combinations of base permissions are obtained by summing their
octal values

0 : no permissions 4 : read only

1 : execute only 5 : read and execute (4+1)

2 : write only 6 : read and write (4+2)

3 : write and execute
(2+1)

7 : read, write and execute
(4+2+1)

OCTAL MODE EXAMPLE
$ ls -l
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory

1
2

$ ls -l directory/; touch directory/new_file3
ls: cannot open directory 'directory/': Permission denied4
touch: cannot touch 'directory/new_file': Permission denied5
$ chmod 755 directory/ && ls -l6
drwxr-wr-w 2 fabs fabs 4.0K Aug 28 11:23 directory7
$ touch directory/new_file8
$ ls -l directory/9
-rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file10

$ ls -l directory/; touch directory/new_file
ls: cannot open directory 'directory/': Permission denied
touch: cannot touch 'directory/new_file': Permission denied

$ ls -l1
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory2

3
4
5

$ chmod 755 directory/ && ls -l6
drwxr-wr-w 2 fabs fabs 4.0K Aug 28 11:23 directory7
$ touch directory/new_file8
$ ls -l directory/9
-rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file10

$ chmod 755 directory/ && ls -l
drwxr-wr-w 2 fabs fabs 4.0K Aug 28 11:23 directory

$ ls -l1
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory2
$ ls -l directory/; touch directory/new_file3
ls: cannot open directory 'directory/': Permission denied4
touch: cannot touch 'directory/new_file': Permission denied5

6
7

$ touch directory/new_file8
$ ls -l directory/9
-rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file10

$ touch directory/new_file

$ ls -l1
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory2
$ ls -l directory/; touch directory/new_file3
ls: cannot open directory 'directory/': Permission denied4
touch: cannot touch 'directory/new_file': Permission denied5
$ chmod 755 directory/ && ls -l6
drwxr-wr-w 2 fabs fabs 4.0K Aug 28 11:23 directory7

8
$ ls -l directory/9
-rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file10
$ ls -l directory/
-rw-r--r-- 1 fabs fabs 0 Aug 28 12:23 new_file

$ ls -l1
d--------- 2 fabs fabs 4.0K Aug 28 11:23 directory2
$ ls -l directory/; touch directory/new_file3
ls: cannot open directory 'directory/': Permission denied4
touch: cannot touch 'directory/new_file': Permission denied5
$ chmod 755 directory/ && ls -l6
drwxr-wr-w 2 fabs fabs 4.0K Aug 28 11:23 directory7
$ touch directory/new_file8

9
10

FILE PERMISSIONS
Assume you start with the following �le

What is the octal mode equivalent of chmod a+r,u+w file ?
What does chmod 777 do? Discuss some of the repercussions.

---------- 1 fabs fabs 0 Aug 28 12:22 file

TEXT EDITORS

TEXT EDITORS
You can not get around the task of editing text �les
Because you spend the majority of time editing �les, you need an
editor you feel most comfortable with. The choice is personal.
There are many text editor in Linux and you will meet them in the
pair-programming sections:

pico and , easy to get started and minimal.
, powerful but steep learning curve.

, powerful but also much more than just an editor.
, offers three user interfaces, one via menus.

nano
vim
emacs
ne

https://www.nano-editor.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://ne.di.unimi.it/

HISTORICAL EVOLUTION OF VI(M)
We met ed before when talking about grep . Very �rst line based
Unix editor written and used by Ken Thompson.
ex is an extended version of ed .
vi is a full screen version of ex (before that there were
teleprinters not screens!)
vim is an improved version of vi .
vi or vim are tools that you will have at your disposal on any *nix
type operating system.
Because vi / vim are ancestors of ed / ex , they inherit similar
syntax that is found in other tools such as sed or awk (learn one
use by many).

VIM
vim is a modal editor. It has 7 basic modes and 7 variations of the
basic modes. The 3 most important ones are:

1. Normal mode
2. Insert mode
3. Command-line mode

Normal mode is the default and used for navigation and operations
on text(-objects).
Insert mode allows you to enter text with the keyboard (press i to
enter insert mode and ESC to return to normal mode).
Command-line mode allows to enter ex commands that operate
on the �le contents (e.g. pattern substitutions, writing the �le or
quitting the editor). Enter command-line by pressing : in normal
mode.

VIM

USEFUL VIM COMMANDS
All of these commands are typed in normal mode:

:q! Exit without saving the document. Your changes will be lost.

:wq Save and quit

:wqa Save all open �les and quit

/pattern Search for pattern . This can be a regex too. Type n for the next forward match and
N for the next backward match.

dd Delete the line where the cursor is on

yy Copy (yank) the line where the cursor is on

I, i, a,
A

Insert text: at beginning of line (I), before the cursor (i), after the cursor (a), at
end of the line (A)

p Paste the last yank/cut/deleted text

gg Go to �rst line

G Go to last line

VIM RESOURCES
vim tutor: type vimtutor in your shell

git plugin for vim : and

Practical Vim: Edit Text at the Speed of Thought 2nd Edition
Cheat sheet
Vimcasts.org

vim-fugitive screencasts

https://www.amazon.com/Practical-Vim-Edit-Speed-Thought/dp/1680501275
https://devhints.io/vim
http://vimcasts.org/episodes/
https://github.com/tpope/vim-fugitive
https://github.com/tpope/vim-fugitive#screencasts

A NOTE ON IDE
IDEs are Integrated Development Environments. They are graphical
tools that combine many development tasks in the same graphical
environment. (All of these tools exist in the shell as well.)
They can be convenient and powerful but often require Gigabytes
after installation and can take a while to start up. Examples are:

 (somewhat)

Spyder
Eclipse
Visual Studio
PyCharm
Jupyter

Assume you are a performance engineer at Net�ix and an expert
Eclipse user. Saturday 2AM the phone rings due to an emergency
situation on an important Net�ix server. You must �x the problem

ASAP on the remote machine without Eclipse. Stay calm.

https://www.spyder-ide.org/
https://www.eclipse.org/ide/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/

RECAP
Linux man -pages
The Unix philosophy and pipes
Regular expressions (practice!)
Linux �le attributes and permissions
Find an editor you are comfortable with and make it your own
When you own it, get matching key caps...

