
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC215

Lecture 3: Data - TF Data, TF Records
AC295

 Advanced Practical Data Science, MLOps

1

Outline

1. Recap
2. Need for building efficient pipelines
3. TensorFlow Data
4. TensorFlow Records

2

Outline

1. Recap
2. Need for building efficient pipelines
3. TensorFlow Data
4. TensorFlow Records

3

Motivation

More Data Better Models Faster Hardware

The 3 components for better Deep Learning

4

Motivation

More Data Better Models Faster Hardware

● Storage
● Processing
● Input to Training

● SOTA Models
● Transfer Learning
● Distillation
● Compression

● Scaling data
processing

● GPU, TPU
● Multi GPU Server

Training

The 3 components for better Deep Learning

5

Motivation: Data Size

Challenges:
• Medium datasets will not all fit in memory (RAM)
• Large datasets will not fit in disk (Hard drive)

Solution:
• Building data pipelines

– Read data in batches which can fit in RAM
– Feed data in batches to GPU
– Read data from big data store in batches so not all data need to

be present in local hard drive

6

Motivation: Data Size

Tools:
• Dask
• Google Cloud Storage (Big data store)
• TensorFlow Data
• TensorFlow Records

7

Outline

1. Recap
2. Need for building efficient pipelines
3. TensorFlow Data
4. TensorFlow Records

8

Need for building efficient pipelines

Why is training slow?

9

Need for building efficient pipelines

Why is training slow?

GPU Starvation

10

Need for building efficient pipelines

GPU Starvation:
• Most times data input to models take a long time
• Data process using CPU & RAM are the bottlenecks
• GPUs are expensive and not fully utilized

11

Need for building efficient pipelines

CPU
RAM

GPU
VRAM

Prepare
Single
thread

TrainIdle

Idle Prepare

TrainIdle

Idle

Time

Single threaded CPU and single GPU working sequentially with NO prefetching

12

Need for building efficient pipelines

CPU
RAM

GPU
VRAM

Prepare
Single
thread

TrainIdle

Prepare

Train

Time

Single threaded CPU and single GPU working with prefetching

Prepare

Train

13

Need for building efficient pipelines

CPU
RAM

GPU
VRAM

Prepare

Multi
thread

TrainIdle

Prepare

Train

Time

Multi threaded CPU and single GPU working with prefetching

Prepare

Train

14

Need for building efficient pipelines

CPU
RAM

GPU
VRAM

Prepare

Multi
thread

TrainIdle

Prepare

Train

Time

Multi threaded CPU and multi GPU working with prefetching

Prepare

Train

GPU
VRAM TrainIdle Train Train

15

Need for building efficient pipelines

To build efficient pipelines we can use:
• TensorFlow Data
• TensorFlow Records

16

Outline

1. Recap
2. Need for building efficient pipelines
3. TensorFlow Data
4. TensorFlow Records

17

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Less than 2-4 GB
18

Consuming Data in Models

Source Data

[0,0,....0,0]
[0,1,....1,1]
...
…
…
…
…
…
…
[1,1,....1,0]
[1,0,....1,0]

[0]
[1]
...
...
…
…
…
…
…
[1]
[0]

x y

csv files

Images

Text

Local disk
Cloud storage

CPU
RAM

Less than 2-4 GB All data loaded into memory
19

Consuming Data in Models

Source Model

csv files

Images

Text

Local disk
Cloud storage

GPU
VRAM

Less than 2-4 GB

Data

[0,0,....0,0]
[0,1,....1,1]
...
…
…
…
…
…
…
[1,1,....1,0]
[1,0,....1,0]

[0]
[1]
...
...
…
…
…
…
…
[1]
[0]

x y

CPU
RAM

All data loaded into memory Model trained in batches of data

Batch 1

Batch n

.

.

.

.

.

.

20

Consuming Data in Models

What do we do when our dataset size is greater than 5 GB?

21

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 5 GB
22

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 5 GB Data loaded in batches

Data

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

23

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 5 GB Data loaded in batches Model trained in batches of data

Data Model

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

GPU
VRAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

Batch 1

Batch n

.

.

.

.

.

.

24

Consuming Data in Models

So we need a way to efficiently:
• Extract data from various data sources
• Transform data for pre-processing/ augmentation
• Load data ahead of training in GPU

25

Consuming Data in Models

So we need a way to efficiently:
• Extract data from various data sources
• Transform data for pre-processing/ augmentation
• Load data ahead of training in GPU

TensorFlow Data to the rescue...

26

TensorFlow Data

What is TensorFlow Data:
• TensorFlow makes building data pipelines easy using tf.data
• Build flexible and efficient data pipelines
• Read data in batches
• Parallelize data reads using CPU
• Does not load all data to memory and streams data to model
• Streams data from either local file system or distributed file systems

27

TensorFlow Data

What you do:
• Create a Dataset object
• Where to get the data
• How to transform it (Extract, process, augment)

tf.data takes care of:
• Multi threading
• Queuing
• Batching
• Prefetching
• Shuffling

28

TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

Create Dataset

29

TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

train_ds = train_ds.shuffle()

train_ds = train_ds.map(<pre-process-function>)

train_ds = train_ds.batch()

train_ds = train_ds.prefetch()

Processing logic

30

TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

train_ds = train_ds.shuffle()

train_ds = train_ds.map(<pre-process-function>)

train_ds = train_ds.batch()

train_ds = train_ds.prefetch()

model.fit(train_ds,...) Train

31

TensorFlow Data

Extract

Read data:
● CSVs
● Images
● Text files
● Binary files
● SQL databases
● Google Big Query
● Local store
● Remote store

Transform

Prepare data:
● Clean
● Normalize
● Encode
● Embeddings
● Augment
● Shuffle
● Batch
● Repeat

Load

Pass data to Device:
● Training / Inference
● CPUs or GPUs or

TPUs
● Parallelize
● Prefetch
● Cache

We can build data pipelines using a variety of operations

32

TensorFlow Data

So in summary tf.data will help you:
• Work with large amounts of data
• Read from different data formats
• Perform complex transformations
• Build efficient data pipelines to reduce training time

33

Outline

1. Recap
2. Need for building efficient pipelines
3. TensorFlow Data
4. TensorFlow Records

34

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 30 GB
35

Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 30 GB Data loaded in batches

Data

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

To
 m

an
y i

o re
ad

s

36

Consuming Data in Models

Source

csv files

Images

Text

Greater than 30 GB Data loaded in batches

Data

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

TF Records

Local disk
Cloud storage

37

Consuming Data in Models

Source

csv files

Images

Text

Greater than 30 GB Data loaded in batches

Data

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

TF Records

Model trained in batches of data

Model

GPU
VRAM

Batch 1

Batch n

.

.

.

.

.

.

Local disk
Cloud storage

38

TensorFlow Records

What are TensorFlow Records:
• TFRecord is TensorFlow’s format for large amount of data
• It is a binary format defined using protocol buffers (protobuf)
• Data is compressed and very efficient to read
• Use TFRecord when reading using tf.data is a bottleneck to

training

39

TensorFlow Records

Why use TFRecords:
• TFRecords is used to shard your data across multiple files
• Parallelize I/O reads across one or more training servers
• Each file size should be 10 MB to ideally > 100 MB
• For example if you have 30 GB of data and 8 training servers:

– Number of shards = 10 * 8 = 80
– Shard size = 30,000/(10*8) = 375MB

40

TensorFlow Records

Source

TF Records

Images
30 GB

.

.

.

375 MB

375 MB

375 MB

375 MB

375 MB

375 MB

1 Training Server

Data

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

x y

CPU
RAM

.

.

.

[0,0,....0,0]
…
[1,0,....1,1]

[0]
...
[1]

Batch 1

Batch n

.

.

.

.

.

.

.

.

.

Data stored as TFRecords Model trained on multiple GPUs

Model

.

.

.

.

.

.

Batch 1

Batch 2

Batch n

GPU
VRAM

GPU
VRAM

GPU
VRAM

41

TensorFlow Records

Source

TF Records

Images
30 GB

.

.

.

.

.

.

.

.

375 MB

375 MB

375 MB

375 MB

375 MB

375 MB

n Training ServersData stored as TFRecords

Multiple GPUs per server

Model

.

.

.

.

.

.

[...]

.

.

.

[...]

[...]

.

.

.

[...]

.

.

.

.

.

.

.

.

.

Data

.

.

.

.

.

.

Multiple GPUs per server
42

TensorFlow Records

Creating TFRecords:
• TFRecords consists of files that are composed of a series of

tf.Example messages
• tf.Example is a {"key": value} mapping where key is the feature

name, and value is its binary representation
• For example to store image dataset, serialize all image attributes

along with the label in a TFRecord file

{
 "image": image.bytes(),
 "height": image.height,
 "width": image.width,
 "channel": image.channel,
 "label": label
}

43

TensorFlow Records

Creating TFRecords:

{
 "image": image.bytes(),
 "height": image.height,
 "width": image.width,
 "channel": image.channel,
 "label": label
}

The image is stored as binary and not using any compression format. So files can
be read linearly as a sequence of bytes without a need to decode images. This
saves time to read but using more disk space.

44

Putting it all together

Google / Bing

Data Collection

- Scrap mushroom images
- Organize / Save image

Data Cleaning

- Verify images
- Check for duplicates
- Image Processing

Data Storage / Conversion

- Store in Cloud Store
- Convert to TF Records

Model Training

Model Training

TF Data

TF Records

Dask

45

THANK YOU

46

