
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC295

Lecture 6-7-8: Deep Learning -
Computer Vision

AC295

 Advanced Practical Data Science, MLOps

1

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

2

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

3

4

Communication

●We received all milestones. Thank you. Exercise 1 and milestone 1
will be graded by Fri/Sat.

●Exercise 2 due 09/23
●Please make sure outputs are visible in exercise notebooks. (There

will be penalties otherwise)
●Quiz 4/5 due 10/05

Motivation: Classify Rarest Animals

5

Classify Rarest Animals

6

Number of parameters: 134,268,737
Data Set: Few hundred images

VGG16

Classify Rarest Animals

7

Number of parameters: 134,268,737
Data Set: Few hundred images

VGG16

NOT ENOUGH DATA

Classify Cats, Dogs, Chinchillas etc

8

Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16

Classify Cats, Dogs, Chinchillas etc

9

Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16

TAKES TOO LONG

Training Time for SOTA Models

10

Transfer Learning To The Rescue

11

How do you build an image classifier that can be trained in a few
minutes on a CPU with very little data?

Basic Idea of Transfer Learning

12

Basic Idea of Transfer Learning

13

Basic Idea of Transfer Learning

14

Basic Idea of Transfer Learning

15

Basic Idea of Transfer Learning

16

Wikipedia:
Transfer learning (TL) is a research
problem in machine learning (ML)
that focuses on storing knowledge
gained while solving one problem and
applying it to a different but related
problem.[1]

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1

Basic Idea of Transfer Learning

17

How do you make an image classifier that can be trained in a
few minutes on a CPU with very little data?

Basic Idea of Transfer Learning

18

How do you make an image classifier that can be trained in a
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Basic Idea of Transfer Learning

19

Basic Idea of Transfer Learning

20

Basic Idea of Transfer Learning

21

How do you make an image classifier that can be trained in a
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: Earlier layers of a network learn low level features,
which can be adapted to new domains by changing weights at
later and fully-connected layers.

Example: Use ImageNet trained with any sophisticated huge
network. Then retrain it on a few images.

Key Idea: Representation Learning

22

Relatively difficult task

Key Idea: Representation Learning

23

Relatively difficult task Easier task

Representation Learning

24

Task: classify cars, people, animals and objects

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…

Representation Learning

25

Task: classify cars, people, animals and objects

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…

Basic Idea of Transfer Learning

26

• Train on a big "source" data set, with a big model, on one downstream
tasks (say classification). Do it once and save the parameters. This is
called a pre-trained model.

• Use these parameters for other smaller "target " datasets, say, for
classification on new images (possibly different domain, or training
distribution), or for image segmentation on old images (new task), or
new images (new task and new domain).

Basic Idea of Transfer Learning

27

• Train on a big "source" data set, with a big model, on one downstream
tasks (say classification). Do it once and save the parameters. This is
called a pre-trained model.

• Use these parameters for other smaller "target " datasets, say, for
classification on new images (possibly different domain, or training
distribution), or for image segmentation on old images (new task), or
new images (new task and new domain).

• Less helpful if you have a large target dataset with many labels.

• Will fail if source domain (where you trained big model) has nothing in
common with target domain (that you want to train on smaller data set).

Basic Idea of Transfer Learning

28

Not a new idea!
It has been there in the ML and stats
literature for a while.

• An exemplar is hierarchical glm models in
stats, where information flows from higher
data units to lower data units to the lower
data.

• Neural networks learn hierarchical
representations and thus are particularly
suited to this kind of learning. Furthermore,
since we learn representations, we can deal
with domain adaptation/covariate shift.

Transfer Learning for Deep Learning

29

What people think
• you can’t do deep learning unless you have a million labeled examples.

What people can do, instead
• You can learn representations from unlabeled data
• You can train on a nearby objective for which is easy to generate labels

(imageNet).
• You can transfer learned representations from a relate task.

Transfer Learning for Deep Learning

30

Instead of training a network from scratch:
• Take a network trained on a different domain for a different source task
• Adapt it for your domain and your target task

Variations
• Same domain, different task.
• Different domain, same task.

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

31

Review of CNNs

32

Review of CNNs

33

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?

(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 + 4)
Conv1 Conv2 Dense1 Dense2

Review of CNNs

34

How many parameters does the layer have if I want to use 8 filters?
n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 = 224

Input
(size=32X32,
channels=3)

Output
(size=32X32,
channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,
padding = same)

filter x 1

Review of CNNs

35

How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 = 3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters

Review of CNNs

36

Fully Connected
(n_nodes=4)

How many parameters … ?
input x FC1_nodes + FC2_nodes = total number of params
(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 16X16X16)

Representation Extraction

37

Use representations learned by big net to extract features from
new samples, which are then fed to a new classifier:

• Keep (frozen) convolutional base from big model.
• Generally throw away head FC layers since these have no
notion of space, and convolutional base is more generic.
• Since there are both dogs and cats in ImageNet you could get
away with using the head FC layers as well. But by throwing it
away you can learn more from other dog/cat images.

Base
Trained CNN

FREEZE

Head
randomly
initialize

Input

Prediction

Fine Tuning

38

• Up to now we have frozen the entire convolutional base.
• Remember that earlier layers learn highly generic feature
maps (edges, colors, textures).
• Later layers learn abstract concepts (dog’s ear).
• To particularize the model to our task, its often worth
tuning the later layers as well.
• But we must be very careful not to have big gradient
updates.

Base
Trained CNN

FREEZE

Head
randomly
initialize

Input

Prediction

Fine tune
some layers

Procedure for Fine-tuning

39

1. Freeze the convolutional base.
2. First train the fully connected head you added, keeping the

convolutional base fixed.
3. Unfreeze some "later" layers in the base net and now train the

base net and FC net together.

Our gradients won’t be terribly high, as we are already in a better
area of the loss surface. But, this means need to be careful and
generally use a very low learning rate.

Transfer Learning for Deep Learning: Differential Learning Rates

40

• A low learning rate can take a lot of time to train on the
"later" layers. Since we trained the FC head earlier, we
could probably retrain them at a higher learning rate.

• General Idea: Train different layers at different rates.

• Each "earlier" layer or layer group (the color-coded layers
in the image) can be trained at 3x-10x smaller learning rate
than the next "later" one.

• One could even train the entire network again this way
until we overfit and then step back some epochs.

Input

Prediction

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Dense Layer

Dense Layer

Dense Layer

Smaller
learning rate

Relatively
larger learning

rate

Largest
optimal

learning rate

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

41

SOTA Deep Models: Initial Ideas

42

• The first research proposing something similar to a Convolutional Neural Network
was authored by Kunihiko Fukushima in 1980 and was called the NeoCognitron.

• Inspired by discoveries on visual cortex of mammals.
• Fukushima applied the NeoCognitron to hand-written character recognition.

1 K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36(4): 93-202, 1980.

SOTA Deep Models: Initial Ideas

43

End of the 80’s: several papers advanced
the field

• Backpropagation published in French
by Yann LeCun in 1985 (independently
discovered by other researchers as
well)

• TDNN by Waibel et al., 1989 -
Convolutional-like network trained
with backprop

• Backpropagation applied to handwritten
zip code recognition by LeCun et al.,
1989

LeCun et al., 1989

LeNet

44

• November 1998: LeCun publishes one of his most recognized papers
describing a “modern” CNN architecture for document recognition,
called LeNet1.

• Not his first iteration, this was in fact LeNet-5, but this paper is the
commonly cited publication when talking about LeNet.

1 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

Convolution
5x5, (6)

Avg Pooling
2x2, Stride : 2

Convolution
5x5 , (16)

Avg Pooling
2x2, Stride : 2

Fully connected
120

Output
10

Fully connected
84

28x28
Feature Maps

14x14
Feature Maps

10x10
Feature Maps 5x5

Feature Maps32x32x1 Input

AlexNet

45

• Developed by Alex Krizhevsky, Ilya Sutskever and
Geoffrey Hinton at Utoronto in 2012. More than 25000
citations.

• Destroyed the competition in the 2012 ImageNet Large
Scale Visual Recognition Challenge. Showed benefits of
CNNs and kickstarted AI revolution.

• top-5 error of 15.3%, more than 10.8 percentage points
lower than runner-up. AlexNet

• Main contributions:
• Trained on ImageNet with data augmentation.
• Increased depth of model, GPU training (six days).
• Smart optimizer and Dropout layers.
• ReLU activation!

AlexNet

46

…
Fully connected

4096

55x55
Feature Maps

27x27
Feature Maps

27x27
Feature Maps

13x13
Feature Maps

224x224x3
 Input

Convolution
11x11, (96)

Stride=4

Max Pooling
3x3, Stride : 2

Convolution
5x5 , (16)

Max Pooling
3x3, Stride : 2

…
Convolution

3x3, (384)
Convolution

3x3, (384)
Convolution

3x3, (384)
Max Pooling

3x3, Stride : 2
Fully connected

4096
Output

1000

13x13
Feature Maps

13x13
Feature Maps

13x13
Feature Maps

6x6
Feature Maps

AlexNet

47

• 1.2 million high-resolution (227x227x3) images in the ImageNet 2010
contest

• 1000 different classes, NN with 60 million parameters to optimize (~ 255
MB)

• Uses ReLu activation functions; GPUs for training, 12 layers

VGG

48

• Introduced by Simonyan and Zisserman (Oxford) in 2014.
• Simplicity and depth as main points. Used 3x3 filters exclusively and

2x2 MaxPool layers with stride 2.
• Showed that two 3x3 filters have an effective receptive field of 5x5.
• As spatial size decreases, depth increases.
• Convolutional layers use ‘same’ padding and stride s=1.
• Max-pooling layers use a window size 2 and stride s=2.

• ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters.
• Trained for two to three weeks.
• Still used as of today.

VGG

49

224x224x3
 Input

224x224x64
Feature Maps

112x112x64
Feature Maps

112x112x128
Feature Maps

56x56x128
Feature Maps

…
Convolution

3x3, (64)

Max Pooling
2x2

Convolution
3x3 , (128)

Max Pooling
2x2

x2 x2 x3

Convolution
3x3 , (256)

56x56x256
Feature Maps

Max Pooling
2x2

Convolution
3x3 , (512)

…
Convolution

3x3 , (512)
Max Pooling

2x2
Max Pooling

2x2

Fully connected
4096

Fully connected
4096

Output
1000

x3 x3

28x28x256
Feature Maps

28x28x512
Feature Maps

14x14x512
Feature Maps

14x14x512
Feature Maps

7x7x512
Feature Maps

Inception (GoogLeNet)

50

• The motivation behind inception networks is to use more than a single type of
convolution layer at each layer.

• Use 1x1,3x3,5x5 convolutional layers, and max-pooling layers in parallel.
• All modules use same convolution.

1x1x64
Conv

3x3x128
Conv

5x5x32
Conv

1x1x32
Conv

3x3
Maxpool

28
28

32
32

128
64

ConcatInput
28x28x192

Inception (GoogLeNet)

51

• Use 1 x 1 convolutions that reduce the size of the channel dimension.
• The number of channels can vary from the input to the output.

Input
28x28x192

1x1x192
Conv

Concat

28x28x16
1x1x192

Conv

3x3
Maxpool

1x1x64
Conv

3x3x128
Conv

28x28x96

28x28x192

5x5x32
Conv

1x1x32
Conv

28
28

32
32

128
64

Inception (GoogLeNet)

52

The Inception Block

Input

1x1 Conv

1x1 Conv 1x1 Conv

1x1 Conv

3x3 Maxpool

3x3 Conv 5x5 Conv

Concat

Fully Connected
Layers

Softmax

1x1 Conv

Auxiliary Block

Activation

5x5 Avg Pool

Inception (GoogLeNet)

53

• The inception network is formed by concatenating other inception modules.
• It includes several softmax output units to enforce regularization.

A
u

xi
lia

ry
 B

lo
ck

x2

Input
299x299x3

7x
7

(6
4)

 C
o

nv

3x
3

M
ax

p
o

o
l

1x
1

(6
4)

 C
o

nv

3x
3

(6
4)

 C
o

nv

3x
3

M
ax

p
o

o
l

In
ce

p
ti

o
n

 B
lo

ck
x2

In
ce

p
ti

o
n

 B
lo

ck
x5

In
ce

p
ti

o
n

 B
lo

ck
x2

3x
3

M
ax

p
o

o
l

3x
3

M
ax

p
o

o
l

G
lo

b
al

 A
vg

 P
o

o
l

Output
10There are 2 Auxiliary blocks -

One attached to the second
Inception block and the other
to the fifth Inception block.

So
ftm

ax

1x1 C
o

nv

Auxiliary B
lock

A
ctivatio

n

5x5 A
vg

Po
o

l

Are we done?

54

Are we done?

55

ResNet

56

• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple categories.
Very similar to Highway Networks Srivastava et al. 2015 introduced the same time.

• Main idea: Residual block. Allows for extremely deep networks.
• Authors believe that it is easier to optimize the residual mapping than the original

one. Furthermore, residual block can decide to “shut itself down” if needed.

Weight Layer

Weight Layer

ReLU

+

x

x
IdentityF(x)

F(x) + x
ReLU

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1505.00387.pdf

ResNet: Skip Connections

57

• Residual nets appeared in 2016 to train very deep NN (100 or more layers).
• Their architecture uses ‘residual blocks’.
• Plain network structure:

• Residual network block

Identity

Linear ReLU Linear ReLU

+

Linear ReLU Linear ReLU

ResNet: Basic Units

58

X

3x3 Conv

3x3 Conv

Batch Norm

Batch Norm

ReLU

ReLU

X

3x3 Conv

3x3 Conv

Batch Norm

Batch Norm

ReLU

ReLU

1x1 Conv

Residual Block
with 1x1 conv

Residual Block
without conv

ResNet

59

G
lo

b
al

 A
vg

 P
o

o
l

Input
224x224x1

Output
10

7x
7

C
o

nv

B
at

ch
 N

o
rm

3x
3

M
ax

 P
o

o
l

R
es

id
u

al
 B

lo
ck

W
it

h
o

u
t

co
nv

R
es

id
u

al
 B

lo
ck

W
it

h
o

u
t

co
nv

x3

The residual network stacks blocks sequentially

The idea is to allow the network
to become deeper without
increasing the training time

R
es

id
u

al
 B

lo
ck

W
it

h
o

u
t

co
nv

R
es

id
u

al
 B

lo
ck

W
it

h
 c

o
nv

MobileNet

60

Standard Convolution

MACs: (5x5)x3x256x(12x12) ~ 2.8M
Parameters: (5x5x3)x256 + 256 ~ 20K

Filters and combines inputs into a new set of outputs in one
step

Depth-Wise Separable Convolution (DW)

MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K
Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K

It combines a depth wise convolution and a pointwise convolution

Output: 8x8x3
(no padding)

Input: 12x12x3
Filter: 3x(5x5)

12

12 3

8

8 3

5

5 1
1

1

8

Input: 8x8x3
Filter: 1x1x3x256

Output: 8x8x256
(no padding)

8 3

1

1
3 8

8 256

Input: 12x12x3
Filter: 5x5x3x256

Output: 8x8x256
(no padding)

12

12 3
8

8 256

5
5 3

256

DenseNet

61

• Goal: allow maximum information (and gradient) flow → connect every layer directly
with each other.

• DenseNets exploit the potential of the network through feature reuse → no need to
learn redundant feature maps.

• DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set of
new feature-maps.

In
put

x
0 x

1 x
2

x
3 x

4

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

B
N

-R
eL

U
-C

o
nv

Tr
an

si
ti

o
n

 la
ye

r

H
1 H

2
H

3
H

4

DENSE BLOCK

DenseNet

62

x
0 x

0

x
1

x
0

x
1

x
2

x
0

x
1

x
2

x
3

h
1

h
2

h
3

h
4

Concatenation during forward propagation

DenseNet

63

C
o

nv
+P

o
o

lin
g

12
8

C
o

nv
 1

x1

A
v.

 P
o

o
lin

g

51
2

C
o

nv
 1

x1

A
v.

 P
o

o
lin

g

Prediction

Input

Dense Block 3Dense Block 1 Dense Block 2

A transition layer is made of:
1. Batch Normalization
2. 1x1 Convolution
3. Average pooling

A dense layer contains:
1.Batch Normalization
2.ReLU activation
3.3x3 Convolution

25
6

C
o

nv
 1

x1

A
v.

 P
o

o
lin

g

224

22
4

x3

56x56

64 64+6*32

56x56

128

28x28

128+12*32

28x28
14x14

256
256+24*32

14x14

512

7x7

Final Layers:
Dense Block 4
Av. Pooling
Softmax

C
o

nv

C
o

nv

C
o

nv

C
o

nv

64 64+32 96+32 128+32

C
o

nv

160+32

C
o

nv

192+32
C

o
nv

224+32

Beyond

64

• MobileNetV2 (https://arxiv.org/abs/1801.04381)
• Inception-Resnet, v1 and v2

(https://arxiv.org/abs/1602.07261)
• Wide-Resnet (https://arxiv.org/abs/1605.07146)
• Xception (https://arxiv.org/abs/1610.02357)
• ResNeXt (https://arxiv.org/pdf/1611.05431)
• ShuffleNet, v1 and v2 (https://arxiv.org/abs/1707.01083)
• Squeeze and Excitation Nets

(https://arxiv.org/abs/1709.01507)

https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1610.02357
https://arxiv.org/pdf/1611.05431
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1709.01507

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

65

Computer Vision Tasks

66

Classification Semantic Segmentation

Instance SegmentationObject Detection

Object Detection & Semantic Segmentation

67

Object Detection: let’s classify and locate
• Sliding Window versus Region Proposals
• Two stage detectors: the evolution of R-CNN , Fast R-CNN, Faster R-CNN
• Single stage detectors: detection without Region Proposals: YOLO / SSD

Semantic Segmentation: classify every pixel
• Fully-Convolutional Networks
• SegNet & U-NET
• Faster R-CNN linked to Semantic Segmentation: Mask R-CNN

Task: Image Classification using Fully-Connected CNN

68

• Fundamental to computer vision given a set of labels {dog, cat, human, ...};
• Predict the most likely class.

Classification (C = 1000):
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Input VGG Output

Task: From Classification to Classification + Localization

69

• Localization demands to compute where 1 object is present in an image;
• Limitation: only 1 object (also non-overlapping);
• Typically implemented using a bounding box (x, y, w, h).

Classification Output:
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Predict

Output: Regular Image Classification

Predict

Classification output:
- Dog: 0.95
- Cat: 0.02
- Human: 0.01

Localization output:
- Bounding-Box:

(x, y, w, h)

Task: From Classification + Localization to Object Detection

70

• Classification and Localization extended to multiple objects

Youtube ‘YOLO in New York” by Joseph Redmon (creator of YOLO)

http://www.youtube.com/watch?v=YmbhRxQkLMg

Task: From Classification to Semantic Segmentation

71

• Image Classification: assigning a single label to the entire picture
• Semantic Segmentation: assigning a semantically meaningful label to every pixel in the

image

Long, Shelhamer et al. “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 : Cited by 14480

Why Object Detection and Semantic Segmentation

72

Note:
• Efficiency/inference-time is important!
• How many frames/sec. can we predict?
• Must for real-time segmentation & detection.

Computer Vision:
● Autonomous vehicles
● Biomedical Imaging detecting

cancer, diseases
● Video surveillance:

○ Counting people
○ Tracking people

● Aerial surveillance
● Geo Sensing: tracking wildfire, glaciers, via

satellite

Why Object Detection and Semantic Segmentation

73

Youtube: “Tensorflow DeepLab v3 Xception Cityscapes”(link)

http://www.youtube.com/watch?v=ATlcEDSPWXY
https://www.youtube.com/watch?v=ATlcEDSPWXY

How to Measure Quality in Detection and Segmentation?

74

● Pixel Accuracy:
○ Percent of pixels in your image that are classified correctly
○ Our model has 95% accuracy! Great!

● Problem with accuracy: unbalanced data!

Image from Vlad Shmyhlo in article: Image Segmentation: Kaggle experience in TDS

Input Labels Predict

How Do We Measure Accuracy?

75

• Pixel Accuracy: Percent of pixels in your image that are classified correctly
• IOU: Intersection-Over-Union (Jaccard Index): Overlap / Union
• mAP: Mean Average Precision: AUC of Precision-Recall curve standard (0.5 is high)
• DICE: Coefficient (F1 Score): 2 x Overlap / Total number of pixels

mAP DICE

IoU: 0.40 IoU: 0.73 IoU: 0.92

IOU

Object Detection

76

Object Detection: let’s classify and locate
• Sliding Window versus Region Proposals
• Two stage detectors: the evolution of R-CNN , Fast R-CNN, Faster

R-CNN
• Single stage detectors: detection without Region Proposals: YOLO /

SSD

Task: Object Detection - Let’s Classify and Locate

77

• Object detection is just classification and localization combined:
• Classification using standard CNN;
• Localization using regression problem for predicting box coordinates
• Combining loss from Classification (Softmax) and Regression (L2)

Bounding-Box :
• x
• y
• width (w)
• height (h)

Classification:
• Dog: 0.95
• Cat: 0.02
• Human: 0.01
• ...

Input VGG Output

Multi-Task
Learning

Softmax
Loss

L2-norm
Loss

Sliding Windows, from Single to Multiple Objects

78

• Might work for single object, but not for multiple objects
• Each image containing “x” objects: needs “x” number of

classification and localization outputs
• Solution for multiple objects:

• Crop the image “in a smart way”
• Apply the CNN to each crop

• Can we just use sliding windows?
• Problem: Need for applying CNN to huge number of

locations, scales, bbox aspect ratios: very
computationally expensive;

• Solution: Region Proposals methods to find
object-like regions.

Dog: (x, y, w, h)

Dog: (x, y, w, h)
Dog: (x, y, w, h)
Dog: (x, y, w, h)
Dog: (x, y, w, h)

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019
“Convolutional Neural Networks for Visual Recognition” Lecture 12 Slide 37
Uijlings et al, Selective Search for Object Recognition” IJCV 2013 link

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

Object Detection: Region Proposal Networks!

79

• Problem: Need for applying CNN to huge number of locations, scales, bbox aspect ratios,
very computationally expensive!

• Solution: Region Proposals methods to find object-like regions:
• Selective Search Algorithm: returns boxes that are likely to contain objects:

• Use hierarchical segmentation;
• Start with small superpixels;
• Merge based on similarity.

• Output: Where are object like regions?
• No classification yet.

Uijlings et al, Selective Search for Object Recognition” IJCV 2013 link

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

80

• R-CNN = Region-based CNN
• Correct BBox by Bbox regressor

(dx,dy,dw,dh)
• Forward each region through CNN
• Resize proposed RoI (224x224)

• Region of Interest (RoI) from selective
search region proposal (approx 2k)

• Problem: need to do 2k independent
forward passes for each image! (‘slow’
R-CNN)

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation” CVPR2014
Ross Girshick, “Fast R-CNN” Slides 2015

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

81

• R-CNN = Region-based CNN
• Correct BBox by Bbox regressor

(dx,dy,dw,dh)
• Forward each region through CNN
• Resize proposed RoI (224x224)

• Region of Interest (RoI) from selective
search region proposal (approx 2k)

• Problem: need to do 2k independent
forward passes for each image! (‘slow’
R-CNN)

• Solution: can we process the image
before cropping?

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation” CVPR2014
Ross Girshick, “Fast R-CNN” Slides 2015

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

82

• Problem: need to do 2k independent forward passes for each image! (‘slow’ R-CNN)
• Even inference is slow: 47s/image with VGG16 [Simonyan & Zisserman, ICLR 15]
• Solution: can we process (CNN forward pass) the image before cropping generates 2k

regions?

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Fast R-CNN Slow R-CNN

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

83

• Fast R-CNN is much faster than R-CNN
• Runtime dominated by region proposals; an iterative method (‘like selective search’);
• Solution: Can we make the CNN do proposals?!

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Training Time (Hours) Test Time (Seconds)

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

84

• Faster R-CNN: Have the CNN make proposals! (single forward, not iterative selective
search)

• CNN Region Proposal Network (RPN): Predict region proposals from features
• Otherwise same as Fast R-CNN: crop and classify
• End-to-end quadruple loss:

• RPN classify object / not object
• RPN regress box coordinates
• Final classification score (object classes)
• Final box coordinates

• Test-time seconds per image:

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

The Evolution of R-CNN: R-CNN, Fast R-CNN, Faster R-CNN

85

• Previously we said: “Multiple objects? We need Region Proposal Networks!”
• Faster R-CNN is a two-stage object detector

• Stage 1: backbone network + RPN (once/image)
• Stage 2: crop - predict object & bbox (once/region)

• What is our RPN again?
• RPN runs prediction on many many anchor boxes:

• Loss 1: Tells is does the anchor bbox contain an object
• Loss 2: For the top 300 boxes its adjusts the box

• What is the difference between our 2 classification losses?
• one is classifying object (i.e. object/not object) – green box
• one is classifying specific categories (e.g. dog) – pink box

● Do we really need two stages?

Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019 “Convolutional Neural Networks for Visual Recognition”
Ross Girshick, “Fast R-CNN” Slides 2015

Stage 2

Stage 1

Single-Stage Detection Without Region Proposals: YOLO, SSD

86

• Within each NxN grid, regress over each B
base boxes, predict: (x,y,h,w, confidence = 5)

• Predict C category specific class scores
• Output : N x N x S (5 B + C)

• YOLOv3 (Joseph Redmon):
• predicts at 3 scales, S = 3
• predicts 3 boxes at each scale, B=3
• Darknet-53 as feature extractor (similar to

ResNet 152, and 2x faster!)

(YOLO) Redmon, “You Only
Look Once: Unified,
Real-Time Object Detection”
CVPR 2015: Cited by 8057
(link)

Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019
“Convolutional Neural Networks for Visual Recognition”

https://arxiv.org/pdf/1506.02640.pdf

Semantic Segmentation

87

Semantic Segmentation: Classify Each Pixel
• Fully-Convolutional Networks
• SegNet & U-NET
• Faster R-CNN linked to Semantic Segmentation: Mask R-CNN

Semantic Segmentation: Classify Every Pixel

88

• Image Classification: assigning a single label to the entire picture
• Semantic Segmentation: assigning a semantically meaningful label to every pixel in the

image

So our output shouldn’t be a class prediction (C numbers) but a picture (C x w x h)
• Can we have a network for each pixel location?
• Sliding window inputs of patches predicting the class of the pixel in the center?
• Many forward passes! Not reusing overlapping patches and features.

(FCN) Long, Shelhamer et al.
“Fully Convolutional Networks
for Semantic Segmentation”,
CVPR 2015: Cited by 14480
(link)

Fully-Convolutional Networks

89

• Semantic segmentation: assigning a semantically meaningful label to every pixel in the image
• So our output shouldn’t be a classification prediction (C numbers) but a picture (C x w x h)

• Maybe we can have a network for each pixel location? Many (w times h) networks!
• Sliding window inputs of patches predicting the class of the pixel in the center? Many forward passes!

Overlapping features not used.
• Solution: FCN = Fully-Convolutional Networks! (not fully-connected)

• 1 network - 1 prediction would be a lot better
• Why convolutions? every pixel is very much influenced by its neighborhood

89

(FCN) Long, Shelhamer et al.
“Fully Convolutional Networks
for Semantic Segmentation”,
CVPR 2015: Cited by 14480
(link)

Fig: top, Image Classification (FC), bottom, Image Segmentation (FCN)

Fully-Convolutional Networks

90

• FCN: design a network as a bunch of conv layers to make predictions for all pixels all at once.
• Encoder (= Localization): downsample through convolutions. Reduces number of

params (bottleneck), can make network deeper
• Decoder (= Segmentation): upsampled through transposed convolutions
• Loss: cross-entropy loss on every pixel.

• Contribution:
• Popularize the use of end-to-end CNNs for semantic segmentation;
• Re-purpose imagenet pretrained networks for segmentation = Transfer Learning
• Upsample using transposed layers.

• Negative:
• upsampling = loss of information during pooling;
• 224x224 image downsampled to 20x20 back upsampled to 224x224.

(FCN) Long, Shelhamer et al. “Fully Convolutional Networks for Semantic
Segmentation”, CVPR 2015: Cited by 14480 (link)

SegNet

91

• The indices from max pooling down
sampling are transferred to the decoder:
pooling indices

• Improves fine segmentation resolution, we
want “pixel-perfect”;

• More efficient since no transposed
convolutions to learn.

SegNet: A deep Convolutional Encoder-Decoder Architecture for Image
Segmentation. (link)

https://arxiv.org/abs/1511.00561

U-NET: Long Skip Connections

92

• The U-Net is an encoder decoder using:
• location information from the down sampling path of the encoder;
• contextual information in the up sampling path by the “concatenating” long-skip

connections.

Tutorial: Using Transfer Learning to train a U-NET

Colab Notebook

93

https://colab.research.google.com/drive/18pVy5Hhwf28L4QAgu9UBAg9l2GQYpTtA?usp=sharing

References

94

Presentations:
• Fei-Fei Li & Justin Johnson & Serena Yeung Stanford CS231n 2019/2018 “Conv. Neural Networks for Visual Recognition” Lecture 12 !

• BTW: Great course / youtube series (youtube 2017)
• Ross Girshick, “Fast R-CNN” Slides 2015 (link)

Papers:
• VGG Simonyan, Zisserman. “Very Deep CNNs for Large-scale Image Recognition”, ILSVRC 2014: Cited by 34652 (link)
• Select. Search Uijlings et al, Selective Search for Object Recognition” IJCV 2013: Cited by 3944 (link)
• R-CNN Girshick et al, “Rich feature hierarchies for accurate object detect. & sem. segmentation” CVPR2014: Cited by 12000 (link)
• Fast-R-CNN Girshick, ‘Fast R-CNN“ ICCV 2015: Cited by 8791 (link)
• Faster- R-CNN Ren et al, “Faster R-CNN: Real-Time Object Det. with Region Proposal Networks” NEURIPS 2015 Cited by 16688 (link)
• Mask-R-CNN He et al, “Mask R-CNN” ICCV 2017: Cited by 5297 (link)
• YOLO Redmon, “You Only Look Once: Unified, Real-Time Object Detection” CVPR 2015: Cited by 8057 (link)
• FCN Long, Shelhamer et al. “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015: Cited by 14480 (link)
• SegNet Badrinarayanan et al. “SegNet: A deep Conv Encoder-Decoder Architecture for Image Segmentation”. Cited by 4258 (link)
• U-Net Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation”. Cited by 12238 (link)

https://www.youtube.com/watch?v=nDPWywWRIRo
https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
https://arxiv.org/pdf/1409.1556.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/abs/1506.01497
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1411.4038.pdf
https://arxiv.org/abs/1511.00561
https://arxiv.org/pdf/1505.04597.pdf

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

95

Motivation

96

We want to process data (ideally a lot) and we do not have enough computing
resources. For example:

1. Your phone can’t run GoogleNet to assist you in some tasks

2. You can’t compress ginormous number of images coming from space (8Kx8K pixels
from 3K satellites)

Using machine learning is resource intensive:

i. Computing power to train millions of parameters or predict for many observations

ii. Limited bandwidth

So what? Model compression techniques

Hannah Peterson and George Williams, An Overview of Model Compression Techniques
for Deep Learning in Space, August 2020

https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5

What is Model Compression?

97

The main idea is to simplify the model without diminishing accuracy. A
simplified model means reduced in size and/or latency from the original.
Both types of reduction are desirable.

• Size reduction can be achieved by reducing the model parameters and
thus using less RAM.

• Latency reduction can be achieved by decreasing the time it takes for the
model to make a prediction, and thus lowering energy consumption at
runtime (and carbon footprint).

Karen Hao, Training a single AI model can emit as much carbon as five
cars in their lifetimes, June 2019

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

98

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

99

Compression Technique: Distillation

100

Compression Technique: Distillation

101

Problem:

• During training, a model does not have to operate in real time and does not
necessarily face restrictions on computational resources, as its primary goal is
simply to extract as much structure from the given data as possible.

• But latency and resource consumption do become of concern if it is to be
deployed for inference.

So what? we must develop ways to compress model for inference.

Compression Technique: Distillation

102

Idea:

• In 2006, Buciluă et al. showed that it was possible to transfer knowledge
from a large trained model (or ensemble of models) to a smaller model for
deployment by training it to mimic the larger model’s output.

• In 2014 Hinton et al generalized the process and gave the name Distillation.

Main idea of distillation is that training and inference are 2 different tasks;
thus a different model should be used.

Buciluă et al., Model Compression, 2006
Hinton et al., Distilling the Knowledge in a Neural Network, 2014

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
https://arxiv.org/pdf/1503.02531.pdf

Distillation: Teacher Student

103

Loss

Teacher Model

Student Model

Distillation: Teacher Student

104

Assumption: if we can achieve similar convergence using a smaller network,
then the convergence space of the Teacher Network should overlap with the
solution space of the Student Network. (design diagram again if needed)

Teacher Model

Student Model

Teacher Convergence Space

Student Convergence Space

Teacher guided Student Convergence Space

Distillation: Teacher Student Loss

105

Modified softmax function with
Temperature:

q ᵢ : resulting probability
z ᵢ : logit of a class
z ⱼ : other logits
T: temperature (T=1, “hard output”)

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

https://www.ttic.edu/dl/dark14.pdf

Distillation: Teacher Student Training

106

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

Trained to minimize the sum
of two different cross entropy
functions:

• one involving the original
hard labels obtained using
a softmax with T=1

• one involving the softened
targets, T>1

https://www.ttic.edu/dl/dark14.pdf

Distillation: Teacher Student Training

107

Source: https://medium.com/neuralmachine/knowledge-distillation-dc241d7c2322

Tutorial: Model Compression

Colab Notebook

108

https://colab.research.google.com/drive/18M1_KWeLtfXXAZFTrRoWGxSGJyfUyAYZ?usp=sharing

What is next in Distillation?

109

1: Multiple teachers (i.e. converting an ensemble into a single
network).

2: Introducing a teaching assistant (the teacher first teaches the TA,
who then in turn teaches the student) etc.

3: Quite young field

A drawback of knowledge distillation as a compression technique,
therefore, is that there are many decisions that must be made
up-front by the user to implement it (student network doesn’t even
need to have a similar structure to the teacher).

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

110

To learn more about pruning: Derrick Mwiti, Research Guide: Pruning
Techniques for Neural Networks, November 2019

Compression Technique: Pruning

111

The main idea is to remove features with nearly the same information.

Pruning involves removing connections between neurons, channels, or filters
from a trained network. To prune a connection, we set a weight in the matrix to
zero.

2 types of pruning:

• Unstructured removes connections or neurons

• Structured removes filters or channels

https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d
https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d

Compression Technique: Pruning

112

Pruning has a few potential drawbacks:

• Unclear how well given methods
generalize across different
architectures.

• Fine-tuning is cumbersome and can
slow down implementation.

• May be more effective to simply use a
more efficient architecture than to
prune a suboptimal one.

Blalock D. et al, What is the state of neural network pruning?, March 2020

https://arxiv.org/pdf/2003.03033.pdf

Compression Technique: Quantization

113

To implement quantization with Tensorflow: MC.AI, Quantization in Deep Learning
using TensorFlow 2.X, May 2020

Main idea is to map values from a large set
to values in a smaller set without losing too
much information in the process. So by
reducing the number of pixels, the image
below should still be clear.

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/

To implement quantization with Tensorflow: MC.AI, Quantization in Deep
Learning using TensorFlow 2.X, May 2020

Compression Technique: Quantization

114

Quantization can be achieved by changing the output or NN architecture:

• Post Training Quantization: reducing the size of the weights stored (e.g.
from 32-bit floating point numbers to 8-bit)

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/

Compression Technique: Quantization

115

Quantization-Aware Training:
There could be an accuracy loss in a post-training
model quantization and to avoid this and if you
don’t want to compromise the model accuracy we
do quantization aware training.

This technique ensures that the forward pass
matches precision for both training and inference.

Han S. et al, Deep compression: compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016

https://www.tensorflow.org/model_optimization/guide/quantiza
tion/training

https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf

Compression Technique: Quantization

116

Quantization can be tricky:
• Requires having a decent

understanding of hardware and
bitwise computations

• Savings are tied to the features of
the hardware being used

Han S. et al, Deep compression: compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016

https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf

Compression Technique: Low Rank Approximation

117

Rigamonti R. et al., Learning Separable Filters, 2013

Main idea is to approximate the redundant filters of a layer using a linear
combination of fewer filters. Compressing layers in this way reduces the
network’s memory footprint, the computational complexity of convolutional
operations and can yield significant speedups.

Examples:

• Singular Value Decomposition

• Tucker decomposition

• Canonical Polyadic decomposition

https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Rigamonti_Learning_Separable_Filters_2013_CVPR_paper.pdf

Compression Technique: Low Rank Approximation

118

Kim et al. use Tucker decomposition to determine the ranks that the compressed layers
should have. They apply the compression to various models for image classification
tasks and run them on both a Titan X and Samsung Galaxy S6 phone*:

Kim et al, Compression of deep convolutional neural networks for fast
and low power mobile applications, 2016

• Low-rank approximation achieve
significant size and latency
reductions

• Prove potential deployment on
mobile devices

• Reduce parameters simplifying
model structure

• Does not require specialized
hardware to implement

* S6 has a GPU with 35× lower computing ability and 13× smaller memory
bandwidth than Titan

https://arxiv.org/pdf/1511.06530.pdf
https://arxiv.org/pdf/1511.06530.pdf

Outline

1. Introduction to Transfer Learning
2. Review CNNs
3. SOTA Deep Models
4. Transfer Learning across Tasks
5. Tutorial: Segmentation
6. Model Compression Techniques
7. Tutorial: Model Compression
8. Tutorial: Mushroom App Models

119

Tutorial: Mushroom App Models

Colab Notebook

120

https://colab.research.google.com/drive/1UofO8KLQY8q3eXf0083_N-29wDc5FEe0?usp=sharing

THANK YOU

121

