
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC295

Lecture 9-10-11: Deep Learning -
Language Models

AC295

 Advanced Practical Data Science, MLOps

1

Outline

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

2

Outline

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

3

Language Models

4

Today, we heavily focus on Language Modelling (LM) because:

1. It’s foundational for nearly all NLP tasks.

2. LM approaches are generalizable to any type of data, not just text.

3. The data is readily available in huge quantities.

Language Models: Background

5

Regardless of how we model sequential data, keep in mind that we can
estimate any time series as follows:

Joint distribution of
all measurements

Conditional
probability of an event,
depends on all of the
events that occurred

before it.

This compounds for
all subsequent
events, too

Language Models: Example

6

If we want to know the probability of the the next on-screen Sesame
Street character:

Scene 1 Scene 2 Scene 3

Language Models: Example

7

Remember that, when we are evaluate a distribution,

we mean

P (,) = P (S1= , S2=)

Language Models: Example

8

The probability of the the next on-screen Sesame Street character can
be computed as

Scene 1 Scene 2 Scene 3

P (, ,) =

Language Models: Example

9

The probability of the the next on-screen Sesame Street character can
be computed as

Scene 1 Scene 2 Scene 3

P (, ,) = P () P (|) P (| ,)
Scene 1 Scene 2 Scene 3

Language Models: Example

10

Language Models: Background

11

P (, , S3) = P () P (|) P (S3 | ,)

Scene 1 Scene 2 Scene 3

Having learned a Language Model means that we know the behavior of
the sequences.

If we have a sequence of length N, we can determine the most likely
next event (i.e., sequence of length N+1).

Language Models: Formal Definition

12

A Language Model estimates the probability of any sequence of words

Language Models: Application

13Translation

Text Recognition

Sentence Prediction

Speech Recognition

Hello are you how

Outline

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

14

Neural Networks for Language Modeling

IDEA: Let’s use a neural network!

15

Neural Networks for Language Modeling

IDEA: Let’s use a neural network!

First, each word is represented by a word embedding (e.g., vector of length 200)

Size of embedding

v
=

 S
iz

e
of

 v
oc

ab
ul

ar
y

X =

woman tableman
1
.
.
.
.
.

200

1
.
.
.
.
.

200

1
.
.
.
.
.

200

16

Neural Networks for Language Modeling

woman tableman

IDEA: Let’s use a neural network!

1
.
.
.
.
.

200

1
.
.
.
.
.

200

1
.
.
.
.
.

200

First, each word is represented by a word embedding (e.g., vector of length 200)

• Each rectangle is a floating-point scalar

• Words that are more semantically similar
to one another will have embeddings
that are also proportionally similar

• We can use pre-existing word
embeddings that have been trained on
gigantic corpora

17

Neural Networks for Language Modeling

18

These word embeddings are so rich that you get nice properties:

Word2vec: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe: https://www.aclweb.org/anthology/D14-1162.pdf

-
womanking man queen

+ ~
1
.
.
.
.
.

200

1
.
.
.
.
.

200

1
.
.
.
.
.

200

1
.
.
.
.
.

200

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/D14-1162.pdf

Neural Networks for Language Modeling

19

How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

She went to class

next word previous words

Example input sentence

Neural Networks for Language Modeling

20

Neural Approach #1: Feed-forward neural net

General Idea: using windows of words, predict the next word

Hidden layer Output layer

Example input sentence

She

went

to

Neural Networks for Language Modeling

21

Concatenated word embeddings

Hidden layerExample input sentence

She

went

to

Output layer

class

ant

awesome

class

.

..

.

.

..

.

.

Probabilities

{ y ̂∈R^|V| |0≤y ̂≤1 }

Neural Networks for Language Modeling

22

Concatenated word embeddings

Hidden layerExample input sentence

Output layer

after

ant

awesome

after

.

..

.

.

..

.

.

went

to

class

{ y ̂∈R^|V| |0≤y ̂≤1 }

Neural Networks for Language Modeling

23

Concatenated word embeddings

Hidden layerExample input sentence

Output layer

visiting

ant

awesome

visiting

.

..

.

.

..

.

.

to

class

after

{ y ̂∈R^|V| |0≤y ̂≤1 }

Neural Networks for Language Modeling

24

Concatenated word embeddings

Hidden layerExample input sentence

Output layer

her

ant

awesome

her

.

..

.

.

..

.

.

class

after

visiting

{ y ̂∈R^|V| |0≤y ̂≤1 }

Neural Networks for Language Modeling (Training)

25

Hidden layerExample input
sentence

She

went

to
Output layer

Sum over all words
in the text

ant

awesome

class

.

..

.

.

..

.

.

Back Propagation

Neural Networks for Language Modeling

26

FFNN Strength
• No sparsity issues (it’s okay if we’ve never seen a word)
• No storage issues (we never store counts)

compared to
traditional n-gram

methods

Neural Networks for Language Modeling

27

FFNN Strength
• No sparsity issues (it’s okay if we’ve never seen a word)
• No storage issues (we never store counts)

• Fixed-window size can never be big enough. Need more context
• Requires inputting entire context just to predict one word
• Increasing window size adds many more weights

• The weights awkwardly handle word position
• No concept of time

FFNN Issues

Neural Networks for Language Modeling

28

We especially need a system that:

• Has a concept of an “infinite” past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)

Outline

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

29

Recurrent Neural Network: Motivations

30

RNNs should exhibit the following advantages for sequence
modelling:

• Handle variable-length sequences

• Keep track of long-term dependencies

• Maintain information about the order as opposed to FFNN

• Share parameters across the network

Recurrent Neural Network

31

Model

Xt

Yt
Output vector

Input vector

FEED FORWARD
NEURAL NETWORK

• Cannot maintain previous
information

Recurrent Neural Network

32

Xt

Yt
Output vector

Input vector

FEED FORWARD
NEURAL NETWORK

 Network has loops for information to persist over time

RECURRENT NEURAL NETWORK

The term recurrent comes from the fact that
information is being passed from one time step to the
next internally within the network.

….

V

W
U

V

W
U

V

W
U U

V

W

x3
xNx2x1

y
1

y3
y2 yN

h0 h1 h2 h3
hN-1

• Cannot maintain previous
information

Input

Output

Recurrent Neural Network

33

Xt

Yt
Output vector

Input vector

FEED FORWARD
NEURAL NETWORK

 Network has loops for information to persist over time

RECURRENT NEURAL NETWORK

The term recurrent comes from the fact that
information is being passed from one time step to the
next internally within the network.

….

V

W
U

V

W
U

V

W
U U

V

W

x3
xNx2x1

y
1

y3
y2 yN

h0 h1 h2 h3
hN-1

• Cannot maintain previous
information

Input

Output

Recurrent Neural Network

34

Xt

Yt
Output vector

Input vector

FEED FORWARD
NEURAL NETWORK

 Network has loops for information to persist over time

RECURRENT NEURAL NETWORK

The term recurrent comes from the fact that
information is being passed from one time step to the
next internally within the network

….

V

W
U

V

W
U

V

W
U U

V

W

x3
xNx2x1

y
1

y3
y2 yN

h0 h1 h2 h3
hN-1

• Cannot maintain previous
information

Input

Output

Recurrent Neural Network

35

=….

V

W
U

V

W
U

V

W
U U

V

W

x3
xNx2x1

y
1

y3
y2 yN

RNN

Xt

Yt
Output
vector

Input
vector

ht

Internal
state

ht-1h0 h1
h2 h3 hN-1

Alternative short representation:

U U

V

W

Recurrent Neural Network

36

RNNs are governed by a recurrence relation
applied at every time step for a given
sequence.

At each time step the RNN is
fed the current input and the
previous hidden state.

RNN

Xt

Yt
Output
vector

Input
vector

htht-1

Input weights: V

Hidden
weights:

U

Output weights: W

Recurrent Neural Network

37

RNNs are governed by a recurrence relation
applied at every time step for a given
sequence.

State Function
parameterized

by u,v

Old State Input
vector at

time step t

RNN

Xt

Yt
Output
vector

Input
vector

htht-1

Input weights: V

Hidden
weights:

U

Output weights: W

Recurrent Neural Network

38

RNNs are governed by a recurrence relation
applied at every time step for a given
sequence.

State Function
parameterized

by u,v

Old State Input
vector at

time step t

RNN

Xt

Yt
Output
vector

Input
vector

htht-1

Input weights: V

Hidden
weights:

U

Output weights: W Multiple names:
• Hidden state
• State
• Encoding
• Embedding

Recurrent Neural Network

39

Input vector

Output vector

U, V and W are three different weight
matrices learned during training

RNN

Xt

Yt
Output
vector

Input
vector

htht-1

Output weights: W

Input weights: V

Hidden
weights:

U

Anatomy of RNN

40

R
N

N
 U

N
IT

Addition
+

Activation

Linear units

Linear units

Dense layer(s)

Affine + Activation

Anatomy of RNN

41

Addition
+

Activation

Linear units

Linear units

Dense layer(s)

Affine + Activation

R
N

N
 U

N
IT

Sigmoid is used for binary
classification. For multi class

classification, we use softmax
and add more nodes in the

prediction layer. For regression
we use a linear activation.

Anatomy of RNN

42

R
N

N
 U

N
IT

Sigmoid is used for binary
classification. For multi class

classification, we use softmax
and add more nodes in the

prediction layer. For regression
we use a linear activation.

Note: No bias here!
It is not necessary since we add
the affine transformed hidden

state.
Caveat: GRU implementation in TF

uses two biases.

Addition
+

Activation

Linear units

Linear units

Dense layer(s)

Affine + Activation

Training RNNs

43

…..

x1

V

W
U

x2

V

W
U

x3

V

W
U U

xN

V

W

RNN
ht

Xt

Yt

=

h0 h1
h2

h3 hN-1

U

Forward pass

Training RNNs

44

…..

x1

V

W

x2

V

W

x3

V

W

xN

V

W

RNN
h
t

Xt

Yt

=

L1 L2
L3 LN

h0 h1
h2

h3 hN-1

U U U U U

 Forward pass
Calculate the loss for each point

Training RNNs

45

…..

x1

V

W

x2

V

W

x3

V

W

xN

V

W

RNN
h
t

Xt

Yt

=

L1 L2
L3 LN

L

h0 h1
h2

h3 hN-1

U U U U U

Forward pass
Calculate the loss for each point
Aggregate losses

Training RNNs

46

…..

x1

V

W

x2

V

W

x3

V

W

xN

V

W

RNN
h
t

Xt

Yt

=

L1 L2
L3 LN

L

h0 h1
h2

h3 hN-1

U U U U U

Forward pass
Calculate the loss for each point
Aggregate losses

Training RNNs: Backpropagation

47

…..

x1

V

W
U

x2

V

W
U

x3

V

W
U U

xN

V

W

RNN
h
t

Xt

Yt

L1 L2
L3 LN

L

h0 h1
h2 h3 hN-1=

U

Training RNNs: Backpropagation

48

…..

x1

V

W
U

x2

V

W
U

x3

V

W
U U

xN

V

W

RNN
h
t

Xt

Yt

L1 L2
L3 LN

L

h0 h1
h2 h3 hN-1=

U

Training RNNs: Backpropagation

49

…..

x1

V

W
U

x2

V

W
U

x3

V

W
U U

xN

V

W

RNN
h
t

Xt

Yt

L1 L2
L3 LN

L

h0 h1
h2 h3 hN-1=

U

Training RNNs: Backpropagation

50

…..

x1

V

W
U

x2

V

W
U

x3

V

W
U U

xN

V

W

RNN
h
t

Xt

Yt

L1 L2
L3 LN

L

h0 h1
h2 h3 hN-1=

U

Training RNNs: Backpropagation

51

During backpropagation for each parameter at each time step i, a gradient is computed.

The individual gradients computed are then averaged at time step t and used to update the
entire network.

The error flows back in time.

Training RNNs: Backpropagation Issues

52

…..

W
U

W
U

W
U U

W

If many values < 1, then the product, i.e., the
gradient, will be close to zero. This is called
the vanishing gradient problem.

This causes the parameters to update very
slowly.

For longer sentences, we must backpropagate through more time steps.

This requires the gradient to be multiplied many times which causes the following
issues:

If many values > 1, then the product, i.e., the
gradient, will explode. This is called
the exploding gradient problem.

This causes an overflow problem.

h0 h1
h2 h3 hN-1

Training RNNs: Backpropagation Issues

RNN Issues addressed by:
• GRU
• LSTMs
• Attention

53

Outline

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

54

Sequence-to-Sequence (seq2seq)

55

• If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly suboptimal to translate word by word (like our

current models are suited to do).

Sequence-to-Sequence (seq2seq)

56

• If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly suboptimal to translate word by word (like our

current models are suited to do).

Hidden layer

Output layer

Sentence to be translated

Frase a ser traducida

Input layer

Sequence-to-Sequence (seq2seq)

57

• Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder

Sequence-to-Sequence (seq2seq)

58

Hidden layer

Input layer

<s>

ENCODER RNN

Sentence to be translated traducirporOración

porOración traducir

The final hidden state of the decoder RNN is </s>

</s>

DECODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

59

See any issues with this traditional seq2seq paradigm?

Sequence-to-Sequence (seq2seq)

60

It’s crazy that the entire “meaning” of the 1st sequence is expected to be packed into
one embedding, and that the encoder then never interacts w/ the decoder again.
Hands free!

What other alternatives can we have?

Sequence-to-Sequence (seq2seq)

61

Hidden layer

Input layer

<s>

ENCODER RNN DECODER RNN

One alternative would be to pass every state of the encoder to every state of the decoder.

Sentence to be translated traducirporOración

Sequence-to-Sequence (seq2seq)

62

Hidden layer

Input layer

<s>

ENCODER RNN

But how much context is enough?

The number of states to send to the decoder can get extremely large.

Sentence to be translated traducirporOración

DECODER RNN

Sequence-to-Sequence (seq2seq)

63

Hidden layer

Input layer

<s>

ENCODER RNN

Another alternative could be to weight every state

Sentence to be translated

traducirporOración

DECODER RNN

Sequence-to-Sequence (seq2seq)

64

Hidden layer

Input layer

<s>

ENCODER RNN

Sentence to be translated

traducirporOración

DECODER RNN

Sequence-to-Sequence (seq2seq)

65

Seq2Seq + Attention

66

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g(.) ?

Seq2Seq + Attention

67

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g(.) ?

Hidden layer

Input layer

ENCODER RNN

Sentence to be translated

Seq2Seq + Attention

68

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g(.) ?

Hidden layer

Input layer

ENCODER RNN

<s>

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of
meaning) and all of the encoder’s hidden states!

Seq2Seq + Attention

69

Q: How do we determine how much attention to pay to each of the encoder’s hidden
states i.e. determine g(.) ?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of
meaning) and all of the encoder’s hidden states!

Seq2Seq + Attention

70

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN

Separate FFNN

Could be
cosine

similarity

ATTENTION LAYER

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

Seq2Seq + Attention

71

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN

Separate FFNN

Could be
cosine

similarity

ATTENTION LAYER

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

Seq2Seq + Attention

72

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN

Separate FFNN

Could be
cosine

similarity

ATTENTION LAYER

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

Seq2Seq + Attention

73

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN

Separate FFNN

Could be
cosine

similarity

ATTENTION LAYER

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

Seq2Seq + Attention

74

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN ATTENTION LAYER

Attention (raw scores)

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

Seq2Seq + Attention

75

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN ATTENTION LAYER

Attention (softmax’d)

Attention (raw scores)

Sentence to be translated

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Seq2Seq + Attention

76

Hidden layer

Input layer

ENCODER RNN

<s>

DECODER RNN

Attention (raw scores)

Attention (softmax’d)

Sentence to be translated

Q: How do we determine how much to pay attention to each of the encoder’s hidden states?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden
state and encoder hidden states in some ways.

Seq2Seq + Attention

77

ENCODER RNN

<s>

DECODER RNN

Attention (softmax’d)

Hidden layer

Input layer

Sentence to be translated

Seq2Seq + Attention

78
ENCODER RNN

Hidden layer

Input layer

Sentence to be translated

Oración

DECODER RNN

Seq2Seq + Attention

79
ENCODER RNN

Hidden layer

Input layer

Sentence to be translated

porOración

DECODER RNN

Seq2Seq + Attention

80
ENCODER RNN

Hidden layer

Input layer

Sentence to be translated

traducirporOración

DECODER RNN

Seq2Seq + Attention

81
ENCODER RNN DECODER RNN

Hidden layer

Input layer

</s>

Sentence to be translated

traducirporOración

Seq2Seq + Attention

82

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each word gave during

each step of the decoder

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf

Next Class

1. What are Language Models
2. Neural Networks for Language Modeling
3. Recurrent Neural Network
4. Seq2Seq + Attention
5. Self Attention
6. Transformers
7. Tutorial: SOTA Language Models

83

THANK YOU

84

