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Motivation

More Data Better Models Faster Hardware

The 3 components for better Deep Learning
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Motivation

More Data Better Models Faster Hardware

● Storage
● Processing
● Input to Training

● SOTA Models
● Transfer Learning
● Distillation
● Compression

● Scaling data 
processing

● GPU, TPU
● Multi GPU Server 

Training

The 3 components for better Deep Learning
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Motivation: Data Size

Challenges:
• Medium datasets will not all fit in memory (RAM)
• Large datasets will not fit in disk (Hard drive)

Solution:
• Building data pipelines

– Read data in batches which can fit in RAM
– Feed data in batches to GPU
– Read data from big data store in batches so not all data need to 

be present in local hard drive
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Motivation: Data Size

Tools:
• Dask
• Google Cloud Storage (Big data store)
• TensorFlow Data
• TensorFlow Records
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Need for building efficient pipelines

Why is training slow?
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Need for building efficient pipelines

Why is training slow?

GPU Starvation
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Need for building efficient pipelines

GPU Starvation:
• Most times data input to models take a long time
• Data process using CPU & RAM are the bottlenecks
• GPUs are expensive and not fully utilized
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Need for building efficient pipelines
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Need for building efficient pipelines
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Need for building efficient pipelines
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Need for building efficient pipelines

To build efficient pipelines we can use:
• TensorFlow Data
• TensorFlow Records
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Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Less than 2-4 GB
18



Consuming Data in Models
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Consuming Data in Models
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Consuming Data in Models

What do we do when our dataset size is greater than 5 GB?
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Consuming Data in Models

Source

csv files

Images

Text

Local disk
Cloud storage

Greater than 5 GB
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Consuming Data in Models
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Consuming Data in Models
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Consuming Data in Models

So we need a way to efficiently:
• Extract data from various data sources
• Transform data for pre-processing/ augmentation
• Load data ahead of training in GPU
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Consuming Data in Models

So we need a way to efficiently:
• Extract data from various data sources
• Transform data for pre-processing/ augmentation
• Load data ahead of training in GPU

TensorFlow Data to the rescue... 
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TensorFlow Data

What is TensorFlow Data:
• TensorFlow makes building data pipelines easy using tf.data
• Build flexible and efficient data pipelines
• Read data in batches
• Parallelize data reads using CPU
• Does not load all data to memory and streams data to model
• Streams data from either local file system or distributed file systems
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TensorFlow Data

What you do:
• Create a Dataset object
• Where to get the data
• How to transform it (Extract, process, augment)

tf.data takes care of:
• Multi threading
• Queuing
• Batching
• Prefetching
• Shuffling
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TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

Create Dataset
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TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

train_ds = train_ds.shuffle()

train_ds = train_ds.map(<pre-process-function>)

train_ds = train_ds.batch()

train_ds = train_ds.prefetch()

Processing logic
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TensorFlow Data

train_ds = tf.data.Dataset.from_tensor_slices(...)

All you need to do is:

train_ds = train_ds.shuffle()

train_ds = train_ds.map(<pre-process-function>)

train_ds = train_ds.batch()

train_ds = train_ds.prefetch()

model.fit(train_ds,...) Train
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TensorFlow Data

Extract

Read data:
● CSVs
● Images
● Text files
● Binary files
● SQL databases
● Google Big Query
● Local store
● Remote store

Transform

Prepare data:
● Clean
● Normalize
● Encode
● Embeddings
● Augment
● Shuffle
● Batch
● Repeat

Load

Pass data to Device:
● Training / Inference
● CPUs or GPUs or 

TPUs
● Parallelize
● Prefetch
● Cache

We can build data pipelines using a variety of operations 
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TensorFlow Data

So in summary tf.data will help you: 
• Work with large amounts of data
• Read from different data formats
• Perform complex transformations
• Build efficient data pipelines to reduce training time
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Consuming Data in Models

Source

csv files
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Text

Local disk
Cloud storage

Greater than 30 GB
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Consuming Data in Models
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Consuming Data in Models
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Consuming Data in Models
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TensorFlow Records

What are TensorFlow Records:
• TFRecord is TensorFlow’s format for large amount of data
• It is a binary format defined using protocol buffers (protobuf)
• Data is compressed and very efficient to read
• Use TFRecord when reading using tf.data is a bottleneck to 

training
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TensorFlow Records

Why use TFRecords:
• TFRecords is used to shard your data across multiple files
• Parallelize I/O reads across one or more training servers
• Each file size should be 10 MB to ideally > 100 MB
• For example if you have 30 GB of data and 8 training servers:

– Number of shards = 10 * 8 = 80
– Shard size = 30,000/(10*8) = 375MB
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TensorFlow Records
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TensorFlow Records
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TensorFlow Records

Creating TFRecords:
• TFRecords consists of files that are composed of a series of 

tf.Example messages
• tf.Example is a {"key": value} mapping where key is the feature 

name, and value is its binary representation
• For example to store image dataset, serialize all image attributes 

along with the label in a TFRecord file

{
     "image":   image.bytes(),
     "height":  image.height,
     "width":   image.width,
     "channel": image.channel,
     "label":   label
}

43



TensorFlow Records

Creating TFRecords:

{
     "image":   image.bytes(),
     "height":  image.height,
     "width":   image.width,
     "channel": image.channel,
     "label":   label
}

The image is stored as binary and not using any compression format. So files can 
be read linearly as a sequence of bytes without a need to decode images. This 
saves time to read but using more disk space.
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Putting it all together

Google / Bing

Data Collection

- Scrap mushroom images
- Organize / Save image

Data Cleaning

- Verify images 
- Check for duplicates
- Image Processing

Data Storage / Conversion

- Store in Cloud Store
- Convert to TF Records 

Model Training

Model Training

TF Data

TF Records

Dask
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THANK YOU
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