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Communication

●We received all milestones. Thank you. Exercise 1 and milestone 1 
will be graded by Fri/Sat. 

●Exercise 2 due 09/23 
●Please make sure outputs are visible in exercise notebooks. (There 

will be penalties otherwise) 
●Quiz 4/5 due 10/05



Motivation: Classify Rarest Animals
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Classify Rarest Animals

6

Number of parameters: 134,268,737
Data Set: Few hundred images 

VGG16



Classify Rarest Animals
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Number of parameters: 134,268,737
Data Set: Few hundred images 

VGG16

NOT ENOUGH DATA



Classify Cats, Dogs, Chinchillas etc
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Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16



Classify Cats, Dogs, Chinchillas etc
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Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16

TAKES TOO LONG



Training Time for SOTA Models
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Transfer Learning To The Rescue
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How do you build an image classifier that can be trained in a few 
minutes on a CPU with very little data? 



Basic Idea of  Transfer Learning
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Basic Idea of  Transfer Learning

16

 

 

 

 

Wikipedia: 
Transfer learning (TL) is a research 
problem in machine learning (ML) 
that focuses on storing knowledge 
gained while solving one problem and 
applying it to a different but related 
problem.[1] 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1


Basic Idea of  Transfer Learning
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How do you make an image classifier that can be trained in a 
few minutes on a CPU with very little data?
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How do you make an image classifier that can be trained in a 
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.
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Basic Idea of  Transfer Learning
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How do you make an image classifier that can be trained in a 
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: Earlier layers of a network learn low level features, 
which can be adapted to new domains by changing weights at 
later and fully-connected layers.

Example: Use ImageNet trained with any sophisticated huge 
network. Then retrain it on a few images.



Key Idea: Representation Learning
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Relatively difficult task



Key Idea: Representation Learning
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Relatively difficult task Easier task

 



Representation Learning
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Task: classify cars, people, animals and objects

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…  



Representation Learning
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Task: classify cars, people, animals and objects

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…  



Basic Idea of  Transfer Learning
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• Train on a big "source" data set, with a big model, on one downstream 
tasks (say classification). Do it once and save the parameters. This is 
called a pre-trained model.

• Use these parameters for other smaller "target " datasets, say, for 
classification on new images (possibly different domain, or training 
distribution), or for image segmentation on old images (new task), or 
new images (new task and new domain).

 



Basic Idea of  Transfer Learning
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• Train on a big "source" data set, with a big model, on one downstream 
tasks (say classification). Do it once and save the parameters. This is 
called a pre-trained model.

• Use these parameters for other smaller "target " datasets, say, for 
classification on new images (possibly different domain, or training 
distribution), or for image segmentation on old images (new task), or 
new images (new task and new domain).

 
• Less helpful if you have a large target dataset with many labels.

• Will fail if source domain (where you trained big model) has nothing in 
common with target domain (that you want to train on smaller data set).



Basic Idea of  Transfer Learning
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Not a new idea!
It has been there in the ML and stats 
literature for a while.

• An exemplar is hierarchical glm models in 
stats, where information flows from higher 
data units to lower data units to the lower 
data.

• Neural networks learn hierarchical 
representations and thus are particularly 
suited to this kind of learning. Furthermore, 
since we learn representations, we can deal 
with domain adaptation/covariate shift.



Transfer Learning for Deep Learning
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What people think
• you can’t do deep learning unless you have a million labeled examples. 

What people can do, instead
• You can learn representations from unlabeled data
• You can train on a nearby objective for which is easy to generate labels 

(imageNet).
• You can transfer learned representations from a relate task.



Transfer Learning for Deep Learning
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Instead of training a network from scratch:
• Take a network trained on a different domain for a different source task
• Adapt it for your domain and your target task

Variations
• Same domain, different task.
• Different domain, same task.
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Review of CNNs
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Review of CNNs
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• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?

(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 + 4)   
Conv1 Conv2 Dense1 Dense2



Review of CNNs
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How many parameters does the layer have if I want to use 8 filters?
n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 =  224

Input
(size=32X32,
channels=3)

Output
(size=32X32,
channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,
padding = same)

filter x 1



Review of CNNs
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How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 =  3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters



Review of CNNs
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Fully Connected
(n_nodes=4)

How many parameters … ?
input x FC1_nodes + FC2_nodes = total number of params
(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 16X16X16)



Representation Extraction
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Use representations learned by big net to extract features from 
new samples, which are then fed to a new classifier:

• Keep (frozen) convolutional base from big model.
• Generally throw away head FC layers since these have no 
notion of space, and convolutional base is more generic.
• Since there are both dogs and cats in ImageNet you could get 
away with using the head FC layers as well.  But by throwing it 
away you can learn more from other dog/cat images.

 

Base
Trained CNN

FREEZE

Head
randomly 
initialize

Input

Prediction



Fine Tuning
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• Up to now we have frozen the entire convolutional base.
• Remember that earlier layers learn highly generic feature 
maps (edges, colors, textures).
• Later layers learn abstract concepts (dog’s ear).
• To particularize the model to our task, its often worth 
tuning the later layers as well.
• But we must be very careful not to have big gradient 
updates.

 

Base
Trained CNN

FREEZE

Head
randomly 
initialize

Input

Prediction

Fine tune 
some layers



Procedure for Fine-tuning
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1. Freeze the convolutional base.
2. First train the fully connected head you added, keeping the 

convolutional base fixed. 
3. Unfreeze some "later" layers in the base net and now train the 

base net and FC net together.

Our gradients won’t be terribly high, as we are already in a better 
area of the loss surface. But, this means need to be careful and 
generally use a very low learning rate.



Transfer Learning for Deep Learning: Differential Learning Rates

40

• A low learning rate can take a lot of time to train on the 
"later" layers. Since we trained the FC head earlier, we 
could probably retrain them at a higher learning rate.

• General Idea: Train different layers at different rates.

• Each "earlier" layer or layer group (the color-coded layers 
in the image) can be trained at 3x-10x smaller learning rate 
than the next "later" one.

• One could even train the entire network again this way 
until we overfit and then step back some epochs.

Input

Prediction

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Dense Layer

Dense Layer

Dense Layer

Smaller 
learning rate

Relatively 
larger learning 

rate

Largest 
optimal 

learning rate
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SOTA Deep Models: Initial Ideas
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• The first research proposing something similar to a Convolutional Neural Network 
was authored by Kunihiko Fukushima in 1980 and was called the NeoCognitron.

• Inspired by discoveries on visual cortex of mammals.
• Fukushima applied the NeoCognitron to hand-written character recognition.

1 K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in 
position. Biological Cybernetics, 36(4): 93-202, 1980.



SOTA Deep Models: Initial Ideas
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End of the 80’s: several papers advanced 
the field

• Backpropagation published in French 
by Yann LeCun in 1985 (independently 
discovered by other researchers as 
well)

• TDNN by Waibel et al., 1989 - 
Convolutional-like network trained 
with backprop

• Backpropagation applied to handwritten 
zip code recognition by LeCun et al., 
1989

LeCun et al., 1989



LeNet
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• November 1998: LeCun publishes one of his most recognized papers 
describing a “modern” CNN architecture for document recognition, 
called LeNet1. 

• Not his first iteration, this was in fact LeNet-5, but this paper is the 
commonly cited publication when talking about LeNet.

1 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
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10

Fully connected
84
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AlexNet
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• Developed by Alex Krizhevsky, Ilya Sutskever and 
Geoffrey Hinton at Utoronto in 2012. More than 25000 
citations.

• Destroyed the competition in the 2012 ImageNet Large 
Scale Visual Recognition Challenge. Showed benefits of 
CNNs and kickstarted AI revolution.

• top-5 error of 15.3%, more than 10.8 percentage points 
lower than runner-up. AlexNet

•   Main contributions:
• Trained on ImageNet with data augmentation.
• Increased depth of model, GPU training (six days).
• Smart optimizer and Dropout layers.
• ReLU activation!



AlexNet
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AlexNet
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• 1.2 million high-resolution (227x227x3) images in the ImageNet 2010 
contest

• 1000 different classes, NN with 60 million parameters to optimize (~ 255 
MB)

• Uses ReLu activation functions; GPUs for training, 12 layers



VGG
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• Introduced by Simonyan and Zisserman (Oxford) in 2014.
• Simplicity and depth as main points. Used 3x3 filters exclusively and 

2x2 MaxPool layers with stride 2.
• Showed that two 3x3 filters have an effective receptive field of 5x5.
• As spatial size decreases, depth increases.
• Convolutional layers use ‘same’ padding and stride s=1.
• Max-pooling layers use a window size 2 and stride s=2.

• ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters.
• Trained for two to three weeks.
• Still used as of today.



VGG
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Inception (GoogLeNet)
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• The motivation behind inception networks is to use more than a single type of 
convolution layer at each layer. 

• Use 1x1,3x3,5x5 convolutional layers, and max-pooling layers in parallel.
• All modules use same convolution.

1x1x64 
Conv

3x3x128
Conv

5x5x32
Conv

1x1x32
Conv

3x3 
Maxpool

28
28

32
32

128
64

ConcatInput
28x28x192

 



Inception (GoogLeNet)
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• Use 1 x 1 convolutions that reduce the size of the channel dimension.
• The number of channels can vary from the input to the output.

Input
28x28x192

1x1x192 
Conv

Concat

28x28x16
1x1x192 

Conv

3x3 
Maxpool

1x1x64 
Conv

3x3x128
Conv

28x28x96

28x28x192

5x5x32
Conv

1x1x32
Conv

28
28

32
32

128
64

 



Inception (GoogLeNet)
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The Inception Block

Input

1x1 Conv

1x1 Conv 1x1 Conv

1x1 Conv

3x3 Maxpool

3x3 Conv 5x5 Conv

Concat

Fully Connected 
Layers

Softmax

1x1 Conv

Auxiliary Block

Activation

5x5  Avg Pool



Inception (GoogLeNet)
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• The inception network is formed by concatenating other inception modules.
• It includes several softmax output units to enforce regularization.
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Are we done?
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Are we done?
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ResNet
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• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple categories. 
Very similar to Highway Networks Srivastava et al. 2015 introduced the same time. 

• Main idea: Residual block. Allows for extremely deep networks.
• Authors believe that it is easier to optimize the residual mapping than the original 

one. Furthermore, residual block can decide to “shut itself down” if needed.

Weight Layer

Weight Layer

ReLU

+

x

x
IdentityF(x)

F(x) + x
ReLU

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1505.00387.pdf


ResNet: Skip Connections
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• Residual nets appeared in 2016 to train very deep NN (100 or more layers). 
• Their architecture uses ‘residual blocks’. 
• Plain network structure: 

• Residual network block

Identity

     

Linear ReLU Linear ReLU

+

     

Linear ReLU Linear ReLU



ResNet: Basic Units
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X

3x3 Conv

3x3 Conv

Batch Norm

Batch Norm

ReLU

ReLU

X

3x3 Conv

3x3 Conv

Batch Norm

Batch Norm

ReLU

ReLU

1x1 Conv

Residual Block 
with 1x1 conv

Residual Block 
without conv



ResNet
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MobileNet
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Standard Convolution 

MACs:     (5x5)x3x256x(12x12) ~ 2.8M
Parameters: (5x5x3)x256 + 256 ~ 20K

Filters and combines inputs into a new set of outputs in one 
step

Depth-Wise Separable Convolution (DW) 

MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K
Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K

It combines a depth wise convolution and a pointwise convolution

Output: 8x8x3 
(no padding) 

Input: 12x12x3
Filter: 3x(5x5)
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8 3

5
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8
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DenseNet
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• Goal: allow maximum information (and gradient) flow → connect every layer directly 
with each other. 

• DenseNets exploit the potential of the network through feature reuse → no need to 
learn redundant feature maps. 

• DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set of 
new feature-maps. 

In
put

x
0 x

1 x
2

x
3 x

4

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

Tr
an

si
ti

o
n

 la
ye

r

H
1 H

2
H

3
H

4

DENSE BLOCK



DenseNet
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DenseNet
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Beyond
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• MobileNetV2 (https://arxiv.org/abs/1801.04381) 
• Inception-Resnet, v1 and v2 

(https://arxiv.org/abs/1602.07261)
• Wide-Resnet (https://arxiv.org/abs/1605.07146)
• Xception (https://arxiv.org/abs/1610.02357)
• ResNeXt (https://arxiv.org/pdf/1611.05431)
• ShuffleNet, v1 and v2 (https://arxiv.org/abs/1707.01083)
• Squeeze and Excitation Nets 

(https://arxiv.org/abs/1709.01507 )

https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1610.02357
https://arxiv.org/pdf/1611.05431
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1709.01507
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Computer Vision Tasks
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Classification Semantic Segmentation

Instance SegmentationObject Detection



Object Detection & Semantic Segmentation

67

Object Detection: let’s classify and locate
• Sliding Window versus Region Proposals
• Two stage detectors: the evolution of R-CNN , Fast R-CNN, Faster R-CNN
• Single stage detectors: detection without Region Proposals: YOLO / SSD

Semantic Segmentation: classify every pixel
• Fully-Convolutional Networks
• SegNet & U-NET
• Faster R-CNN linked to Semantic Segmentation: Mask R-CNN



Task: Image Classification using Fully-Connected CNN

68

• Fundamental to computer vision given a set of labels {dog, cat, human, ...};
• Predict the most likely class.

Classification (C = 1000): 
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Input VGG Output



Task: From Classification to Classification + Localization
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• Localization demands to compute where 1 object is present in an image;
• Limitation: only 1 object (also non-overlapping);
• Typically implemented using a bounding box (x, y, w, h).

Classification Output: 
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Predict

Output: Regular Image Classification 

Predict

Classification output: 
- Dog: 0.95
- Cat: 0.02
- Human: 0.01

Localization output:
- Bounding-Box:

(x, y, w, h) 



Task: From Classification + Localization to Object Detection
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• Classification and Localization extended to multiple objects 

Youtube ‘YOLO in New York” by  Joseph Redmon (creator of YOLO)

http://www.youtube.com/watch?v=YmbhRxQkLMg


Task: From Classification to Semantic Segmentation

71

• Image Classification: assigning a single label to the entire picture
• Semantic Segmentation: assigning a semantically meaningful label to every pixel in the 

image

Long, Shelhamer et al.  “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 : Cited by 14480



Why Object Detection and Semantic Segmentation
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Note: 
• Efficiency/inference-time is important!
• How many frames/sec. can we predict?
• Must for real-time segmentation & detection.

Computer Vision: 
● Autonomous vehicles
● Biomedical Imaging detecting

cancer, diseases
● Video surveillance: 

○ Counting people
○ Tracking people

● Aerial surveillance
● Geo Sensing: tracking wildfire, glaciers, via 

satellite



Why Object Detection and Semantic Segmentation
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Youtube: “Tensorflow DeepLab v3 Xception Cityscapes”(link ) 

http://www.youtube.com/watch?v=ATlcEDSPWXY
https://www.youtube.com/watch?v=ATlcEDSPWXY


How to Measure Quality in Detection and Segmentation?

74

● Pixel Accuracy: 
○ Percent of pixels in your image that are classified correctly
○ Our model has 95% accuracy! Great!

● Problem with accuracy: unbalanced data!

Image from Vlad Shmyhlo in article: Image Segmentation: Kaggle experience in TDS

Input Labels Predict



How Do We Measure Accuracy?
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• Pixel Accuracy: Percent of pixels in your image that are classified correctly
• IOU: Intersection-Over-Union (Jaccard Index): Overlap / Union
• mAP: Mean Average Precision: AUC of Precision-Recall curve standard (0.5 is high)
• DICE: Coefficient (F1 Score): 2 x Overlap / Total number of pixels  

mAP DICE

IoU: 0.40 IoU: 0.73 IoU: 0.92

IOU



Object Detection
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Object Detection: let’s classify and locate
• Sliding Window versus Region Proposals
• Two stage detectors: the evolution of R-CNN , Fast R-CNN, Faster 

R-CNN
• Single stage detectors: detection without Region Proposals: YOLO / 

SSD



Task: Object Detection - Let’s Classify and Locate
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• Object detection is just classification and localization combined:
• Classification using standard CNN;
• Localization using regression problem for predicting box coordinates
• Combining loss from Classification (Softmax) and Regression (L2)

Bounding-Box :
• x
• y
• width (w)
• height (h)

Classification: 
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Input VGG Output

Multi-Task
Learning

Softmax 
Loss

L2-norm
Loss



Sliding Windows, from Single to Multiple Objects 
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• Might work for single object, but not for multiple objects
• Each image containing “x” objects:  needs “x” number of 

classification and localization outputs
• Solution for multiple objects:

• Crop the image “in a smart way”
• Apply the CNN to each crop

• Can we just use sliding windows?
• Problem: Need for applying CNN to huge number of 

locations, scales, bbox aspect ratios: very 
computationally expensive;

• Solution: Region Proposals methods to find 
object-like regions.

Dog: (x, y, w, h ) 

Dog: (x, y, w, h ) 
Dog: (x, y, w, h ) 
Dog: (x, y, w, h ) 
Dog: (x, y, w, h ) 

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 
“Convolutional Neural Networks for Visual Recognition” Lecture 12 Slide 37
Uijlings et al, Selective Search for Object Recognition” IJCV 2013  link 

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf


Object Detection: Region Proposal Networks!
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• Problem: Need for applying CNN to huge number of locations, scales, bbox aspect ratios, 
very computationally expensive!

• Solution: Region Proposals methods to find object-like regions:
• Selective Search Algorithm: returns boxes that are likely to contain objects:

• Use hierarchical segmentation;
• Start with small superpixels;
• Merge based on similarity.

• Output: Where are object like regions? 
• No classification yet.

Uijlings et al, Selective Search for Object Recognition” IJCV 2013  link

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf


The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

80

• R-CNN = Region-based CNN
• Correct BBox by Bbox regressor 

(dx,dy,dw,dh)
• Forward each region through CNN
• Resize proposed RoI (224x224)

• Region of Interest (RoI) from selective 
search region proposal (approx 2k)

• Problem: need to do 2k independent 
forward passes for each image! (‘slow’ 
R-CNN)

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation” CVPR2014
Ross Girshick, “Fast R-CNN” Slides 2015



The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN
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• R-CNN = Region-based CNN
• Correct BBox by Bbox regressor 

(dx,dy,dw,dh)
• Forward each region through CNN
• Resize proposed RoI (224x224)

• Region of Interest (RoI) from selective 
search region proposal (approx 2k)

• Problem: need to do 2k independent 
forward passes for each image! (‘slow’ 
R-CNN)

• Solution: can we process the image 
before cropping?

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation” CVPR2014
Ross Girshick, “Fast R-CNN” Slides 2015



The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN
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• Problem: need to do 2k independent forward passes for each image! (‘slow’ R-CNN)
• Even inference is slow: 47s/image with VGG16 [Simonyan & Zisserman, ICLR 15]
• Solution: can we process (CNN forward pass) the image before cropping generates 2k 

regions?

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Fast R-CNN Slow R-CNN



The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN
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• Fast R-CNN is much faster than R-CNN
• Runtime dominated by region proposals; an iterative method (‘like selective search’);
• Solution: Can we make the CNN do proposals?!

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Training Time (Hours) Test Time (Seconds)



The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN
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• Faster R-CNN: Have the CNN make proposals! (single forward, not iterative selective 
search)

• CNN Region Proposal Network (RPN): Predict region proposals from features
• Otherwise same as Fast R-CNN: crop and classify
• End-to-end quadruple loss: 

• RPN classify object / not object
• RPN regress box coordinates
• Final classification score (object classes)
• Final box coordinates

• Test-time seconds per image: 

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015



The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN
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• Previously we said: “Multiple objects? We need Region Proposal Networks!”
• Faster R-CNN is a two-stage object detector

• Stage 1: backbone network + RPN (once/image)
• Stage 2: crop - predict object & bbox (once/region)

• What is our RPN again?
• RPN runs prediction on many many anchor boxes:

• Loss 1: Tells is does the anchor bbox contain an object
• Loss 2: For the top 300 boxes its adjusts the box

• What is the difference between our 2 classification losses?
• one is classifying object (i.e. object/not object) – green box
• one is classifying specific categories (e.g. dog) – pink box

● Do we really need two stages?  

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Stage 2

Stage 1



Single-Stage Detection Without Region Proposals: YOLO, SSD
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• Within each NxN grid, regress over each B 
base boxes, predict: (x,y,h,w, confidence = 5)

• Predict C category specific class scores
• Output : N x N x S ( 5 B + C)

• YOLOv3 (Joseph Redmon): 
• predicts at 3 scales, S = 3
• predicts 3 boxes at each scale, B=3
• Darknet-53 as feature extractor (similar to 

ResNet 152, and 2x faster!)

(YOLO) Redmon, “You Only 
Look Once: Unified, 
Real-Time Object Detection” 
CVPR 2015: Cited by 8057 
(link)

Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 
“Convolutional Neural Networks for Visual Recognition” 

https://arxiv.org/pdf/1506.02640.pdf


Semantic Segmentation
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Semantic Segmentation: Classify Each Pixel
• Fully-Convolutional Networks
• SegNet & U-NET
• Faster R-CNN linked to Semantic Segmentation: Mask R-CNN



Semantic Segmentation: Classify Every Pixel
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• Image Classification: assigning a single label to the entire picture
• Semantic Segmentation: assigning a semantically meaningful label to every pixel in the 

image

So our output shouldn’t be a class prediction (C numbers) but a picture (C x w x h)
• Can we have a network for each pixel location? 
• Sliding window inputs of patches predicting the class of the pixel in the center?
• Many forward passes! Not reusing overlapping patches and features.

(FCN) Long, Shelhamer et al.  
“Fully Convolutional Networks 
for Semantic Segmentation”, 
CVPR 2015: Cited by 14480 
(link)



Fully-Convolutional Networks
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• Semantic segmentation: assigning a semantically meaningful label to every pixel in the image
• So our output shouldn’t be a classification prediction (C numbers) but a picture (C x w x h)

• Maybe we can have a network for each pixel location? Many (w times h) networks!
• Sliding window inputs of patches predicting the class of the pixel in the center? Many forward passes! 

Overlapping features not used.
• Solution: FCN = Fully-Convolutional Networks! (not fully-connected)

• 1 network - 1 prediction would be a lot better
• Why convolutions? every pixel is very much influenced by its neighborhood

89

(FCN) Long, Shelhamer et al.  
“Fully Convolutional Networks 
for Semantic Segmentation”, 
CVPR 2015: Cited by 14480 
(link)

Fig: top, Image Classification (FC), bottom, Image Segmentation (FCN)



Fully-Convolutional Networks
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• FCN: design a network as a bunch of conv layers to make predictions for all pixels all at once. 
• Encoder (= Localization): downsample through convolutions. Reduces number of 

params (bottleneck), can make network deeper
• Decoder (= Segmentation): upsampled through transposed convolutions
• Loss: cross-entropy loss on every pixel.

• Contribution: 
• Popularize the use of end-to-end CNNs for semantic segmentation;
• Re-purpose imagenet pretrained networks for segmentation = Transfer Learning
• Upsample using transposed layers.

• Negative: 
• upsampling = loss of information during pooling;
• 224x224 image downsampled to 20x20 back upsampled to 224x224.

(FCN) Long, Shelhamer et al.  “Fully Convolutional Networks for Semantic 
Segmentation”, CVPR 2015: Cited by 14480 (link)



SegNet
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• The indices from max pooling down 
sampling are transferred to the decoder: 
pooling indices

• Improves fine segmentation resolution, we 
want “pixel-perfect”;

• More efficient since no transposed 
convolutions to learn.

SegNet: A deep Convolutional Encoder-Decoder Architecture for Image 
Segmentation. (link) 

 

https://arxiv.org/abs/1511.00561


U-NET: Long Skip Connections
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• The U-Net is an encoder decoder using: 
• location information from the down sampling path of the encoder;
• contextual information in the up sampling path by the   “concatenating” long-skip 

connections.

 

 

 



Tutorial: Using Transfer Learning to train a U-NET

Colab Notebook
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https://colab.research.google.com/drive/18pVy5Hhwf28L4QAgu9UBAg9l2GQYpTtA?usp=sharing
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Motivation
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We want to process data (ideally a lot) and we do not have enough computing 
resources. For example:

1. Your phone can’t run GoogleNet to assist you in some tasks

2. You can’t compress ginormous number of images coming from space (8Kx8K pixels 
from 3K satellites) 

Using machine learning is resource intensive: 

i. Computing power to train millions of parameters or predict for many observations

ii. Limited bandwidth  

So what? Model compression techniques

Hannah Peterson and George Williams, An Overview of Model Compression Techniques 
for Deep Learning in Space, August 2020

https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5


What is Model Compression?

97

The main idea is to simplify the model without diminishing accuracy. A 
simplified model means reduced in size and/or latency from the original. 
Both types of reduction are desirable.

• Size reduction can be achieved by reducing the model parameters and 
thus using less RAM.

• Latency reduction can be achieved by decreasing the time it takes for the 
model to make a prediction, and thus lowering energy consumption at 
runtime (and carbon footprint).

Karen Hao, Training a single AI model can emit as much carbon as five 
cars in their lifetimes, June 2019

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/


Compression Techniques 

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity} 
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Compression Techniques 

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity} 
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Compression Technique: Distillation

100



Compression Technique: Distillation

101

Problem: 

• During training, a model does not have to operate in real time and does not 
necessarily face restrictions on computational resources, as its primary goal is 
simply to extract as much structure from the given data as possible.

• But latency and resource consumption do become of concern if it is to be 
deployed for inference.

So what? we must develop ways to compress model for inference.



Compression Technique: Distillation
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Idea:

• In 2006, Buciluă et al. showed that it was possible to transfer knowledge 
from a large trained model (or ensemble of models) to a smaller model for 
deployment by training it to mimic the larger model’s output.

• In 2014 Hinton et al generalized the process and gave the name Distillation.

Main idea of distillation is that training and inference are 2 different tasks; 
thus a different model should be used.

Buciluă et al., Model Compression, 2006
Hinton et al., Distilling the Knowledge in a Neural Network, 2014

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
https://arxiv.org/pdf/1503.02531.pdf


Distillation: Teacher Student
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Loss

Teacher Model

Student Model



Distillation: Teacher Student
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Assumption: if we can achieve similar convergence using a smaller network, 
then the convergence space of the Teacher Network should overlap with the 
solution space of the Student Network. (design diagram again if needed)

Teacher Model

Student Model

Teacher Convergence Space

Student Convergence Space

Teacher guided Student Convergence Space



Distillation: Teacher Student Loss
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Modified softmax function with 
Temperature:

q ᵢ : resulting probability
z ᵢ : logit of a class
z ⱼ : other logits
T: temperature (T=1, “hard output” )

 

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

https://www.ttic.edu/dl/dark14.pdf


Distillation: Teacher Student Training
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Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

Trained to minimize the sum 
of two different cross entropy 
functions: 

• one involving the original 
hard labels obtained using 
a softmax with T=1

• one involving the softened 
targets, T>1

https://www.ttic.edu/dl/dark14.pdf


Distillation: Teacher Student Training
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Source: https://medium.com/neuralmachine/knowledge-distillation-dc241d7c2322



Tutorial: Model Compression

Colab Notebook
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https://colab.research.google.com/drive/18M1_KWeLtfXXAZFTrRoWGxSGJyfUyAYZ?usp=sharing


What is next in Distillation?
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1: Multiple teachers (i.e. converting an ensemble into a single 
network).

2: Introducing a teaching assistant (the teacher first teaches the TA, 
who then in turn teaches the student) etc. 

3: Quite young field

A drawback of knowledge distillation as a compression technique, 
therefore, is that there are many decisions that must be made 
up-front by the user to implement it (student network doesn’t even 
need to have a similar structure to the teacher).



Compression Techniques 

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity} 
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To learn more about pruning: Derrick Mwiti, Research Guide: Pruning 
Techniques for Neural Networks, November 2019

Compression Technique: Pruning
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The main idea is to remove features with nearly the same information. 

Pruning involves removing connections between neurons,  channels, or filters 
from a trained network. To prune a connection, we set a weight in the matrix to 
zero.  

2 types of pruning:

• Unstructured removes connections or neurons 

• Structured removes filters or channels 

https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d
https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d


Compression Technique: Pruning
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Pruning has a few potential drawbacks:

• Unclear how well given methods 
generalize across different 
architectures. 

• Fine-tuning is cumbersome and can 
slow down implementation.

• May be more effective to simply use a 
more efficient architecture than to 
prune a suboptimal one.

Blalock D. et al, What is the state of neural network pruning?, March 2020

https://arxiv.org/pdf/2003.03033.pdf


Compression Technique: Quantization
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To implement quantization with Tensorflow: MC.AI, Quantization in Deep Learning 
using TensorFlow 2.X, May 2020

Main idea is to map values from a large set 
to values in a smaller set without losing too 
much information in the process. So by 
reducing the number of pixels, the image 
below should still be clear.

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/


To implement quantization with Tensorflow: MC.AI, Quantization in Deep 
Learning using TensorFlow 2.X, May 2020

Compression Technique: Quantization
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Quantization can be achieved by changing the output or NN architecture:

• Post Training Quantization: reducing the size of the weights stored (e.g. 
from 32-bit floating point numbers to 8-bit)

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/


Compression Technique: Quantization
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Quantization-Aware Training: 
There could be an accuracy loss in a post-training 
model quantization and to avoid this and if you 
don’t want to compromise the model accuracy we 
do quantization aware training.  

This technique ensures that the forward pass 
matches precision for both training and inference.

Han S. et al, Deep compression: compressing deep neural networks 
with pruning, trained quantization and huffman coding, 2016

https://www.tensorflow.org/model_optimization/guide/quantiza
tion/training

https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf


Compression Technique: Quantization
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Quantization can be tricky:
• Requires having a decent 

understanding of hardware and 
bitwise computations

• Savings are tied to the features of 
the hardware being used

Han S. et al, Deep compression: compressing deep neural networks 
with pruning, trained quantization and huffman coding, 2016

https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf


Compression Technique: Low Rank Approximation
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Rigamonti R. et al., Learning Separable Filters, 2013

Main idea  is to approximate the redundant filters of a layer using a linear 
combination of fewer filters. Compressing layers in this way reduces the 
network’s memory footprint, the computational complexity of convolutional 
operations and can yield significant speedups.

Examples:

• Singular Value Decomposition

• Tucker decomposition

• Canonical Polyadic decomposition

https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Rigamonti_Learning_Separable_Filters_2013_CVPR_paper.pdf


Compression Technique: Low Rank Approximation
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Kim et al. use Tucker decomposition to determine the ranks that the compressed layers 
should have. They apply the compression to various models for image classification 
tasks and run them on both a Titan X and Samsung Galaxy S6 phone*: 

Kim et al, Compression of deep convolutional neural networks for fast 
and low power mobile applications, 2016

• Low-rank approximation achieve 
significant size and latency 
reductions 

• Prove potential deployment on 
mobile devices

• Reduce parameters simplifying 
model structure 

• Does not require specialized 
hardware to implement

* S6 has a GPU with 35× lower computing ability and 13× smaller memory 
bandwidth than Titan

https://arxiv.org/pdf/1511.06530.pdf
https://arxiv.org/pdf/1511.06530.pdf
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Tutorial: Mushroom App Models

Colab Notebook
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https://colab.research.google.com/drive/1UofO8KLQY8q3eXf0083_N-29wDc5FEe0?usp=sharing


THANK YOU
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