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Environments vs Virtualization vs Containerization
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Why use Containers?
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• Imagine you are building a large complex application (e.g. 
Online Store)

• Traditionality you would build this using a Monolithic 
Architecture



Monolithic Architecture
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Monolithic Architecture
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Monolithic Architecture - Advantages
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Simple to Develop, Test, Deploy and Scale:

1. Simple to develop because all the tools and IDEs support the 
applications by default.

2. Easy to deploy because all components are packed into one 
bundle.

3. Easy to scale the whole application.



Monolithic Architecture - Disadvantages
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1. Very difficult to maintain

2. One component failure will cause the whole system to fail

3. Very difficult to create the patches for monolithic architecture

4. Adapting to new technologies is challenging

5. Take a long time to startup because all the components needs to 
get started



Applications have changed dramatically
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Today

Apps are constantly being developed 
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server



Applications have changed dramatically
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Today

Apps are constantly being developed 
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

Data Science

Apps are being integrated with various 
data types/sources and models 

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server



Today: Microservice Architecture
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Software Development Workflow (no Docker)
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Software Development Workflow (no Docker)
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Software Development Workflow (no Docker)
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Software Development Workflow (no Docker)
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Software Development Workflow (with Docker)
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Software Development Workflow (with Docker)

17

GitHub

Source Control

Windows

Linux

Mac

Development machines only 
needs Docker installed

Containers need to be setup 
only once

Every team member moves 
code to source control



Software Development Workflow (with Docker)
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Software Development Workflow (with Docker)
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Comparison
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Translate Text

Tutorial -  Building the Mega Pipeline App
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Tutorial -  Building the Mega Pipeline App
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https://ac215-mega-pipeline.dlops.io/


THANK YOU
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