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Language Models

Today, we heavily focus on Language Modelling (LM) because:
1. It's foundational for nearly all NLP tasks.
2. LM approaches are generalizable to any type of data, not just text.

3. The data is readily available in huge quantities.



Language Models: Background

Regardless of how we model sequential data, keep in mind that we can
estimate any time series as follows:

This compounds for
all subsequent
events, too

T
P(xq,..,xp) = 1_[ p(Xe|Xp_q,) eenr Xq)
t=1

Conditional N
Joint distribution of probability of an event,
all measurements depends on all of the
events that occurred

\_ before it. )




Language Models: Example

If we want to know the probability of the the next on-screen Sesame
Street character:

Scene 1 Scene 2 Scene 3




Language Models: Example

Remember that, when we are evaluate a distribution,

we mean




Language Models: Example

The probability of the the next on-screen Sesame Street character can
be computed as

Scene 1 Scene 2 Scene 3

P ( ?’ ‘ ’ [ iy




Language Models: Example

The probability of the the next on-screen Sesame Street character can
be computed as

Scene 1 Scene 2 Scene 3




Language Models: Example

Why is it useful to accurately estimate the joint probability of
any given sequence of length N?
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Language Models: Background

Having learned a Language Model means that we know the behavior of
the sequences.

If we have a sequence of length N, we can determine the most likely
next event (i.e., sequence of length N+1).

Scene 1 Scene 2 Scene 3

11



Language Models: Formal Definition

A Language Model estimates the probability of any sequence of words

Let X = “Shiv was late for class”
w, Wz W3 Wi Wg

P(X) = P(“Shiv was late for class”)

12



Language Models: Application

Text Recognition Speech Recognition

Sentence Prediction Hello how  are  you

Go gle = Google Translate # OO0 ‘

¥p Text B Documents
S howdo |

(=

how do i get my check

) DETECT LANGUAGE SPANISH v < ENGLISH SPANISH ARAE v
how do i file for unemployment

how do i download the zoom app

how do i renew my passport -
X

et El perro marrén The brown dog W

how do i get a passport

how do i get home

how do i screenshot

how do i register to vote

*D 15/5000 v ‘D

(]

(=

how do i love thee

Google Search I'm Feeling Lucky

Translation 13
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Neural Networks for Language Modeling

IDEA: Let’'s use a !
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Neural Networks for Language Modeling

IDEA: Let's use a !

~irst, each word is represented by a word embedding (e.g., vector of length 200)

man woman table >
0

1 [@ 1 (@ 1 (@) ¥

i (= . |3 OJ o
- - - X= &

O Q) O o

O O O N

O - - 2
(= = = S

2002 200 (& 2002, Size of embedding
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Neural Networks for Language Modeling

IDEA: Let’'s use a !

~irst, each word is represented by a word embedding (e.g., vector of length 200)

man woman table « Each rectangle is a floating-point scalar\
= = 1 (@ « Words that are more semantically similar
S : g to one another will have embeddings
O ) O that are also proportionally similar
J O J "y
O O O » We can use pre-existing word
i (=) . |@ = embeddings that have been trained on
2002 200 (=@ 2002,

\ gigantic corpora /
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Neural Networks for Language Modeling

These word embeddings are so rich that you get nice properties:

king man woman queen
1 (3@ 1 (@ 1 (@ 1 (@
O O O =
O O O O
() O] ) - |
o O O .|
= = . |&@ . |=
200 |2 200 =2 200 (& 200 |=@,

Word2vec: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe: https://www.aclweb.org/anthology/D14-1162.pdf
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Neural Networks for Language Modeling

How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

P(xtyq|Xe, Xe—q,y eenr X1)

)

previous words

Example input sentence

(00000 00000 00000 opeme |
She went to class

19



Neural Networks for Language Modeling

Neural Approach #1: Feed-forward neural net

General Idea: using windows of words, predict the next word

Example input sentence

She

went

to

[ 0000 DO000 OODEO)

Hidden layer

V

—_—

(2000000000

<

(e]e]e] Jelolele)

Output layer

—_—

<
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Neural Networks for Language Modeling

X = [x1; X2, x3]

Concatenated word embeddings LIQ‘O/babilities ]

=

She |5 h=f(Vx+by) 9 = softmax(Wh + b,)
= 8 S {y"€RMV| |0=sy=1}
- % S w o

went g ﬁ o ﬁ 8 ﬁ y class
0 8 ® N\
= 5 gl i =argmax(®)

tol= ® 8 St

§ d = awesome

Example input sentence Hidden layer Output layer class




Neural Networks for Language Modeling

X = [x21 X3, X4_]
Concatenated word embeddings

went % h=fVx+ by) 9 = softmax(Wh + b,)
= 8 B [y’ ERAV| |0syx1})
to % V_} § _W} § — ) after
g § é i = argr:; )

Example input sentence Hidden layer Output layer ftor




Neural Networks for Language Modeling

X = [X3, X4, xS]
Concatenated word embeddings

=
o § h=f(Vx+ by)
@) —_—
) 8 8
O
class (2 _>V 8 _’W 8
o O O
O @,
after |2 O o
: g
Example i;ut sentence Hidden layer Output layer

y = softmax(Wh + b,)
{y’€RMV]| [0sy=1}

—)

i =argmax ()

[ant

awesome

visiting

visiting
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Neural Networks for Language Modeling

X = [X4, X5, x6]
Concatenated word embeddings

class % h=f(Vx+ by) 9 = softmax(Wh + b,)
= 8 S {y' €R"V] [0sy=1}
after % V_} § _W} § —)) § her
- § é i = argr:Q ®)
visiting % a o) _: ::esome

Example input sentence Hidden layer Output layer her




Neural Networks for Language Modeling (Training)

x = [x1, X2, x3] h=f({Vx+ by) 9 = softmax(Wh + b,) € RIV
She

vV

—

w

— j e L =-3y log(¥)

went

[QOOQOOOO]

to

Output layer Sum over all words
| the text
Example input Hidden layer in the tex

sentence ant ] i = argmax () Back Pro pagatlon
i

(2000000000

(0000 OO00 D000

awesome

V*=V —nV,L

class

W*=W —nVyl




Neural Networks for Language Modeling

FFNN Strength
* No sparsity issues (it's okay if we’ve never seen a word)

* No storage issues (we never store counts)

compared to

traditional n-gram

methods

26




Neural Networks for Language Modeling

FFNN Strength

* No sparsity issues (it's okay if we’ve never seen a word)

* No storage issues (we never store counts)

 Fixed-window size can never be big enough. Need more context

» Requires inputting entire context just to predict one word

* Increasing window size adds many more weights

* The weights awkwardly handle word position
* No concept of time

27



Neural Networks for Language Modeling

We especially need a system that:

« Has a concept of an “infinite” past, not just a fixed window

* For each new input, output the most likely next event (e.g., word)
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Recurrent Neural Network: Motivations

RNNs should exhibit the following advantages for sequence
modelling:

- Handle seguences
- Keep track of dependencies
- Maintain information about the as opposed to FFNN

across the network



Recurrent Neural Network

FEED FORWARD
NEURAL NETWORK

Output vector

Model

Input vector @

 Cannot maintain previous
information

31



Recurrent Neural Network

FEED FORWARD RECURRENT NEURAL NETWORK
NEURAL NETWORK

Output vector Output @
o

Model, W ho hz hz h hN—]
3
T Vv % VT Vv
Input vector @ Input @
, , , The term recurrent comes from the fact that
Qa”“"t malntam previous information is being passed from one time step to the
information

next internally within the network.

Network has loops for information to persist over time




Recurrent Neural Network -

memory V,U,W: model
state parameters
internal state
FEED FORWARD

hiddenstate [ NEURAL NETWORK
NEURAL NETWORK latent variable
embedding
Output vector Output @
o
U U U
Model, W h_o’ T — T

T Y Y VT Y
Input vector @ Input @

, , , The term recurrent comes from the fact that
Cannot maintain previous

o , information is being passed from one time step to the
'nformation next internally within the network.

Network has loops for information to persist over time




Recurrent Neural Network V,U,W:same

for all times
FEED FORWARD RECURRENT NEURAL NETWORK
NEURAL NETWORK
Output vector Output @
o
Model, W h h h h h
0 1 2 3 N-1
T \Y v‘ VT v‘
Input vector @ Input @
, , , The term recurrent comes from the fact that
) Qa”“"t malntam previous information is being passed from one time step to the
information

next internally within the network

Network has loops for information to persist over time




Recurrent Neural Network

Alternative short representation:

7

U

e— | | SSS——

h

0

h

1

(%)

\W%

U

ég v

Output
vector
W
U
[ RNN —hb
ht—] t\
VT Internal
state
@ Input

vector
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Recurrent Neural Network

RNNs are governed by a recurrence relation
applied at every time step for a given

Output
e sequence.

_ vector
Output weights: W

Hidden
weights: \ .
u = RNN hy = fu,v (heeqs x¢ )

h h

t-1 t

Input weights: VT
@ Input
vector

At each time step the RNN is
fed the current input and the
previous hidden state.

36



Recurrent Neural Network

RNNs are governed by a recurrence relation
applied at every time step for a given

Output
e sequence.

vector
Output weights: W

Hidden
weights: \ .
u -—» RNN he | = fu,v (heals | x¢ )

ht—] ht :
State Function Qld State Input
Input weights: V T parameterized vector at
by u,v time step t

@ Input
vector The function f, , and the parameters used

for all time steps are learned during
training.
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Recurrent Neural Network

RNNs are governed by a recurrence relation
applied at every time step for a given

Output
g sequence.
vector
Output weights: W Multiple names:
* Hidden state
Hidden State
weights: ! Ermbeciing
g . * Em in _
Ul - hy = fup (Re—1)| Xt )
t1 ‘ Mnction Old State Input
We often ignore ' .
Input weights: V to mention the / parameterized vector at
bsira::uhler.eI‘t by u,v time step t

fu,v, ()
@ Input : .
vector .
The function f, ,, and the parameters used

for all time steps are learned during
training.
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Recurrent Neural Network

Y; =0 (Wht -4 ’32) Output vector
Output 4

vector
Output weights: W

Hidden
weights:
U —> RNN

h, h, hy = tanh (U hy{_, + VX + B;)

Input weights: V T ?

@ Input
vector

Xt Input vector

U, Vand W are three different weight

matrices learned during training
39



Yt =0 (Wht -+ ﬁz)

Anatomy of RNN Iy

Affine + Activation
W/ /

Hidden state, hy_4

Linear units Dense layer(s)
andiid: Lt hy = tanh (VX; + U hi_1 + B1)
o/
/o Addition
A7
LA Activation

Linear units

|
LINN NNY

40



Ye =0 (Why + B)
Anatomy of RNN e

f Sigmoid is used for binary \

classification. For multi class

Affine + Activation

Linear units

Uhi_y + B1

Hidden state, hy_4

T

Dense layer(s)

A

Addition
+

Activation

classification, we use softmax
and add more nodes in the
prediction layer. For regression

we use a linear activation. j

Linear units

|
LINN NNY

41



Anatomy of RNN

Yo =0 (Why + B>)

f Sigmoid is used for binary \

S

classification. For multi class

Linear units

Hidden state, h;_4

Affine + Activation
W/ /

Dense layer(s)

Uhi_y + B1

A

Addition
+

Activation

classification, we use softmax
and add more nodes in the
prediction layer. For regression

we use a linear activation. /

Note: No bias here!

It is not necessary since we add
the affine transformed hidden

state.

Caveat: GRU implementation in TF

uses two biases.

~

/

—

Linear units

42

LINN |



Training RNNs

Forward pass

O

RNN

Y1 Y2 Y3 YN
WT WT WT WT
_u U U U U
— —) T p Y )
ho h hz h3 hN-l
1
VT VT \Y VT
X X X X

43



Training RNNs

Forward pass
Calculate the loss for each point

Each loss L;is
a function of y;
and y;

O

&) &) &)
O A
wf WTZ wf

h h h h

0 1 2




Training RNNs

Forward pass
Calculate the loss for each point
Aggregate losses

O

0
d
X1

1

) &)
! T
of of

L)

[
&)
!

3

wf

d
XZ

N-1




Training RNNs

Forward pass <[ L= iLt }
Calculate the loss for each point =1
Aggregate losses

B
)X

© © @ ®

® ! T !
dw

i»;?’ —>@

U U U U U

h h h h e

0 1 2 N-1

[ VI VI vl vl



Training RNNs: Backpropagation

h - - - -




Training RNNs: Backpropagation

oL, oL, | o OLy
@ 39, 99, 39, dPn
Y1 Y2 Vs 89 YN
9, 99, 295 B T
W1V ah, WV ah, W|V on N W
h - . - -




Training RNNs: Backpropagation

Ly
095 09N
Y1 > IN
09, 9y % aﬂ T
Wy an, WV an, WV 9k, Ohy W
N e i T bl T el AL U
-




Training RNNs: Backpropagation

oL, I I ol
@ 99, 39, 39, Py
yl yz y3 a ~ yN
ayl @ % a:}).:N T
WiV oh, WIV on, W|V dh, N W
> RNN - U h, U h, U h, U, | hy u
h - . - -
. ohy dh, dhs dhy
V oUu V U V U U V
@ X, X, X, ohy _ O0hy Ohy_4 X

= N
oU  dhy_, OU

50



Training RNNs: Backpropagation

During backpropagation for each parameter at each time step I, a gradient is computed.

The individual gradients computed are then averaged at time step t and used to update the
entire network.

The error flows back in time.

dL  ~C 0L 09 Oh,
au — 09 Oh OU

6ht dh¢ dhy
= Zk=1 dhy AU

Ohy _ Oht Oht—y  Ohg4s _ 1t Oh;
dhy Ohi_q Ohi_p " Ohg J=k+1gp;

OLe _ 0L, 09 dhe —dhy dhey dhy dheydhy, )
oU ~ 99,0h, dU ' dh,_, dU ' dh,_, dh,_, dU

51



Training RNNs: Backpropagation Issues

V1 V) V3 YN
wit wit wit why
« D | -« -«

For longer sentences, we must backpropagate through more time steps.

This requires the gradient to be multiplied many times which causes the following
Issues:

If many values <1, then the product, i.e, the If many values > 1, then the product, i.e., the
gradient, will be close to zero. This is called gradient, will explode. This is called

the vanishing gradient problem. the exploding gradient problem.

This causes the parameters to update very This causes an overflow problem.

slowly.
52



Training RNNs: Backpropagation Issues

RNN Issues addressed by:

« GRU
e LSTMs
o Attention

53
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Sequence-to-Sequence (seq2seq)

 If our input is a sentence in Language A, and we wish to translate it to
Language B, it is clearly suboptimal to translate word by word (like our

current models are suited to do).

55



Sequence-to-Sequence (seq2seq)

 If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly suboptimal to translate word by word (like our

current models are suited to do).

Output layer Frase ser  traducida

Hidden layer hf

 t
= —> 5>
t!

Input layer

=) C00000]=p
=) (0CC000)==p

Sentence be translated 56



Sequence-to-Sequence (seq2seq)

* Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

« SegZseq models are comprised of 2 RNNs: 1 encoder, 1 decoder

57



Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

The final hidden state of the decoder RNN is </s> >
Oracidn por traducir

- —)p
- —p
> -
" -

E E E E
h1 hz h3 h4 h h h4
O O O O =) =) =) (=)
Hidden layer |3 — — — - = - -
-_’ D_’ D_’ - _’i_}g_}g_}g
O O () O O O (. O
= L L = = O O O
e O B = =
Sentence to be translated <s> Oracion por traducir

ENCODER RNN DECODER RNN 58



Sequence-to-Sequence (seq2seq)

See any issues with this traditional

paradigm?

59



Sequence-to-Sequence (seq2seq)

It's crazy that the entire “meaning” of the 15! sequence is expected to be packed into
one embedding, and that the encoder then never interacts w/ the decoder again.
Hands free!

60



Sequence-to-Sequence (seq2seq)

One alternative would be to pass every state of the encoder to every state of the decoder.

hE

[

Hidden layer

—p

Input layer T T

Sentence be translated <s> Oracién por traducir

)

(000000) &

—)
—)

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

But how much context is enough?

The number of states to send to the decoder can get extremely large.

hE

[

Hidden layer

—p

Input layer T T

Sentence be translated <s> Oracién por traducir

)

(000000) &

—)
—)

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

Another alternative could be to weight every state

h? = tanh(Vxj + Uh?_; + Wihf + Wph5 + W3h5 + )

hE

[

Hidden layer

—p

Input layer T T

Sentence  to be translated <s> Oracién por traducir

)

(000000) &

—)
—)

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

The real problem with this approach is that the weights W;, W,, W,.... are fixed

h? = tanh(Vx; + Uh7_; + Wihf + Wph5 + W3h5 + )

E D

h g

O =)

Hidden layer |® -
. ~

— o —PS
= -

O

. LJ

Input layer T T

Sentence  to be translated <s> Oracién por traducir

—)
—)

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seg2seq)

The real problem with this approach is that the weights W;, W,, Ws,.... are fixed

h? = tanh(Vx; + Uh{_; + Wyhf + W,h5 + W3h% + )

What we want instead is for the decoder, at each step, to decide how much
attention to pay to each of the encoder’s hidden states?

Wi = g( hf; XjD' th—l )

where g is a function parameterized by all the states of the encoder, the current input
to the decoder and the state of the decoder. W indicates how much attention to pay to
each hidden state of the encoder.

The function g gives what we call the attention.
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Seq2Seq + Attention

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g( . ) ?

66



Seq2Seq + Attention

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g( . ) ?

47 .37 17 27

E E

hy hs hs hy

O O O O

Hidden layer |® - - —
O _’ O _’ O _’ O

O ) ) O

O O O OJ

O O (] O

Input layer T T T T

Sentence to be translated

ENCODER RNN
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Seq2Seq + Attention

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g( . ) ?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of
meaning) and all of the encoder’s hidden states!

47? 37 17 27

E E E E

hi h3 h3 hy  h?

O O O O [
. O O O 4 J
Hidden layer — = = — —

O O O & [

O O (] O J
Input layer T T T T <s>

Sentence to be translated

ENCODER RNN



Seq2Seq + Attention

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g( . ) ?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of
meaning) and all of the encoder’s hidden states!

For this, we define a context vector c;, computed as a weighted sum of the encoder states h{.

Tx
— D pE\LE
C; = z a;j(hi-1, by )h;
j=1 4 )
. E. _ exp(e;) ,
The weight a;; for each state h;' is computed as @;; = 7 \.
Y= exp(eir) .

where e;; = NNy, (h?_,, h]E )
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Could be
E E E E D
h1 hz h3 h4 h1 cosine e. 15
O O O O O similarity L
: = () () () OJ
Hidden layer = — = = o Qi *
— l — l — l — — [OO000) NNy
O O O O - ’ \
Input layer <s> E D
o £ 4t 4 '
Sentence to be translated Separate FFNN

ENCODER RNN DECODER RNN ATTENTION LAYER
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Could be
E E E E D
h1 hz h3 h4 h1 cosine e, 009
O O O O O similarity 2 Y
: = () () () OJ
Hidden layer = — = = o Qi *
— l — l — l — — [OO000) NNy
O O O O - ’ \
Input layer <s> E D
o £ 4t 4 o
Sentence to be translated Separate FFNN

ENCODER RNN DECODER RNN ATTENTION LAYER
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Could be
E E E E D
h1 hz h3 h4 h1 cosine e: 03
O O O O O similarity 3 Y.
: = () () () OJ
Hidden layer = — = = o Qi *
— l — l — l — — [OO000) NNy
O O O O - ’ \
Input layer <s> E D
o £ 4t 4 R
Sentence to be translated Separate FFNN

ENCODER RNN DECODER RNN ATTENTION LAYER
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Could be
E E E E D
h1 hz h3 h4 h1 cosine e 0.5
O O 0O O O similarity 4 — U
: = () () . OJ
Hidden layer = — = = o Qi *
— l — l — l — — [OO000) NNy
O O O O - ’ \
Input layer <s> E D
o 44t 4 i
Sentence to be translated Separate FFNN

ENCODER RNN DECODER RNN ATTENTION LAYER
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)

and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Attention (raw scores)

E E D

hi hs h3 hy hy o 1c

- O 0 O 0 1 L
Hidden layer |® - - — — ez 0.9

O O O O O

O - O - O —) - - ez 0.3

J J J J J

O O ) O ) es —0.5
T S N S

Sentence to be translated

ENCODER RNN DECODER RNN ATTENTION LAYER
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden

state and encoder hidden states in some ways. Attention (raw scores)
E E D ep 1.5
h]_ hg hg h4 h‘l
OJ ) () O O e, 0.9
Hidden layer |® - — — - ez 0.3
S| e (S e 2] = [ O
- - - - - es —0.5
- - - - O
O - - - -
Input layer T T T T <S> Attention (softmax’d)
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Seq2Seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden

state and encoder hidden states in some ways. Attention (raw scores)
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ai=0.14
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Seq2Seq + Attention

D
¢ 00000

We multiply each hidden state by

©0000)+-(00000)+({00000)+([00000 its a] attention weights and then

1 1 1 1 add the resulting vectors to
251 az a3 ay b
create a context vector c; .
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ai=0.14
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Seq2Seq + Attention
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Seq2Seq + Attention
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Seq2Seq + Attention
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Seq2Seq + Attention
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Seq2Seq + Attention

Attention:

» greatly improves seqg2seq results

» allows us to visualize the
contribution each word gave during

each step of the decoder

Image source: Fig 3 in Bahdanau et al., 2015
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