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Language Models
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Today, we heavily focus on Language Modelling (LM) because:

1. It’s foundational for nearly all NLP tasks.

2. LM approaches are generalizable to any type of data, not just text.

3. The data is readily available in huge quantities. 



Language Models: Background
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Regardless of how we model sequential data, keep in mind that we can 
estimate any time series as follows:

 

Joint distribution of 
all measurements

Conditional 
probability of an event, 
depends on all of the 
events that occurred 

before it.

This compounds for 
all subsequent 
events, too



Language Models: Example
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If we want to know the probability of the the next on-screen Sesame 
Street character:

Scene 1 Scene 2 Scene 3
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Remember that, when we are evaluate a distribution, 

we mean

P (      ,      )  = P ( S1=       , S2=      )



Language Models: Example
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The probability of the the next on-screen Sesame Street character can 
be computed as

Scene 1 Scene 2 Scene 3

P (     ,       ,     ) =
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The probability of the the next on-screen Sesame Street character can 
be computed as

Scene 1 Scene 2 Scene 3

P (     ,       ,     ) = P (    ) P (     |     ) P (    |     ,     )
Scene 1 Scene 2 Scene 3
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P (     ,       , S3) = P (      ) P (     |      ) P (S3 |     ,       )

Scene 1 Scene 2 Scene 3

Having learned a Language Model means that we know the behavior of 
the sequences.

If we have a sequence of length N, we can determine the most likely 
next event (i.e., sequence of length N+1).



Language Models: Formal Definition
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A Language Model estimates the probability of any sequence of words

 

 

    



Language Models: Application
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Text Recognition

Sentence Prediction

Speech Recognition

Hello                                          are                                          you                                        how                                          
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Neural Networks for Language Modeling

IDEA: Let’s use a neural network!
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Neural Networks for Language Modeling

IDEA: Let’s use a neural network!

First, each word is represented by a word embedding (e.g., vector of length 200)
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Neural Networks for Language Modeling

woman tableman

IDEA: Let’s use a neural network!
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First, each word is represented by a word embedding (e.g., vector of length 200)

• Each rectangle is a floating-point scalar

• Words that are more semantically similar 
to one another will have embeddings 
that are also proportionally similar

• We can use pre-existing word 
embeddings that have been trained on 
gigantic corpora
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Neural Networks for Language Modeling
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These word embeddings are so rich that you get nice properties:

Word2vec: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe: https://www.aclweb.org/anthology/D14-1162.pdf 
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https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/D14-1162.pdf


Neural Networks for Language Modeling
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How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

She went to class

 

next word previous words

Example input sentence



Neural Networks for Language Modeling
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Neural Approach #1: Feed-forward neural net

General Idea: using windows of words, predict the next word

  

Hidden layer Output layer

Example input sentence

She

went

to
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Concatenated word embeddings
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Concatenated word embeddings

  

Hidden layerExample input sentence
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Concatenated word embeddings
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Concatenated word embeddings
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Neural Networks for Language Modeling (Training)
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Neural Networks for Language Modeling
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FFNN Strength
• No sparsity issues (it’s okay if we’ve never seen a word)
• No storage issues (we never store counts)

compared to 
traditional n-gram 

methods



Neural Networks for Language Modeling
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FFNN Strength
• No sparsity issues (it’s okay if we’ve never seen a word)
• No storage issues (we never store counts)

• Fixed-window size can never be big enough. Need more context
• Requires inputting entire context just to predict one word
• Increasing window size adds many more weights

• The weights awkwardly handle word position
• No concept of time

FFNN Issues



Neural Networks for Language Modeling
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We especially need a system that:

• Has a concept of an “infinite” past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)
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Recurrent Neural Network: Motivations
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RNNs should exhibit the following advantages for sequence 
modelling:

• Handle variable-length sequences

• Keep track of long-term dependencies

• Maintain information about the order as opposed to FFNN

•  Share parameters across the network



Recurrent Neural Network
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Model

Xt

Yt
Output vector

Input vector

FEED FORWARD 
NEURAL NETWORK

• Cannot maintain previous 
information 



Recurrent Neural Network
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Xt

Yt
Output vector

Input vector

FEED FORWARD 
NEURAL NETWORK

 Network has loops for information to persist over time

RECURRENT NEURAL NETWORK

The term recurrent comes from the fact that 
information is being passed from one time step to the 
next internally within the network.
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=….
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Recurrent Neural Network
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RNNs are governed by a recurrence relation 
applied at every time step for a given 
sequence.

At each time step the RNN is 
fed the current input and the 
previous hidden state.

RNN

Xt

Yt
Output 
vector

Input 
vector

htht-1

Input weights: V

 

Hidden 
weights: 

U

Output weights: W



Recurrent Neural Network
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RNNs are governed by a recurrence relation 
applied at every time step for a given 
sequence.

 

State Function 
parameterized 

by u,v

Old State Input 
vector at 

time step t
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Hidden 
weights: 
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Output weights: W



Recurrent Neural Network
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RNNs are governed by a recurrence relation 
applied at every time step for a given 
sequence.

 

State Function 
parameterized 

by u,v

Old State Input 
vector at 

time step t

 

RNN

Xt

Yt
Output 
vector

Input 
vector

htht-1

Input weights: V

Hidden 
weights: 

U

Output weights: W Multiple names:
• Hidden state
• State
• Encoding
• Embedding

 



Recurrent Neural Network
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Input vector

Output vector

U, V and W are three different weight 
matrices learned during training
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Anatomy of RNN
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Sigmoid is used for binary 
classification. For multi class 

classification, we use softmax 
and  add more nodes in the 

prediction layer. For regression 
we use a linear activation.



Anatomy of RNN

42

R
N

N
 U

N
IT

Sigmoid is used for binary 
classification. For multi class 

classification, we use softmax 
and add more nodes in the 

prediction layer. For regression 
we use a linear activation.

Note: No bias here! 
It is not necessary since we add 
the affine transformed hidden 

state.
Caveat: GRU implementation in TF 

uses two biases.
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Training RNNs: Backpropagation
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Training RNNs: Backpropagation
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Training RNNs: Backpropagation
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Training RNNs: Backpropagation
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During backpropagation for each parameter at each time step i, a gradient is computed.  

The individual gradients computed are then averaged at time step t and used to update the 
entire network.

The error flows back in time.

 

 

 

 



Training RNNs: Backpropagation Issues
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If many values < 1, then the product, i.e., the 
gradient, will be close to zero. This is called 
the vanishing gradient problem. 

This causes the parameters to update very 
slowly.

For longer sentences, we must backpropagate through more time steps.

This requires the gradient to be multiplied many times which causes the following 
issues:

If many values > 1, then the product, i.e., the 
gradient, will explode. This is called 
the exploding gradient problem. 

This causes an overflow problem.
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Training RNNs: Backpropagation Issues

RNN Issues addressed by:
• GRU
• LSTMs
• Attention
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Sequence-to-Sequence (seq2seq)
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• If our input is a sentence in Language A, and we wish to translate it to 

Language B, it is clearly suboptimal to translate word by word (like our 

current models are suited to do).



Sequence-to-Sequence (seq2seq)
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• If our input is a sentence in Language A, and we wish to translate it to 

Language B, it is clearly suboptimal to translate word by word (like our 

current models are suited to do).

Hidden layer    

Output layer

Sentence to be translated

Frase a ser traducida

Input layer



Sequence-to-Sequence (seq2seq)

57

• Instead, let a sequence of tokens be the unit that we ultimately wish to 

work with (a sequence of length N may emit a sequences of length M)

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder



Sequence-to-Sequence (seq2seq)
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Hidden layer

   

Input layer

 

<s>

ENCODER RNN

    

Sentence to be translated traducirporOración

porOración traducir

The final hidden state of the decoder RNN is </s> 

</s>

DECODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)
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See any issues with this traditional seq2seq paradigm?



Sequence-to-Sequence (seq2seq)
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It’s crazy that the entire “meaning” of the 1st sequence is expected to be packed into 
one embedding, and that the encoder then never interacts w/ the decoder again. 
Hands free!

What other alternatives can we have?
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Hidden layer

   

Input layer

 

<s>

ENCODER RNN DECODER RNN

    

One alternative would be to pass every state of the encoder to every state of the decoder.

Sentence to be translated traducirporOración
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Hidden layer

   

Input layer

 

<s>

ENCODER RNN

    

But how much context is enough?

The number of states to send to the decoder can get extremely large.

Sentence to be translated traducirporOración

DECODER RNN
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Hidden layer
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Another alternative could be to weight every state 

Sentence to be translated

 

traducirporOración

DECODER RNN
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Seq2Seq + Attention
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Q: How do we determine how much attention to pay to each of the encoder’s hidden 
states i.e. determine g( . ) ? 
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Q: How do we determine how much attention to pay to each of the encoder’s hidden 
states i.e. determine g( . ) ? 
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Q: How do we determine how much attention to pay to each of the encoder’s hidden 
states i.e. determine g( . ) ? 
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ENCODER RNN

 

<s>

Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of 
meaning) and all of the encoder’s hidden states! 
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Q: How do we determine how much attention to pay to each of the encoder’s hidden 
states i.e. determine g( . ) ? 

A: Let’s base it on our decoder’s previous hidden state (our latest representation of 
meaning) and all of the encoder’s hidden states! 
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A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 

Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 



Seq2Seq + Attention

71

Hidden layer

   

Input layer

 

ENCODER RNN

 

<s>

DECODER RNN

Separate FFNN

  

  

Could be 
cosine 

similarity

ATTENTION LAYER

Sentence to be translated

 

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 

Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 
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A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 

Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 
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Sentence to be translated

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 

Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 
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Sentence to be translated

Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 
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Q: How do we determine how much to pay attention to each of the encoder’s hidden states? 

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning) 
and all of the encoder’s hidden states! We want to measure similarity between decoder hidden 
state and encoder hidden states in some ways. 
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Seq2Seq + Attention
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Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each word gave during 

each step of the decoder

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf
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