
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC295

Lecture 14: Containers
AC295

 Advanced Practical Data Science, MLOps

1

Outline

1. Recap
2. Why use Containers - Part 2?
3. Tutorial: Building the Mega Pipeline App

2

Environments vs Virtualization vs Containerization

3

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Why use Containers?

4

• Imagine you are building a large complex application (e.g.
Online Store)

• Traditionality you would build this using a Monolithic
Architecture

Monolithic Architecture

5

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Monolithic Architecture

6

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

Monolithic Architecture - Advantages

7

Simple to Develop, Test, Deploy and Scale:

1. Simple to develop because all the tools and IDEs support the
applications by default.

2. Easy to deploy because all components are packed into one
bundle.

3. Easy to scale the whole application.

Monolithic Architecture - Disadvantages

8

1. Very difficult to maintain

2. One component failure will cause the whole system to fail

3. Very difficult to create the patches for monolithic architecture

4. Adapting to new technologies is challenging

5. Take a long time to startup because all the components needs to
get started

Applications have changed dramatically

9

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server

Applications have changed dramatically

10

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

Data Science

Apps are being integrated with various
data types/sources and models

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server

Today: Microservice Architecture

11

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

Software Development Workflow (no Docker)

12

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Software Development Workflow (no Docker)

13

GitHub

Source Control

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control

Software Development Workflow (no Docker)

14

GitHub

Source Control

Build Server

Linux

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control Build server needs to be

installed with all required
softwares/frameworks

Production build is performed
by pulling code from source
control

Software Development Workflow (no Docker)

15

GitHub

Source Control

Build Server

Linux

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control Build server needs to be

installed with all required
softwares/frameworks

Production build is performed
by pulling code from source
control

Production / Test Servers

LinuxLinux

Production server needs to
be installed with all required
softwares/frameworks

Production server will be
different OS version than
development machines

Software Development Workflow (with Docker)

16

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Software Development Workflow (with Docker)

17

GitHub

Source Control

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control

Software Development Workflow (with Docker)

18

GitHub

Source Control

Build Server

Linux

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control Build server only needs

Docker installed

Docker images are built for a
release and pushed to
container registry

Software Development Workflow (with Docker)

19

GitHub

Source Control

Build Server

Linux

Windows

Linux

Mac

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control Build server only needs

Docker installed

Docker images are built for a
release and pushed to
container registry

Production/ Test Servers

LinuxLinux

Production server only needs
Docker installed

Production server pulls
Docker images from
container registry and runs
them

Comparison

20

Translate Text

Tutorial - Building the Mega Pipeline App

21

Record Audio Generate Text Synthesise AudioTranscribe Audio

GCS Bucket

Audio + Text Files

Synthesise Audio

1 2 3

4

6

5

Tutorial - Building the Mega Pipeline App

22

https://ac215-mega-pipeline.dlops.io/

THANK YOU

23

