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Microservice Architecture
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What is an API

• API is Application Programming Interface 

• Web API is one that can be access using HTTP/S

• A REST API is a Web API that follows the HTTP method 

constraints - get, post, put, delete

• We will use FastAPI a Python framework to build REST APIs
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APIs
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How does an API work
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mushroom-app-api-service:9000

Container
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http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container
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localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 9000 is mapped to 9000 
inside the container
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http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 9000 is mapped to 9000 
inside the containerlocalhost:9000
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http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 9000 is mapped to 9000 
inside the containerapi-service

  -api
    -service.py

localhost:9000

@app.get("/leaderboard")

def leaderboard_fetch():

    # Fetch leaderboard

    df = pd.read_csv("leaderboard.csv")

    return df.to_dict('records')
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FastAPI is running on port 
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def leaderboard_fetch():
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    df = pd.read_csv("leaderboard.csv")

    return df.to_dict('records')
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How does an API work (In Production)
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http://mushroom.com:80/leaderboard

Browser GCP Server

12.12.12234.34:80HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 80 is mapped to 9000 
inside the containerapi-service

  -api
    -service.py

localhost:9000

FastAPI is running on port 
9000 serving /leaderboard

/leaderboard was requested so the 
results of the /leaderboard will be 
sent back to browser. In this case is 
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

    # Fetch leaderboard

    df = pd.read_csv("leaderboard.csv")

    return df.to_dict('records')
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Tutorial: Setup GCP Credentials/ Download Best Models

Mushroom App - Setup GCP Credentials
Mushroom App - Download Best Models
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https://github.com/dlops-io/mushroom-app/tree/02-setup-gcp-credentials
https://github.com/dlops-io/mushroom-app/tree/03-download-models


Tutorial: APIs & Frontend App
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Tutorial: APIs & Frontend App

Mushroom App - APIs & Frontend App
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https://github.com/dlops-io/mushroom-app/tree/05-apis-frontend


Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

24



App Frontend

HTML
• Is Hyper Text Markup Language (Remember Markdowns)

• Browsers use HTML to display web pages

CSS
• Cascading style sheets

• Used to format & style web pages

Javascript
• Programming language understood by browser
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App Frontend

<!DOCTYPE html>
<html>
<head>
    <title>🍄 Mushroom Identifier</title>
</head>
<body>
    🍄 Welcome to the mushroom identification App!
</body>
</html>
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Browser Title

Web page details



How does the App work
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request 
to port 8080 to container
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request 
to port 8080 to container

frontend-simple
  -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080 
inside the container

<!DOCTYPE html>

<html>

...
</html>
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request 
to port 8080 to container

frontend-simple
  -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080 
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port 
8080 serving /leaderboard.html



How does the App work
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request 
to port 8080 to container

frontend-simple
  -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080 
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port 
8080 serving /leaderboard.html

/leaderboard.html was requested so 
the results of the /leaderboard.html 
will be sent back to browser. The 
HTML is sent back to the browser



How does the App work
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request 
to port 8080 to container

frontend-simple
  -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080 
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port 
8080 serving /leaderboard.html

/leaderboard.html was requested so 
the results of the /leaderboard.html 
will be sent back to browser. The 
HTML is sent back to the browser

Browser renders the HTML content 
received from the server



How does the App work
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http://localhost:8080/leaderboard.html

Browser Local computer / Server

Container

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our leaderboard list

var leaderboard = [];

// Call the API

axios.get('/leaderboard')

    .then((response) => {

        leaderboard = response.data;

        // Build the table

        buildLeaderboardTable(leaderboard);

    });

Javascript in the Browser is executed HTTP request made to 
http://localhost:9000/leaderboard



How does the App work

34

http://localhost:8080/leaderboard.html

Browser

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our leaderboard list

var leaderboard = [];

// Call the API

axios.get('/leaderboard')

    .then((response) => {

        leaderboard = response.data;

        // Build the table

        buildLeaderboardTable(leaderboard);

    });

Javascript in the Browser is executed HTTP request made to 
http://localhost:9000/leaderboard

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 9000 is mapped to 9000 
inside the containerapi-service

  -api
    -service.py

localhost:9000

FastAPI is running on port 
9000 serving /leaderboard

/leaderboard was requested so the 
results of the /leaderboard will be 
sent back to browser. In this case is 
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

    # Fetch leaderboard

    df = pd.read_csv("leaderboard.csv")

    return df.to_dict('records')



How does the App work
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http://localhost:8080/leaderboard.html

Browser

HTTP request made to 
http://localhost:9000/leaderboard

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request 
to port 9000 to container

Port 9000 is mapped to 9000 
inside the containerapi-service

  -api
    -service.py

localhost:9000

FastAPI is running on port 
9000 serving /leaderboard

/leaderboard was requested so the 
results of the /leaderboard will be 
sent back to browser. In this case is 
a list of objects

Javascript displays the leaderboard 
data in the html page.

@app.get("/leaderboard")

def leaderboard_fetch():

    # Fetch leaderboard

    df = pd.read_csv("leaderboard.csv")

    return df.to_dict('records')
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Tutorial: Model Serving API
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Mushroom App - Model Serving API

https://github.com/dlops-io/mushroom-app/tree/05-apis-frontend#create-a-model-serving-api-api-service-container
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Frontend

When we build our frontend we had a page for each component:
• index.html
• leaderboard.html
• predict.html
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Frontend

When we build our frontend we had a page for each component:
• index.html
• leaderboard.html
• predict.html

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)
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Frontend

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)

Solution:
• Create a single page app that manages HTML, Javascript, 

CSS as components
• Frontend App Frameworks to the rescue
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Frontend Frameworks

There major frontend app frameworks are:
• Angular (Google)
• React (Facebook)
• Vue
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React

• Everything is a Component
• Uses JSX instead of Javascript
• JSX is an extension to JavaScript
• JSX is like a template language, but it comes with the full 

power of JavaScript
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React App
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Header

Footer

Content



React App
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Header defined only once

Content block switched for each page



THANK YOU
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