
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC215

Lecture 16-18: APIs & App Frontend

 Advanced Practical Data Science, MLOps

1

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

2

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

3

Microservice Architecture

4

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

What we built so far

5

API Service
Container

Frontend App
Container

Download Images
Container

BrowserTerminal

HTMLREST / JSON

Persistent Folder

Source Code

Mount

Mount

Source Code

Mount

Source Code

Mount

Secrets

Mount

What we built so far

6

API Service
Container

Frontend App
Container

Download Images
Container

BrowserTerminal

HTMLREST / JSON

Persistent Folder

Source Code

Mount

Mount

Source Code

Mount

Source Code

Mount

Secrets

Mount

1

Download Images

What we built so far

7

Frontend App
Container

API Service
Container

Download Images
Container

BrowserTerminal

HTMLREST / JSON

Persistent Folder

Source Code

Mount

Mount

Source Code

Mount

Source Code

Mount

Secrets

Mount

1

2

Download Images

API exposes python functions

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

8

What is an API

• API is Application Programming Interface

• Web API is one that can be access using HTTP/S

• A REST API is a Web API that follows the HTTP method

constraints - get, post, put, delete

• We will use FastAPI a Python framework to build REST APIs

9

APIs

10

Browser Apps

Mobile Apps

Edge Device Apps

Server Databases

Models

Cloud Stores

We will be using the term API to refer to REST API, which will be used to connect to various
components

REST / JSON

REST / JSON

REST / JSON

How does an API work

11

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

How does an API work

12

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

How does an API work

13

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the container

How does an API work

14

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerlocalhost:9000

How does an API work

15

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

How does an API work

16

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

How does an API work

17

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

/leaderboard was requested so the
results of the /leaderboard will be
sent back to browser. In this case is
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

How does an API work

18

http://localhost:9000/leaderboard

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

/leaderboard was requested so the
results of the /leaderboard will be
sent back to browser. In this case is
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

How does an API work (In Production)

19

http://mushroom.com:80/leaderboard

Browser GCP Server

12.12.12234.34:80HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 80 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

/leaderboard was requested so the
results of the /leaderboard will be
sent back to browser. In this case is
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

Tutorial: Setup GCP Credentials/ Download Best Models

20

API Service
Container

Download Images
Container

Secrets

ENV: GOOGLE_APPLICATION_CREDENTIALS

GCS Bucket

Data & Models

Persistent Folder

2

3

Download Best Models

Save Models

1 Setup Credentials

Tutorial: Setup GCP Credentials/ Download Best Models

Mushroom App - Setup GCP Credentials
Mushroom App - Download Best Models

21

https://github.com/dlops-io/mushroom-app/tree/02-setup-gcp-credentials
https://github.com/dlops-io/mushroom-app/tree/03-download-models

Tutorial: APIs & Frontend App

22

API Service
Container

Frontend App
Container

Download Images
Container

Browser
Terminal

HTMLREST / JSON

Persistent Folder

Source Code

Mount

Mount

Source Code

Mount

Source Code

Mount

Secrets

Mount

GCS Bucket

Data & Models

Mushroom Identifier

Leaderboard

Model 1 , 96.5%
Model 2, 95.3%
Model 3, 93.4%
Model 4, 90.4%
Model 5, 90.3%

32

1

Tutorial: APIs & Frontend App

Mushroom App - APIs & Frontend App

23

https://github.com/dlops-io/mushroom-app/tree/05-apis-frontend

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

24

App Frontend

HTML
• Is Hyper Text Markup Language (Remember Markdowns)

• Browsers use HTML to display web pages

CSS
• Cascading style sheets

• Used to format & style web pages

Javascript
• Programming language understood by browser

25

App Frontend

<!DOCTYPE html>
<html>
<head>
 <title>🍄 Mushroom Identifier</title>
</head>
<body>
 🍄 Welcome to the mushroom identification App!
</body>
</html>

26

Browser Title

Web page details

How does the App work

27

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

How does the App work

28

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 to container

How does the App work

29

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 to container

frontend-simple
 -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

How does the App work

30

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 to container

frontend-simple
 -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /leaderboard.html

How does the App work

31

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 to container

frontend-simple
 -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /leaderboard.html

/leaderboard.html was requested so
the results of the /leaderboard.html
will be sent back to browser. The
HTML is sent back to the browser

How does the App work

32

http://localhost:8080/leaderboard.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 to container

frontend-simple
 -leaderboard.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /leaderboard.html

/leaderboard.html was requested so
the results of the /leaderboard.html
will be sent back to browser. The
HTML is sent back to the browser

Browser renders the HTML content
received from the server

How does the App work

33

http://localhost:8080/leaderboard.html

Browser Local computer / Server

Container

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our leaderboard list

var leaderboard = [];

// Call the API

axios.get('/leaderboard')

 .then((response) => {

 leaderboard = response.data;

 // Build the table

 buildLeaderboardTable(leaderboard);

 });

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/leaderboard

How does the App work

34

http://localhost:8080/leaderboard.html

Browser

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our leaderboard list

var leaderboard = [];

// Call the API

axios.get('/leaderboard')

 .then((response) => {

 leaderboard = response.data;

 // Build the table

 buildLeaderboardTable(leaderboard);

 });

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/leaderboard

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

/leaderboard was requested so the
results of the /leaderboard will be
sent back to browser. In this case is
a list of objects

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

How does the App work

35

http://localhost:8080/leaderboard.html

Browser

HTTP request made to
http://localhost:9000/leaderboard

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 to container

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /leaderboard

/leaderboard was requested so the
results of the /leaderboard will be
sent back to browser. In this case is
a list of objects

Javascript displays the leaderboard
data in the html page.

@app.get("/leaderboard")

def leaderboard_fetch():

 # Fetch leaderboard

 df = pd.read_csv("leaderboard.csv")

 return df.to_dict('records')

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

36

Tutorial: Model Serving API

37

Mushroom App - Model Serving API

https://github.com/dlops-io/mushroom-app/tree/05-apis-frontend#create-a-model-serving-api-api-service-container

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

38

Frontend

When we build our frontend we had a page for each component:
• index.html
• leaderboard.html
• predict.html

39

Frontend

When we build our frontend we had a page for each component:
• index.html
• leaderboard.html
• predict.html

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)

40

Frontend

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)

Solution:
• Create a single page app that manages HTML, Javascript,

CSS as components
• Frontend App Frameworks to the rescue

41

Frontend Frameworks

There major frontend app frameworks are:
• Angular (Google)
• React (Facebook)
• Vue

42

React

• Everything is a Component
• Uses JSX instead of Javascript
• JSX is an extension to JavaScript
• JSX is like a template language, but it comes with the full

power of JavaScript

43

React App

44

Header

Footer

Content

React App

45

Header defined only once

Content block switched for each page

THANK YOU

46

