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Announcements

e Votel

* Submit your reading questions by Wed 10/28 noon on Ed.
* Exercise was due 10:15 am, next coming up today.

* Project Milestone 1-due 10/29 -10:15 AM
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Outline

Seq2seq with attention
Transformers

Bert
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Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?
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Sequence-to-Sequence (seq2seq)

It’s crazy that the entire “meaning” of the 15t
sequence is expected to be packed into this one
embedding, and that the encoder then never

interacts w/ the decoder again. Hands free. 41 ); * ?1' if
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Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a

distribution of all of the encoder’s hidden states?
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden layers!
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let’s base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden layers! We want to measure similarity between decoder
hidden state and encoder hidden stateS in some ways.
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden layers!

Attention (raw scores)
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden layers!

Attention (raw scores)
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seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s previous hidden state (our latest representation of meaning)
and all of the encoder’s hidden layers!

Attention (raw scores)
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seq2seq + Attention

D
1 [ ©000O We multiply each hidden layer by its

1 : :
50000)+[Co000)+[Cooo0)Hoooos) & attention weights and then add the
resulting vectors to create a context vector
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NOTE: each attention weight a{ is based on the decoder’s current hidden state, too.
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NOTE: each attention weight a{ is based on the decoder’s current hidden state, too.

Hidden layer

Input layer

seq2seq + Attention
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seq2seq + Attention

NOTE: each attention weight a{ is based on the decoder’s current hidden state, too.
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seq2seq + Attention

NOTE: each attention weight a{ is based on the decoder’s current hidden state, too.
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seq2seq + Attention
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https://arxiv.org/pdf/1409.0473.pdf

More reading

« Kalchbrenner and Blunsom (2013), Sutskever et. al (2014) and Cho. et. al (2014b)

* Bahdanau et. al (2015) https://arxiv.org/abs/1409.0473
seq2seq with bidirectional GRU encoder + attention, score is FFNN.

* Luong et. al (2015) https://arxiv.org/abs/1508.04025
Two-stacked LSTMs for the encoder and decoder, score experimented with
cosine and FFNN. Context vector and output goes through another FFNN.

* Google’s Neural Machine Translation (GNMT)
https://arxiv.org/pdf/1609.08144.pdf
8 LSTMs, where the first is bidirectional (whose outputs are concatenated), and

a residual connection exists between outputs from consecutive layers (starting

S B G the.3rd 1ayer). The decoder is a separate stack of 8 unidirectional LgTﬁﬁ



https://www.aclweb.org/anthology/D13-1176
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1609.08144.pdf
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Transformers

The Transformer is a model that uses attention to boost the speed with
which seq2seq with attention models can be trained. The biggest benefit,
however, comes from how The Transformer lends itself to parallelization.
We will break it apart and look at how it functions.
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The encoding is a stack of
encoders.

The original paper stacks
six of them on top of each
other - there’s nothing
magical about the number
six, one can definitely
experiment with other
arrangements).

The decoding is a stack of
decoders of the same
number.
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The encoder’s inputs goes through a
self-attention layer - a layer that
helps the encoder look at other words

in the input sentence as it encodes a
specific word.

The decoder has both those layers,
but between them is an attention
layer that helps the decoder focus on
relevant parts of the input sentence
(similar what attention does

in seq2seq models).
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https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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A key property of the Transformer, which
Is that the word in each position flows
through its own path in the encoder. There
are dependencies between these paths in
the self-attention layer.

The feed-forward layer does not have
those dependencies, Therefore, the
various paths can be executed in parallel
while flowing through the feed-forward
layer.

28



Podvict wes qol Cute Sev closs beccvse he (s o responaib(e skdent

What does “he” in this sentence
refer to? Is it referring to the
class or to the student? It’s a
simple question to a human,
but not as simple to an
algorithm.

When the model is processing
the word “he”, self-attention
allows it to associate “he” with
“Patrick”™.
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In the same fashion as CNN that we
need more than one filter,
transformers add a mechanism
called “multi-headed” attention. This
improves the performance of the
attention layer in two ways:

* |t expands the model’s ability to
focus on different positions.

* |t gives the attention layer multiple
“representation subspaces”
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As we encode the word ”’he’,
one attention head is
focusing most on ”Patrick”,
while another is focusing on
’student” -- Iin a sense, the
model's representation of
the word ’he" combines the
representations of both
“Patrick” and ”stduent”.
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Details in the architecture of the
encoder:

Each sub-layer in each encoder has a
residual connection around it

And a layer-normalization step.
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Transformer is stacked encoders and

decoders.
So far:
Positional encoding

Encoder
Self-attention
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encoder-decoder attention
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The Final Linear and Softmax Layer
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BERT

Bert stands for Bidirectional Encoder Representations from
Transformers. It’s google’s new techniques for NLP pre-
training language representation. Which means now machine
learning communities can use Bert models that have been
training already on a large number of words, for NLP models to
do a wide variety of tasks such as Question Answering tasks,

Named Entity Recognition (NER), and Classification like
sentiment analysis.
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In Bert paper, they present two
types of Bert models one is the Bert
Base and the other is Bert Large.
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What is the input of Bert?

The input of Bert is a special input start with
[CLS] token stand for classification. As in the
Transformers, Bert will take a sequence of
words (vector) as an input that keeps feed up

from the first encoder layer up to the last
layer in the stack. Each layer in the stack will
apply the self-attention method to the
sequence after that it will pass to the feed-
forward network to deliver the next encoder
layer.
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