
CS107 / AC207
SYSTEMS DEVELOPMENT FOR COMPUTATIONAL SCIENCE

LECTURE 0
Thursday, September 2nd 2021

Fabian Wermelinger 
Harvard University



OUTLINE
Teaching Staff
Course Policies
History of Unix and Class Motivation
Linux



TEACHING STAFF

Head instructor: Fabian Wermelinger (PhD, ETH Zürich)
Lecturer in Computational Science
Research interests: Fluid Mechanics, compressible multiphase �ows,
high performance computing, software development
Hobbies: Vinyl records, cooking (love the wok!), reading, ice hockey



TEACHING FELLOWS

Sehaj Chawla (Head TF) Connor Capitolo
Erick Ruiz

Yang Xiang Johnathan Jiang

sehajchawla@g.harvard.edu connorcapitolo@g.harvard.edu
eruiz@g.harvard.edu

yangxiang@fas.harvard.edu johnathan_jiang@harvard.edu

mailto:sehajchawla@g.harvard.edu
mailto:connorcapitolo@g.harvard.edu
mailto:eruiz@g.harvard.edu
mailto:yangxiang@fas.harvard.edu
mailto:johnathan_jiang@harvard.edu


COURSE POLICIES
Sign up for Piazza: 
Sign up for GitHub: 

Add the teaching staff GitHub user  as a collaborator on your course repository when you create it. Click on
"Settings" and then "Manage Access" in the left panel.

Understand roles of main course sites:
Main class site: 
Canvas: Grades
Piazza: All course announcements and discussions
GitHub: All assignment submissions (homework, project, pair-programming exercises)

Helpline: 
Homework re-grading requests: Send them to 

. See the  section on the main class site.

http://piazza.com/harvard/fall2021/cs107
https://www.github.com

cs107-sys-dev

https://harvard-iacs.github.io/2021-CS107/

cs107-sys-dev@lists.fas.harvard.edu
cs107-sys-

dev@lists.fas.harvard.edu Course Flow

We will be working in the command line. If you are a Windows user, please install the 
 on your OS (choose  if you are not sure about which Linux).

Alternatively we provide an Ubuntu based docker  image. You can obtain it with

"Windows
Subsystem for Linux" Ubuntu

$ docker pull cs107sysdev/ubuntu

http://piazza.com/harvard/fall2021/cs107
https://www.github.com/
https://github.com/cs107-sys-dev
https://harvard-iacs.github.io/2021-CS107/
mailto:cs107-sys-dev@lists.fas.harvard.edu
mailto:cs107-sys-dev@lists.fas.harvard.edu
https://harvard-iacs.github.io/2021-CS107/pages/coursework.html
https://docs.microsoft.com/en-us/windows/wsl/about
https://en.wikipedia.org/wiki/Ubuntu


CLASS COMPONENTS
7 Homeworks (25%)
Participation (25%)
Final project (50%)

PARTICIPATION
Pair-programming sections account for 20% (you must attend
one section per week)
Posting on  (questioner and/or responder)
Engaging in class discussions

Piazza

http://piazza.com/harvard/fall2021/cs107


PAIR-PROGRAMMING SECTIONS
We practice coding and command-line usage with pair-programming sections
There are multiple sections per week, you must attend one
We are using Zoom for these sections
Pair-programming exercises are not dif�cult and designed to be completed during
the section
If there were issues and you can not �nish during the section, TFs can make a note
and you are allowed to hand in the completed exercise one week after the last
section of the cycle. Make use of the of�ce hours for more help.

The deadline for handing in PP exercises is one week after the last PP-section of a
cycle. The start of a PP cycle is Friday morning (new PP-exercise will be available
by then). The last section of that cycle is on the following Thursday morning. The
hand-in deadline is the Thursday in the following week. Every PP-cycle we have
sections on Friday, Monday, Wednesday and Thursday.

See "Pair-Programming Sections" on  for more details
The tool we are using to connect with programming mates is 

our class website
tmate

https://harvard-iacs.github.io/2021-CS107/pages/coursework.html
https://tmate.io/


PROJECT
You will work in groups of 3 to 4 people (assigned by teaching staff)
You will add to your library throughout the semester
The project is guided by two milestones
Project topic: automatic differentiation

Evaluate derivatives of single-variate ( or multi-variate) scalar (or vector) functions
Computes the result to machine precision
Applications: neural networks and back-propagation, Hamiltonian Monte Carlo
methods, compute Jacobians (e.g. for coordinate transformations), ...



PROGRAMMING AND HOMEWORK 0 REFRESHMENT
The homework, pair-programming exercises and project will be
using the Python programming language
Please spend a few minutes on  to refresh your mind
(will not be graded)

Homework 0

C/C++ PROGRAMMING PRIMER
I will be offering a voluntary C/C++ mini-class in calendar week 42
and 43 if you are interested to dig into the very basics of a widely

used programming language. See the  for more info.

CS205: If you plan on taking this class you must be familiar with the
basics of C or C++ at the beginning of the class.

main class site

https://harvard-iacs.github.io/2021-CS107/homework/HW0/
https://harvard-iacs.github.io/2021-CS107/pages/cpp_primer.html


DO YOU HAVE QUESTIONS ABOUT THE COURSE
POLICIES?

Class syllabus: 
Coursework: 

https://harvard-iacs.github.io/2021-CS107/pages/syllabus.html
https://harvard-iacs.github.io/2021-CS107/pages/coursework.html

https://harvard-iacs.github.io/2021-CS107/pages/syllabus.html
https://harvard-iacs.github.io/2021-CS107/pages/coursework.html


HISTORY OF UNIX



WHERE IT ALL BEGAN...

Bell Labs, Murray Hill, NJ, 1961



BELL TELEPHONE LABORATORIES
...was what Google is today (somehow)...

...but WAY more in�uential!

9 Nobel Prizes have been awarded for work completed at Bell Labs
5 Turing Awards went to Bell Labs, one was for Unix
Transistors have been invented there
C and C++ originate from Bell Labs
Information theory ( )
The Bourne shell ( )
Error-correcting-code ( )
The list goes on...

Claude Shannon
Steve Bourne

Richard Hamming

https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Richard_Hamming


UNIX
Is based on the ideas of  (developed at MIT)
Time-Sharing Operating System (OS): many users share the same
computing resources at the same time
The kernel is responsible to manage the available resources
(hardware) and coordinates the different user requests to grant
them computing resources
Some interface is required to communicate with the kernel

MULTICS

https://en.wikipedia.org/wiki/Multics


UNIX

Dennis Ritchie (standing) and Ken Thompson operating a PDP-11
computer with Unix at Bell Labs (1972)



SO DO WE STILL USE UNIX TODAY?

Do you have an Android or maybe iPhone? You use Unix
MacBook's OSX is based on Unix
Stream Net�ix? Not without Unix...
Your research?



MOTIVATION

Compressible turbulent channel �ow with air bubbles

0:00 / 0:08



MOTIVATION

Cloud cavitation collapse with 50'000 air bubbles



WHY UNIX/LINUX?
Many research codes are developed and maintained in Unix/Linux
systems (including the previous examples)
Unix/Linux is an ideal development platform (it was designed by
Bell Labs for this purpose as well as necessity for time-sharing )
Very stable and reliable due to its long existence



WHY UNIX/LINUX?
The 500 most powerful supercomputers in the world use a Unix-
like OS ( )
Remote resources at companies like Google, Facebook or Nvidia
use a Unix-like OS almost certainly

Summit Supercomputer (ORN) Linux OS share for top500

https://top500.org/

https://top500.org/


UNIX VS. LINUX
Unix is licensed and you actually have to pay to use it.
Linux was �rst developed by  and �rst released in
1991.
Linux is based on the same ideas of Unix, but it does not contain any
code from Unix. It is licensed under the 

 and therefore free software.
You often see GNU/Linux - GNU stands for "GNU is not Unix".

Linus Torvalds

GNU General Public
License

https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/GNU_General_Public_License


LINUX
Big Birthday Party last week!



LINUX
"Linux" is a broad term. In most cases it refers to the kernel which is

the code responsible to manage hardware resources. This happens in
the so called "kernel space".

On top of the kernel space, there is a "user space" where applications
run (with less permissions). Many different Linux distributions exist,

they combine kernel, libraries and programs to make the system
usable. Examples are:

 (easy to get started with Linux)
 (completely free, i.e. no proprietary hardware drivers)
 (often used on servers or HPC systems)

 (for the advanced user)

Ubuntu
Debian
CentOS
Arch Linux

https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Debian
https://www.centos.org/
https://archlinux.org/


LINUX
How do you interface with the system?

User input and system output

Ken and Dennis in 1972

Fun fact: Unix/Linux commands have short names because you had to
apply quite some force to type on the Teletype Model 33 terminal...



LINUX
How do you interface with the system?

Today mostly Graphical User Interface (GUI) dominated by mouse
and keyboard input.
The classical Textual User Interface (TUI) still exists and is
dominated by keyboard input primarily.

Discuss with your neighbors:

Which interface do you prefer? GUI or textual?
Which of the two do you think is more ef�cient in terms of
navigation through �les, for example?
Can you think of advantages a GUI might have over a TUI or vice
versa?



Applications that run in user space
communicate with the kernel.
These applications can be isolated programs
(e.g. allocating memory in C++ using the new
operator involves the kernel) or a textual
interface where you can enter commands
interactively.
This textual interface is called command line,
the application where you enter commands is
called a shell.

LINUX
How do you interface with the system?



Everything in Unix/Linux is either a process or
a �le
A process is a running application

Each process has a unique process ID (PID)
Processes may have different priorities and can live for a short time or
run inde�nitely

A �le is a sequence of bytes in memory
It stores data (long-term)
Files can be created by users or processes
Text �les (ASCII) or binary �les
Executable applications/programs are �les itself

LINUX
How do you interface with the system?



THE SHELL
The shell basically does four things repeatedly:

1. Display the prompt and command output
2. Read commands
3. Process commands (can be a sequence of many)
4. Execute commands

Example for listing the contents of a directory:

$ ls -la                                        # ls is the list command, -la are options 
total 16 
drwxr-xr-x 4 fabs fabs 4096 Aug 23 12:33 .      # the '.' means current directory 
drwxr-xr-x 4 fabs fabs 4096 Aug 23 12:32 ..     # the '..' means parent directory 
drwxr-xr-x 2 fabs fabs 4096 Aug 23 12:33 dir1   # a directory inside current dir '.' 
drwxr-xr-x 2 fabs fabs 4096 Aug 23 12:33 dir2   # another directory 
-rw-r--r-- 1 fabs fabs    0 Aug 23 12:33 file1  # a file 
-rw-r--r-- 1 fabs fabs    0 Aug 23 12:33 file2  # another file



THE SHELL
All user interaction with the system is through the shell

E.g. create �les or directories, list all contents of current directory, ...

There are different kinds of shells, the two main families are:
Bourne shell: bash , zsh  (on Mac OSX) or ksh
C shell: csh , tcsh

To remotely access a shell session you can use ssh  (secure shell,
more on it later)



COMMON LINUX TERMINOLOGY
Time-sharing introduces accounts, which are associated with:

1. A username and password
2. A user and group ID ( uid/gid )
3. A home directory ( $HOME )
4. A preference for your login shell

Example: who am I and what are my ID's?

$ whoami 
fabs 
$ id 
uid=1000(fabs) gid=1000(fabs) groups=1000(fabs),985(video),986(uucp),991(lp),995(audio),998(wheel)



FILES AND DIRECTORIES
A �le simply is a sequence of bytes in memory and it stores your
data
Every �le has a �lename associated to it
Filenames (or directory names) are case-sensitive in Linux:

Directories are a special kind of �les (they hold information about
other �les inside the directory)
Think of a directory as a container for other �les

On Mac or Windows they are often called folders

$ ls -l 
-rw-r--r-- 1 fabs fabs    0 Aug 23 12:33 file1  # a file 
-rw-r--r-- 1 fabs fabs    0 Aug 23 12:33 File1  # not the same file as 'file1'



THE LINUX FILESYSTEM
Unix (and Linux) uses a hierarchical system of �les and directories
The top level in the hierarchy is called the root, denoted by a " / "
(forward slash)

/bin : contains system critical executable programs
/etc : contains system con�guration �les
/root : home directory of the system administrator
/usr : contains applications accessible to all users
/home : contains the home directories of all users

$ ls / 
bin   dev  etc   lib    lost+found  opt   root  sbin  sys  usr 
boot  efi  home  lib64  mnt         proc  run   srv   tmp  var

The full pathname of a �le includes all directories up to the root of
the �le system:

$ ls /home/fabs/harvard/CS107/file1 
/home/fabs/harvard/CS107/file1



ABSOLUTE AND RELATIVE PATHS
Absolute pathnames start at the root of the �le system. In the
following /home/fabs  is an absolute path:

Relative pathnames are speci�ed in relation to the current
working directory:

$ pwd         # pwd: print working directory 
/home/fabs

$ ls ..       # list the contents of the parent directory which is /home. 
fabs



SPECIAL DIRECTORY NAMES
The placeholder for the current directory is a dot " . ":

$ pwd        # print the path of the current working directory 
/home/fabs/harvard/CS107 
$ ls .       # list the contents of the current directory 
dir1  dir2  file1  file2

The placeholder for the parent directory is " .. " (note that 'parent'
implies relative):

$ ls ..      # list the contents of the parent directory 
CS107

The tilde " ~ " will expand to your home directory:

$ ls ~       # list the contents of the home directory 
Desktop  Documents  Downloads  Music  Pictures  Public  Templates  Videos



OVERVIEW OF BASIC LINUX COMMANDS



COMMANDS YOU SHOULD GET FAMILIAR WITH



THE LIST COMMAND
The list command " ls " displays the contents of directories:

Some ls  examples:
ls List �les in the current directory

ls . List �les in the current directory

ls .. List �les in the parent directory

ls ~ List �les in your home directory

ls / List �les in the root directory

ls /usr List �les in the /usr  directory

$ man ls  # get the manual page for ls 
LS(1)                                   User Commands                                  LS(1) 

NAME 
       ls - list directory contents 

SYNOPSIS 
       ls [OPTION]... [FILE]... 

DESCRIPTION 
       List  information  about  the FILEs (the current directory by default).  Sort entries 
       alphabetically if none of -cftuvSUX nor --sort is specified. 
...



COMMAND LINE OPTIONS
Almost all commands use options to customize their behavior.
There are many options for the ls  command, for example:

-l : long format
-a : all, shows hidden �les in addition to regular �les

$ ls
dir1  dir2  file1  file2 
$ ls -a  # note: hidden filenames start with a '.' 
.  ..  dir1  dir2  file1  file2  .hidden_file 
$ ls -la 
total 16 
drwxr-xr-x 4 fabs fabs 4096 Aug 23 16:05 . 
drwxr-xr-x 4 fabs fabs 4096 Aug 23 12:32 .. 
drwxr-xr-x 2 fabs fabs 4096 Aug 23 12:33 dir1 
-rw-r--r-- 1 fabs fabs    0 Aug 23 12:33 file1 
-rw-r--r-- 1 fabs fabs    0 Aug 23 16:05 .hidden_file

The drwxr-xr-x  or -rw-r--r--  describe the �le type and permissions
relative to the �le owner, group and everybody else. 
Why do we care about permissions? Because of time-sharing system -
there are other users too...



GENERAL COMMAND LINE FOR THE LIST COMMAND
The general form is always given in the man  page:

The arguments in [...]  brackets are optional. If arguments are
required, they will not be enclosed in such brackets.

$ man ls  # get the manual page for ls 
LS(1)                                   User Commands                                  LS(1) 
 
NAME 
       ls - list directory contents 
 
SYNOPSIS 
       ls [OPTION]... [FILE]... 
 

Options can be combined, e.g., " ls -l -a " is the same as " ls -la ".
The ellipsis " ... " mean that this argument may occur multiple
times. For example, " ls -l . ~ /usr " lists the current, home and
/usr  directories in long format.



RECAP
Course intro
History of Bell Labs and Unix
Linux and different ways to interface with the system
Looked at common Unix/Linux terminology
Intro to the list command and its options and arguments
All Linux commands are documented in manual pages (more next
week)

SUGGESTED OPTIONAL READING/LISTENING
B. W. Kernighan, , Independently published, 2019
Check out Episode 1 and 2 of 

UNIX: A History and a Memoir
Season 1 from the Command Line Heroes podcast

https://www.amazon.com/UNIX-History-Memoir-Brian-Kernighan/dp/1695978552
https://www.redhat.com/en/command-line-heroes/season-1


UPCOMING SEMINAR SERIES AT IACS
The IACS hosts Seminar Series with interesting talks from

researchers in Computational Science!

Checkout the upcoming events here: 
They are free to join and will be held via Zoom
You need to register to attend a series

Upcoming talk is by Katherine Yelick of UC Berkeley

https://iacs.seas.harvard.edu/

https://iacs.seas.harvard.edu/

