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Executive Summary

Although the“big data” revolution first came to public prominence (circa 2010) in online enterprises like
Google, Amazon, and Facebook, it is now widely recognized as the initial phase of a watershed transformation
that modern society generally—and scientific and engineering research in particular—are in the process
of undergoing. Responding to this disruptive wave of change, over the past four years, the Big Data and
Exascale Computing (BDEC) project organized a series of five international workshops that aimed to explore
the ways in which the new forms data-centric discovery introduced by this revolution might be integrated with
the established, simulation-centric paradigm of the high-performance computing (HPC) community. These
BDEC workshops grew out of the prior efforts of the International Exascale Software Project (IESP)—a
collaboration of US, EU, and Japanese HPC communities that produced an influential roadmap for achieving
exascale computing early in the next decade. It also shared the IESP’s mission to foster the co-design of
shared software infrastructure for extreme-scale science that draws on international cooperation and supports
a broad spectrum of major research domains. However, as we argue in more detail in this report, subsequent
reflections on the content and discussions of the BDEC workshops make it evident that the rapid proliferation
of digital data generators, the unprecedented growth in the volume and diversity of the data they generate, and
the intense evolution of the methods for analyzing and using that data, are radically reshaping the landscape
of scientific computing.

At a time when science is, and needs to be, more international and interdisciplinary than ever, this
data-driven upheaval is exacerbating divisions, both recent and longstanding, in the cyberecosystem of
science; it is thereby raising a host of conceptual, political, economic, and cultural challenges to future
cooperation. The BDEC community’s sustained examination of these changes focused on the problems in
two different divisions in the ecosystem that the big data revolution has either produced or destabilized.

1. The split between the traditional HPC and high-end data analysis (HDA). The divide between
HPC and HDA software ecosystems emerged early this century when software infrastructure and tools
for data analytics that had been developed by online service providers were open sourced and picked
up by various scientific communities to solve their own data analysis challenges. Major technical
differences between the HPC and the HDA ecosystems include software development paradigms
and tools, virtualization and scheduling strategies, storage models (local vs. cloud/storage area
network), resource allocation policies, and strategies for redundancy and fault tolerance. These technical
differences, in turn, tend to render future cross-boundary collaboration and progress increasingly
problematic.

2. The split between stateless networks and stateful services provided by end systems. The division
between stateless datagram-delivery networks (e.g., the Internet) and stateful services provided by
network-attached end systems (e.g., supercomputers, laptops, sensors, mobile telephones) has been
fundamental to the cyberinfrastructure paradigm that proved remarkably successful for well over three
decades. However, the exponential growth in data volumes over the same period of time forced users
and service providers to repeatedly find new workarounds (e.g., FTP mirror sites, Web caches, Web
cache hierarchies, content delivery networks, commercial clouds) in order to manage the logistics
of ever larger data flows. Unfortunately, such workarounds seem to have reached their limits. The
most explosive growth in data generation today is taking place in “edge environments” (i.e., across
the network from both HPC and commercial cloud machine rooms). These new data sources include
major scientific instruments, experimental facilities, remote sensors (e.g., satellite imagery), and the
myriad of distributed sensors with which the plans for “smart cities” and the Internet of things (IoT)
are replete. The environment in which many of these data torrents originate lack the processing and
buffer/storage resources to manage the logistics of such immense flows, and yet the conventional
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strategy of back hauling all data across a fast link to the cloud or data center is no longer a viable
option for many applications. Hence, the intense commercial and research interest in “fog” or “edge”
computing infrastructure, which—in one way or another—is supposed to solve this fundamental
problem by combining processing, storage/buffering, and communication in a converged distributed
services platform (DSP) that can be deployed in edge environments.

Looking toward the future of cyberinfrastructure for science and engineering through the lens of these
two bifurcations made it clear to the BDEC community that, in the era of big data, the most critical problems
involve the logistics of wide-area, multistage workflows—the diverse patterns of when, where, and how data
is to be produced, transformed, shared, and analyzed. Consequently, the challenges involved in codesigning
software infrastructure for science have to be reframed to fully take account of the diversity of workflow
patterns that different application communities want to create. For the HPC community, all of the imposing
design and development issues of creating an exascale-capable software stack remain, but the supercomputers
that need this stack must now be viewed as the nodes (perhaps the most important nodes) in the very large
network of computing resources required to process and explore rivers of data flooding in from multiple
sources.

Against that background, we suggest that the prospects for integration of technological infrastructures
and research ecosystems need to be considered at three different levels—or from three different perspectives.
First, we discuss opportunities for convergence of research applications and workflows, where, despite
the impediments of the ongoing cyberecosystem Balkanization, progress toward a research paradigm that
combines both HPC and HDA is already being made. Such success with application-workflow communities
both orients and motivates efforts at the other two levels. Second, we offer an account of some of the problems
involved with creating a converged infrastructure for distributed edge, or “peripheral,” environments (i.e.,
shared infrastructure that can be deployed throughout the network in a scalable manner to meet the combined
data processing, communication, and buffer/storage requirements of massive data workflows). Third, we
focus on some opportunities for software ecosystem convergence in large, logically centralized facilities that
execute large-scale simulations and models and/or perform large-scale data analytics. Finally, we offer some
conclusions and recommendations for future investment and policy review. We briefly summarize each of
these parts of the report below.

Emerging Convergence in Large-Scale Scientific Applications. Despite the manifest challenges of a
converged cyberinfrastructure for multidisciplinary research, the scientific and engineering opportunities are
compelling. Many science communities are combining HPC and HDA applications and methods in large-scale
workflows that orchestrate simulations or incorporate them into the stages of large-scale analysis pipelines for
data generated by simulations, experiments, or observations. Communities that would benefit substantially
from application and workflow convergence are abundant, spanning all of science and engineering. To
provide intellectual context for an analysis of application-workflow level convergence, we describe a unified
model of the inference cycle for the process of scientific inquiry that locates“computational science” and
“data science” as different phases of that cycle. Next, to capture the complexity of application workflows,
which typically involve changing configurations of software, hardware, and data flows, we structure our
discussion around three computational archetypes that provide broader categories than specific traditional
formulations and that furnish a convenient grouping of collaborations by the “culture” of the users. We
illustrate these application workflows with exemplars that “follow the data.” In that context, we address
three modalities of data provenance: (1) data arriving from the edge (often in real time), never centralized;
(2) federated multi-source archived data; and (3) combinations of data stored from observational archives
with a dynamic simulation. These exemplars make it evident that understanding application workflows,
and especially application workflows that involve far-flung data sources, is pivotal for developing a new
application-level convergence paradigm that combines HDA and HPC.
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Challenges to Converged Infrastructure in Edge Environments. The proliferation of huge and het-
erogeneous flows of data generated outside of commercial clouds and HPC centers (i.e., across the wide
area network [WAN] in peripheral environments), as well as the need to distribute large datasets from such
centralized facilities to the edge, represents a highly disruptive development that makes the way forward in
many different areas of research uncertain. At the core of this uncertainty is the fact that the explosive growth
of digital data producers at the edge, or in the periphery, creates problems that are highly multidimensional.
Looking at the properties of the data flows being generated, they exhibit a range challenging characteristics,
including their volume, velocity, value, variety, variability, and veracity. The most general designation for
the field that must study and understand the problems that these data flows present is “data logistics” (i.e.,
the management of the time-sensitive positioning and encoding/layout of data relative to its intended users
and the computational resources that they can apply). But problems of data logistics affect not only wide
area workflows, but also workflows in the machine room. For example, whether you are talking about the
output of a major instrument or a large HPC simulation, some form of data reduction has to be applied locally
before any further data movement can be attempted. Hence, one can think of data logistics as defining a
continuum, with I/O issues inside the Internet data center (IDC) or supercomputing facility falling at one end,
and data-intensive workflows that begin at remote and/or distributed data sources—possibly scattered across
edge environments—falling at the other.

Creating a common, shared software infrastructure that can address the logistical challenges of application
workflows along this entire continuum is a critically important challenge for the scientific community in
the coming decade. We use DSP as a generic characterization of the infrastructure/ecosystem that the
community must develop in order to support such compute- and/or data-intensive workflows between the
ingress/egress of the IDC or HPC center and the network edge. We present two pieces of common context
for this discussion. First, we preserve continuity with the traditional TCP/IP + Unix/Linux paradigm by
reiterating the importance of the hourglass architecture, and the “spanning layer” at its waist, as the foundation
for ecosystem interoperability. Second, since these workflows are inherently stateful processes, it is clear that
an adequate DSP must be not only wide-area capable, but must also offer processing, memory/storage, and
communication as shareable resources. Satisfying these requirements in a common, open, and interoperable
way, which is essential for the broad science and engineering community but would also benefit society as
a whole, will be no mean feat. We conclude this section by briefly reviewing some of the strategies (e.g.,
stream processing, content delivery networks [CDNs], and edge computing) that are currently being deployed
to address different problem areas on the data-logistics continuum.

Pathways to Convergence for Large, Logically Centralized Facilities. Today, most scientific research
programs are striving to integrate both advanced computing and data analytics, and the drive to fuse these two
methodologies strongly motivates the integration of the associated software with hardware infrastructures and
ecosystems. However, this desired fusion raises a number of challenges: overcoming the differences in cul-
tures and tools; dealing with shifting workforce skills; adopting new infrastructure; ensuring the coexistence
of stream and batch models; computing at the edge; and implementing virtualization for sharing, resource
allocation, and efficiency. We have also identified two major cross-cutting challenges: energy sustainability
and data reduction. As far as architectures are concerned, radically improved resource management is
indispensable for next-generation workflows, and—in this context—containerization is a promising candidate
for the narrow waist, or spanning layer, of the hourglass model.

As the new era of big data and extreme-scale computing continues to develop, it seems clear that both
centralized systems (e.g., HPC centers and commercial cloud systems) and decentralized systems (e.g., any
of the alternative designs for edge/fog infrastructure) will share many common software challenges and
opportunities. Software libraries for common intermediate processing tasks need to be promoted, and a
complete software ecosystem for application development is needed. Finally, the divergence of programming
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models and languages poses a convergence issue—not only with regard to interoperability of the applications
but also to the interoperability between data formats from different programming languages.

Conclusions and Recommendations. Following the above structure of the document, we have divided
our findings and recommendations into three categories: (1) global recommendations, (2) recommendations
for edge environments, and (3) recommendations for centralized facilities. However, our ultimate goal is to
lay the ground work for the kind of community-driven “shaping strategy” [43, 44] that we believe would
be both more appropriate and more successful overall (Section 1.2). Consequently, the conclusions as they
appear below may have to be refactored to serve the shaping strategy model.

Our primary global recommendation would be to address the basic problem of the two paradigm splits:
the HPC/HDA software ecosystem split and the wide area data logistics split. For this to be achieved, new
standards are needed to govern the interoperability between the data paradigm and the compute paradigm.
These new standards should be based on a new common and open DSP that offers programmable access to
shared processing, storage, and communication resources and that can serve as a universal foundation for the
component interoperability that novel services and applications will require.

We make five recommendations for decentralized edge and peripheral ecosystems, listed below.

1. Converge on a new hourglass architecture for a common DSP.
2. Target workflow patterns for improved data logistics.
3. Design cloud stream processing capabilities for HPC.
4. Promote a scalable approach to content delivery/distribution networks.
5. Develop software libraries for common intermediate processing tasks.

We make five actionable conclusions for centralized facilities, listed below.

1. Energy is an overarching challenge for sustainability.
2. Data reduction is a fundamental pattern.
3. Radically improved resource management is required.
4. Both centralized and decentralized systems share many common software challenges and opportunities:

(a) leverage HPC math libraries for HDA;
(b) more efforts for numerical library standards;
(c) new standards for shared memory parallel processing; and
(d) interoperability between programming models and data formats.

5. Machine learning is becoming an important component of scientific workloads, and HPC architectures
must be adapted to accommodate this evolution.
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1 Introduction

This report, and the series of Big Data and Exascale Computing (BDEC) workshops that it summarizes, is part
of the response from the high-performance computing (HPC) community to two major inflection points in the
growth of scientific computing in the 21st century. The first marks the disruptive changes that flowed from the
end of Dennard Scaling, c. 2004 Dennard et al. [24], which gave rise to the era of multi-core, many-core, and
accelerator-based computing, as well as a variety of other complex and closely related problems of energy
optimization and software complexity. The second, occurring nearly simultaneously, was the relatively rapid
emergence (c. 2012) of “big data” and large-scale data analysis as voracious new consumers of computing
power and communication bandwidth for a wide range of critical scientific and engineering domains. Because
the BDEC community has its roots in traditional HPC, the marked difference in the ways in which this
community has struggled to absorb and adapt to these two watershed transitions, with varying degrees of
success, provides essential context that informs the reading of this report.

To those who witnessed previous transitions from vector and shared multiprocessor computing, the
response to the end of Dennard scaling was comparatively familiar and straightforward. Indeed, the dramatic
effects of the end of Dennard scaling on processor and system designs were very much on the mind of
the HPC leaders who gathered at the 2009 International Conference for High-Performance Computing,
Networking, Storage and Analysis (SC09) to form what would become the International Exascale Software
Project (IESP) [27]. Along with the European Exascale Software Initiative (EESI)1 and a parallel effort in
Japan, these grass roots exascale efforts were the progenitors of the BDEC.

Although the challenges that confronted the IESP’s vision of exascale computing were unquestionably
formidable—orders of magnitude more parallelism, unprecedented constraints on energy consumption,
heterogeneity in multiple dimensions, and resilience to faults occurring at far higher frequencies—they fit
within the problem space and the ethos that defined traditional HPC. Participants in that planning effort
worked successfully over the next three years to draft a technology roadmap leading to a common, high-quality
computational environment for exascale systems [5, 27]. What the HPC community did not adequately
anticipate was the eruption of interest in infrastructure and tools for doing large-scale data analysis in cloud
computing environments. In the United States, this fact was revealed in the surprise that accompanied the
Presidential strategic initiative [29, 30] that emphasized the importance of big data and HPC ecosystem
convergence. This has been echoed in recent EC/EU communications on the “European Data Infrastructure”
and the “European Open Science Cloud,”2 where HPC has been completely “absorbed” into a broader “digital
single market” and only appears as a component in this global system. In Japan, as well as in China, the latest
national roadmaps are focused on combining HPC with artificial intelligence (AI) that itself is tightly linked
to the big data revolution. The Japanese program provides for a 107.8 billion yen ($1 billion) commitment
over the next 10 years on inter-ministry AI-related research that encompasses big data, machine learning
and the Internet of things (IoT). In China’s 5-year plan for exascale systems, big-data analytics has been
considered as a major application category. As clearly stated in the requirements for their exascale pilot
systems, deep learning benchmarks are an important metric for evaluating the capability and efficiency of the
proposed new hardware architectures.

The rapid transition of the earlier IESP roadmap activities to the BDEC effort shows how quickly
the community recognized that high-end data analytics (HDA) and HPC needed to have equal status in
an integrated computing research and development agenda. However, although the BDEC effort aims to
expand the general mission of the IESP—to foster the co-design of software infrastructure for extreme-scale
science drawing on international cooperation and supporting a broad spectrum of major research domains—
subsequent experience has shown that adding the HDA dimension to the scientific computing problem space

1http://www.eesi-project.eu
2COM(2016) 178 of 19/4/2016 – European Cloud Initiative - Building a competitive data and knowledge economy in Europe

http://www.eesi-project.eu
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Figure 1: Different software ecosystems for HDA and traditional computational science. Credit: Reed and
Dongarra [66].

radically transforms it. As we argue below, it raises a host of conceptual, political, economic, and cultural
problems and places several of the existing paradigms and assumptions underlying traditional scientific
computing and computational science into question.

1.1 Disruptive Partitions in Two Current Paradigms

The BDEC community’s sustained examination of the changes wrought by the ongoing big data revolution
has revealed at least two different—and somewhat orthogonal—ways that the cyberinfrastructure on which
science and engineering communities depend is becoming—or has long been—bifurcated. One of these
splits—between the traditional HPC approach and strategies that leverage or model commercial cloud
computing—emerged early this century as an unexpected byproduct of the explosive growth of data associated
with online commerce and social media. The second split—between stateless datagram–delivery networks
(e.g., the Internet) and stateful services provided by network-attached end systems (e.g., supercomputers,
laptops, sensors, mobile telephones)—is fundamental to the cyberinfrastructure paradigm that has been in use
for well over three decades. Unfortunately, as we explain below, the big data revolution has also rendered
an entrenched bipartite cyberinfrastructure paradigm that is highly problematic. As reflected in the analysis
below, we believe that any planning for cyberinfrastructure convergence today has to take into account the
partitioning of both types.

1.1.1 First Partition: Recent Split in Software Ecosystems

The first split came to the attention of the BDEC community early in the process. The “two software
ecosystems” diagram (Figure 1), which was introduced at the second BDEC workshop, quickly became
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emblematic of the ongoing bifurcation of the software ecosystems that were being deployed for data analytics
and scientific computing. The computational science ecosystem developed and flourished over the course of
roughly four decades (primarily) to increase the capabilities of scientists to model and simulate (i.e., to enable
scientists and engineers to project, in more detail, the consequences of theories that had been—or could
be—expressed mathematically). Meanwhile, the rapid growth of the data analytics ecosystem has occurred
largely during the last fifteen years. For the most part, however, it is not being developed by the scientific
computing community to explore the rising flood of data from new instruments and sensor systems, but
rather by an equally thriving group of academic and commercial software developers to process the torrents
of business, industrial processes, and social network data now being generated by consumer devices and
the burgeoning IoT. The pace of change in the data analytics ecosystem is extraordinary, already rendering
obsolete some of the elements in the figure above.

Thus, at least some of the major differences between the HPC and the HDA ecosystems—software devel-
opment paradigms and tools, virtualization and scheduling strategies, storage models (local vs. cloud/storage
area network [SAN]), resource allocation policies, strategies for redundancy, and fault tolerance—can be
accounted for by the fact that each evolved during a distinctly different phase of the ongoing digital revolution,
driven by distinctly different optimization criteria.3 For example, it can be reasonably argued that scientific
“big data” has existed for more than a decade, but that it remained essentially “dark” (i.e., unavailable for
analysis) until commercial cloud technology and content distribution networks began to provide broader
access to the computing power and data logistics needed by the communities who wanted to analyze it.4 By
contrast, the HPC infrastructure model—a system of regional and national supercomputing centers connected
together by high-performance research networks—was already fully mature at the beginning of the century
and serving the needs of the modeling and simulation-centered parts of the scientific community relatively
well.

But even the ultimate convergence of the HPC and HDA ecosystems, could it be achieved, would not
help with the ongoing breakdown of the other, more basic paradigm—namely, the one in which networks
only forward datagrams, while all other storage and computation is performed outside the network.

The problem is that much, if not most, of the explosive growth in data generation today is taking place in
“edge environments” (i.e., outside of—and across the network from—both HPC data centers and commercial
cloud machine rooms [Figure 2]). This includes not only major scientific instruments, experimental facilities,
and remote sensors (e.g., satellite imagery), but even more importantly, the incredible welter of digital data
generators with which the plans for “smart cities” and the IoT [41] are replete. For example, a recent National
Science Foundation (NSF) workshop on the future of wireless networking concluded that the ubiquitous
deployment of sensor technologies that are a standard element in such plans will “. . . generate massive data
inflows [that produce] as much if not more data and network traffic than the World Wide Web,” and will
therefore “. . . reverse current loads, where most data is produced in the cloud and consumed at the edge.” [8]
Likewise, the authors of the 2017 European Network on High Performance and Embedded Architecture and
Compilation (HiPEAC) report concluded that “. . . to stem the flood of data from the Internet of things, we must
employ intelligent local data processing on remote devices that use minimal energy. . . . This may well require
us to break away from the traditional von Neumann architecture and to rethink device technology.” [28]

3The system and application software of the original dot.com revolution had much in common with contemporary HPC
infrastructure. That is far less true today.

4One early exception was data from the Large Hadron Collider experiments in CERN; the global high-energy physics community
had both the organization and the clout to command sufficient government funding to support a content distribution network and
distributed computing infrastructure, purpose built to meet their needs. Astronomy and astrophysics is another example. The
International Virtual Observatory Alliance (IVOA) provides a good example of an international organization that nurtured Web-
services standards; data representation standards like the Flexible Image Transport System (FITS); and other standards for accessing
astronomic data, exchanging data between virtual observatories, tools to communicate, and analysis software. The result is that
90% of the world’s astronomy data is reachable, and real science can be done by using the tools and software that are being built all
around the world. The same is true for seismology with the international Federated Digital Seismic Network (FDSN) organisation.
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Figure 2: Current problem of data logistics: The highest concentrations of computing power and storage are
in the “center” (i.e., in commercial clouds or HPC Centers), but much of the rapid increase in data volumes
and the dramatic proliferation of data generators is occurring in edge environments, where the processing and
storage infrastructure needed to cope with this rising flood of data is ad hoc and under provisioned at best.

Thus, this remarkable reversal of direction of the data tide, which turns the familiar “last mile problem”
into a multidimensional “first mile problem,” represents a challenge for which neither cloud-based HDA
nor center-based HPC have a solution. In fact, explosive growth in data generation in edge environments
seems to clearly indicate that revolutionary innovation in distributed computing systems is becoming an
increasingly urgent requirement [17, 21, 37, 62]. As argued below, we believe this represents the breakdown
of the bipartite cyberinfrastructure paradigm that has been dominant for nearly three decades, making the
problem of convergence substantially more complex and momentous.

1.1.2 Second Partition: Inherent Split in the Legacy Paradigm

Some historical perspective is required to understand the other “divergence” or paradigm breakdown that
the proliferation of data generators seems to be causing. If one were to try to mark the year in which the
two parts of the dominant research cyberinfrastruture paradigm of the last twenty-five years—TCP/IP and
Unix/Linux–were first fused together, 1989 would make a very plausible candidate. In June of that year, the
Berkeley Software Distribution (BSD) of Unix, including a Defense Advanced Research Projects Agency
(DARPA)-approved version of the TCP/IP protocol stack, was made freely available under an open-source
license. Their combination in that form was especially well received by the research community:

As the Internet evolved, one of the major challenges was how to propagate the changes to the
software, particularly the host software.. . . [T]he incorporation of TCP/IP into the Unix BSD
system releases proved to be a critical element in dispersion of the protocols to the research
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community. Much of the [computer science] research community began to use Unix BSD for
their day-to-day computing environment. Looking back, the strategy of incorporating Internet
protocols into a supported operating system for the research community was one of the key
elements in the successful widespread adoption of the Internet. [54]

Although TCP/IP and Unix/Linux became complementary parts of one integrated package, they supported
two different software ecosystems for two separate but complementary infrastructures. The former laid
the software foundation for a globally scalable data network that offered one fundamental service: unicast
datagram delivery to move/copy data from one location (buffer/host/end system) to another. The latter,
by contrast, was designed to provide an application interface to end systems of all kinds, ranging from
personal computers to “middle boxes” to supercomputers; its purpose was to enable applications and services
that required the full complement of basic resources—processing power, storage, and networking. But to
understand our current dilemma, we should recognize at least three additional factors that helped foster the
rapid spread of this composite paradigm through the global research community.

1. Both components were open source, public domain, and designed to support broad experimen-
tation and rapid evolution. The TCP/IP-Unix/Linux platform was introduced when the highly
competitive (not to say ferocious) battles between different proprietary computing strategies (e.g.,
mainframe, minicomputer, PC), desktop operating systems (e.g., MS-DOS, Windows, OS2, macOS),
and local area networking technologies (e.g., Novell, Apple, DECnet, Systems Network Architec-
ture [SNA]) were still ongoing. Avoiding high costs, loss of control of one’s own tools, barriers to
collaboration, and other perils of “vendor lock in” made the open source and public domain character
of this new paradigm especially attractive. At the same time, as we discuss in Section 3.1, both
halves of the dominant paradigm were designed in a way that facilitated freedom of innovation and
speedy growth, making it especially well suited to the inclinations and the aptitudes of the science and
engineering communities.

2. Each component embodies a different model of resource sharing. Finding ways to share com-
putational resources has long been a fundamental part of the cyberinfrastructure problem, and time
sharing operating systems and digital data networking have long been essential parts of the solution.
But the two parts of the dominant paradigm under discussion support resource sharing in different
ways and with different consequences for their overall design [9]. In the context of large, shared
systems, Unix/Linux was designed to allow the sharing of valuable processor, storage, and other system
resources with authentication and access controls that created a secure environment supporting free
sharing of most resources. Enforcement of storage quotas in Unix was a later adaption necessary
in more highly shared/public data center environments, and CPU metering and rationing has been
implemented in specialized high-value supercomputing systems. By contrast, the TCP/IP was designed
to facilitate communications among an enormous variety of devices used by a global community of
indefinite size. With maximum deployment scalability as its goal, it shares available bandwidth in
limited lightweight allocations that are easy to access and that typically lack significant admission or
accounting controls. The incredible power of this model of resource sharing, especially in terms of its
network effects, is manifest.

3. Each component has a different approach to state management. Perhaps the most significant
asymmetry between the components of the dominant paradigm lies in the different ways that they
handle process state. The Internet is based on a stateless (or virtually stateless) datagram delivery model,
where the intermediate nodes of the network are stateless packet switches [22]. By contrast, the end
systems that attach to the Internet, ranging from smart phones to supercomputers, are typically general
purpose computing devices that regularly have to manage a great deal of computational or process
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Figure 3: Evolution of the network to deal with growth in data volumes and rapid fluctuations in their
popularity. The need to be able to use storage and computation at intermediate nodes (e.g., for asynchronous
point-to-multipoint transfer) stimulated the development of content delivery networks (CDNs) and clouds
with proprietary networks and server replication using standard IP to reach clients at the network edge. Credit:
Beck et al. [12]

states, and a wide range of mechanisms have been implemented to serve that purpose; these end points
manage all the state information required to use the network. The Internet community has traditionally
held this design, which keeps the core of the network simple and passive by keeping services other
than datagram delivery (e.g., a storage service for caching and prefetching) out of network layer of
the TCP/IP stack. This design has been essential to the remarkable scalability that the Internet has
demonstrated. And so long as applications and services could be factored into two phases—using the
datagram service to move data between end systems and then applying end system resources to achieve
complex application or service goals—this symbiotic union of stateless and stateful systems was able
to support an immense range of applications.

But problems with this bipartite paradigm, especially with respect to distributed state management in the
wide area, have been both evident and growing for more than 25 years. In particular, lacking any general
ability to do state management at its intermediate nodes (e.g., lacking native asynchronous point-to-multipoint
capabilities), the Internet has long been plagued by bottlenecks or “hotspots for high-volume and/or high-
popularity data traffic. Since data volumes have been growing at exponential rates over the same period, users
and providers have been forced to search for new workaround strategies on a recurring basis. Indeed, the
Internet community has seen an evolving series of such workarounds, from collateral storage services in the
90s (e.g., FTP mirror sites, Web caches, and hierarchical Web caches) to full blown server replication in
CDN and commercial cloud infrastructure beginning in this century (Figure 3). Todays CDNs and clouds
have more or less followed this path to its logical conclusion, using private or non-scalable mechanisms
to implement internal communications among logically centralized, but physically distributed, nodes or
machine rooms while using the Internet to implement selected parts of this scheme and to provide for end-user
access. Similarly, major HPC application communities have long since moved their high-volume traffic to
non-TCP-friendly data transfer methods using dedicated bandwidth on over-provisioned research networks.

Unfortunately, we have entered an era—the era of big data—when such workaround strategies seem to
have reached their limits. The cause of this exhaustion, as we argue above, is the unprecedented explosion
in data generation in edge environments. The burgeoning torrents of data that are flowing from highly
diverse and widely distributed sources originate in environments which, for the most part, lack the capacity
to process or manage the logistics of such immense flows. Whether because of sheer volume and flow rate,
or because of application-specific latency issues, the conventional strategy of back hauling all data across
a fast link to a cloud service provider or an HPC data center (Figure 9) is no longer a viable option for
many applications. Hence, there is intense commercial and research interest in “fog” and “edge” computing
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infrastructures [10, 16, 49, 68, 72]. For perhaps obvious reasons, which we explicate in part in Section 3, we
view the creation of a future-defining distributed services platform that meets the fundamental requirements
of the scientific community to be—at best—a difficult problem full of unknowns and fraught with economic
and political obstacles. More immediately, this assessment has influenced the structure of this report, as we
describe next in our document overview.

1.2 Pathways Overview: Prospects for Convergence at Three Different Levels

As noted at the outset of this report, the transition from the IESP to the BDEC project forced a radical
shift in perspective on the part of HPC community participants. In contrast to the “big machine” focus
of traditional HPC, the center stage in the era of big data has to be given to the many unsolved problems
surrounding wide-area, multistage workflows—the diverse patterns of when, where, and how all that data is
to be produced, transformed, shared, and analyzed. Consequently, the challenges involved in codesigning
software infrastructure for science have to be reframed to fully take account of the diversity of workflow
patterns that different communities want to create. All of the imposing design and development issues
associated with creating an exascale-capable software stack remain; however, the supercomputers that need
this stack must now be viewed as the nodes (perhaps the most important nodes) in the very large network of
computing resources required to process and explore gigantic rivers of data.

As discussed above, the dominant cyberinfrastructure paradigm that has been the foundation of such
workflows for decades is now eroding—if not collapsing—under the onslaught of this growing data deluge.
Unfortunately, this fact requires the BDEC community to find a new way to express its results. IESP
participants were able to successfully produce an influential technology roadmap [27] for creating a software
stack to support science applications on extreme-scale platforms. However, the IESP had the advantage of
targeting a shared goal that was different in scale, but not different in kind, from less extreme goals that had
been achieved before. For BDEC, the shared goal is not so clear. Arguably, the main cyberinfrastructure
challenge of the big data era is to adapt or replace the legacy paradigm with a new type of distributed services
platform (DSP)—one that combines computing, communication, and buffer/storage resources in a data
processing network that is far more integrated than anything hitherto available. But since there is no widely
agreed upon model for this platform, traditional technology road mapping techniques seem to be inapplicable.

Instead, we suggest that the development of a community-driven “shaping strategy” [43, 44] would be a
far more appropriate goal to pursue. A shaping strategy is a plan for changing the infrastructure/ecosystem
of a market, industry, or community by proposing a well-defined concept of a technical platform that can
support many kinds of applications or enterprises, and combining that platform with an inspiring vision of the
mutually beneficial future that could be created through its widespread adoption and use. By offering a range
of possible incentives to all the stakeholders who would benefit from such convergence, shaping strategies
seek to coordinate and direct the creativity and energy of participants who might build on this platform in a
way that leverages network effects and produces positive externalities. Shaping strategies are thought to be
especially appropriate when the absence or breakdown of an established infrastructure/ecosystem paradigm
has disrupted or unsettled some large field of endeavor. With the era of big data, this is precisely the situation
that the scientific community now confronts.

Against that background, the reflections of BDEC participants over the course of successive workshops
have suggested that the prospects for integration of technological infrastructures and research ecosystems
needs to be considered at three different levels, or from three different perspectives. The three major sections
of this document, in turn, focus on one of these levels, as listed below.

1. Opportunities for convergence of research applications and workflows (Section 2): We begin at
the level of applications and workflows (i.e., composite applications) for two reasons. First, operating
on the general principle that the goal of any infrastructure is to serve its users, it seems appropriate to
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begin by examining the forms of inquiry, new and old, that a converged infrastructure for research is
supposed to support. Second, pushing back against the popular idea that HDA represents a distinctly
new paradigm of scientific methodology, we argue that HDA actually represents the computerization
of two phases of the classic model of the scientific method, which had heretofore been far less digitally
empowered. Accordingly, we offer examples in which HPC and HDA applications are being composed
in workflows that embody the entire inference cycle of scientific inquiry.

2. Issues in the creation of a converged infrastructure for large-scale, logically decentralized facili-
ties (Section 3): This section offers one account of some problems associated with creating a converged
infrastructure for distributed edge environments, one which can be deployed—in a scalable manner—to
meet the data processing, communication, and storage requirements of massive data workflows in the
wide area. Developing such a “next-generation Internet” for the big data era in science and engineering
is fraught with challenges in various dimensions. There is, however, a great deal of excitement and
activity in this part of the infrastructure convergence space under the heading of “fog” and/or “edge”
computing, but there are also very high levels of uncertainty. Consequently, although we survey and
discuss some of the prominent ideas and strategies, our review is by no means exhaustive.

3. Opportunities for convergence of infrastructures of large, logically centralized, resource-rich
facilities (Section 4): The third major section of this report focuses on major facilities that execute
large-scale simulations and models or that perform large-scale data analytics. We refer to such systems
as “logically centralized” because, whether or not they are actually physically distributed, they present
themselves as being under the control of a single administrative domain, and users are required
to interact with them in that form. Such facilities are already supporting some of the converged
applications and workflows previously discussed, and some convergence at this level can and is already
occurring.

Drawing on discussions at the BDEC workshops5, we begin each of the major sections by suggesting some
points of plausible consensus that are intended to provide common context for cyberinfrastructure planning,
especially for the development of a community-driven shaping strategy. These points of convergent opinion
include an integrated conception of the general process of scientific inquiry, the overarching issue of energy
efficiency as critical for sustainability, the new importance of questions of “data logistics,” and prevalence
of the “hourglass” model as a paradigm of good infrastructure/ecosystem design. We have assigned these
assumed pieces of common context to the major sections that seemed most appropriate, but admittedly some
are of a general nature and certainly apply in other sections as well.

Since the idea developing a community-driven shaping strategy for a new DSP for science was arrived
at late in the BDEC reporting process, we do not describe even a strawman version of such a plan here.
Nonetheless, we believe that the various observations, arguments, and conclusions we record in what follows
should feed directly into the dedicated community effort that will be required to develop such a plan.
For example, the argument for focusing on the careful design of the “spanning layer” at the waist of the
hourglass model (Section 3.1) dovetails perfectly with the need to define an attractive “shaping platform”
that many stakeholder communities will build on and use, and such a platform definition is one of the
primary constituents of a successful shaping strategy. Likewise, we believe that analyzing and building on the
application-workflow exemplars of the kind we describe and classify in Sections 2.2 and 2.3 is an essential
step in developing the “shaping view” that successful strategies must have in order to incentivize participation
and motivate adopters and users. Accordingly, as we note in Section 5, we offer our final conclusions and
recommendations with the intention of preparing the groundwork for a new community effort to develop the
kind of shaping strategy for future cyberinfrastructure that the scientific community must have in order to
thrive in the ongoing data revolution.

5Please see Appendix A for a list and descriptions.
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2 Emerging Convergence in Large Scale Scientific Applications

Despite the manifest challenges of a converged cyberinfrastructure for multidisciplinary research, the scientific
and engineering opportunities are compelling. Many science communities are driven by a combination of
computing tasks and managing large-scale data volumes resulting from data flows that range from continuous
to sporadic. The associated computations may come from large-scale workflows that orchestrate simulations
or from different stages of large-scale analysis pipelines for data generated by simulations, experiments, or
observations, including the transitions between these stages and provenance tracking. Communities that
would benefit substantially from application and workflow convergence are abundant, spanning all of science
and engineering. Examples include: (1) multi-scale materials science; (2) integrative environmental modeling
and analysis; (3) astronomy and cosmology; (4) aerospace; (5) autonomous vehicles; (6) weather and climate
prediction; (7) smart cities; (8) health and biomedicine; and (9) exploration geophysics and seismology.
Several of these application communities are highlighted below in our examples of convergence.

It is important to note that when we talk about “applications” and “workflows” in this context, we are not
talking merely about isolated software tools or application codes but rather about complex (and changing)
configurations of software, hardware, and data flows that support long-running science and engineering
campaigns and research practices. For this reason, we prefer to structure the discussion below around three
computational archetypes that provide broader categories than specific traditional formulations (e.g., partial
differential equations [PDEs], principal component analysis [PCA]) or approaches (e.g., implicit method,
randomized singular value decomposition [SVD]). These three archetypes will instead furnish a convenient
grouping of collaborations by the users’ “culture.”

To provide the intellectual context for this analysis of application-workflow level convergence, we begin
by describing a unified model of an inference cycle for the process of scientific inquiry, pushing back against
the popular idea that computational science and data science represent disparate paradigms in the search
for new knowledge (Section 2.1). After presenting the rationale for our division of application-workflow
archetypes, we illustrate them with exemplars that follow the data, since it is the data that carry the costs
(time, energy, human labor needed to produce and manage the data). We address three modalities of data
provenance: (1) data arriving from the edge (often in real time), never centralized; (2) federated multi-source
archived data; and (3) combinations of data stored from observational archives with a dynamic simulation.
These exemplars make it evident that the concept of workflows has become pivotal for understanding the
convergence paradigm between data and simulation. Notably, however, we leave out of this account—but
discuss later (Section 3)—many issues surrounding the data logistics infrastructure that would, and will be,
needed to support our exemplar workflows.

2.1 Common Context: A Shared Model of Scientific Inquiry for Infrastructure Planning

One notable objection to pursuing software infrastructure convergence for the scientific community draws on
the idea that, along with traditional forms of experiment and theory, the emergence of digital information
technology and the explosive growth in computing power have combined to produce two distinctly new
paradigms of how science can be done: (1) modern computational science and (2) data-intensive science.
Commenting on the latter, Turing award winner Jim Gray, who apparently originated this way of narrating
the transformation of science in the digital age, asserted that, “The techniques and technologies for such data-
intensive science are so different that it is worth distinguishing data-intensive science from computational
science as a new, fourth paradigm for scientific exploration.” [47] Sorting sciences into these different
methodological boxes has become conventional wisdom in the HPC community, and this supposition, in
turn, makes it plausible to argue that the HPC and HDA software ecosystems have separated because each is
adapted to the peculiarities of a very different paradigm of scientific research. If this were true, it would seem
to put a significant obstacle in the path of software ecosystem convergence.
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Figure 4: The inference cycle for the process of scientific inquiry. The three distinct forms of inference
(abduction, deduction, induction) facilitate an all-encompassing vision, enabling HPC and HDA to converge
in a rational and structured manner.

A recent white paper from the Computing Community Consortium addressed this question, presenting a
generic account of the “scientific process” that accommodates a more unified point of view [48]. Following
that suggestion, and for the moment leaving aside some important socio-economic aspects of the problem,
Figure 4 presents a simplified version of the key logical elements of that model.6 It expresses the classic view
that the scientific method is a complex inferential process that seeks to improve our predictive understanding
of nature by building on a foundation of thorough and carefully controlled observation. The three distinct
forms of inference it identifies, (1) abduction (i.e., guessing at an explanation), (2) deduction (i.e., deter-
mining necessary consequences of a set of propositions), and (3) induction (i.e., making a sampling-based
generalization), are the chief elements in the “logic of discovery” first articulated by American scientist and
polymath Charles S. Peirce [13].

Likewise, In a more contemporary treatment of the same topic, Richard Feynman’s account of the logic
of discovery for physical laws can be summarized as having essentially the same three steps or stages [33].

1. We guess at a law that would explain what is currently inexplicable.
2. We derive the consequences of the law that we guessed.
3. We make further observations to see if the consequences predicted match the reality we find.7

6Adapted from illustration in Abduction and Induction: Essays on their relation and integration [34].
7Summarized version of Feynman’s account provided by Victor Baker in “The pragmatic roots of American Quaternary geology
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On this analysis, all three steps taken in combination are required to increase our predictive understanding of
the world (i.e., to really make our knowledge grow).

Now, if we accept this model as a plausible hypothesis, then we can draw at least two conclusions that are
directly relevant to the problem of cyberinfrastructure convergence. First, by viewing the transformation of
science in the era of digital computing through the lens of this model, we can see that there is an alternative
way to account for these changes—one that does not require us to posit substantially new paradigms of
scientific inquiry. Namely, rather than forking new methodological branches, one can explain the more
rapid emergence of computational science, and the slower and later emergence of data-intensive science, by
examining the factors that made it possible to apply vast amounts of computing power to the deductive stage
of the inference cycle far earlier than to the abductive and inductive stages.

As conventionally defined, computational science primarily covers the deductive part of the inferential
process: computer-based simulation and modeling shows what a given theory, expressed mathematically,
predicts for a given set of input data. This could equally be viewed as mapping complex models to data.
By the middle of the twentieth century, when the power of microprocessors began to follow their amazing
exponential arc upward, many physical sciences already had well established mathematical models of their
target phenomena but had access to only enough computing power to solve them for relatively small problems
and/or for cases where inherent uncertainties were not take into account. The impact of Moore’s law was,
therefore, immediate and explosive.

By contrast, the gathering and analysis of observational data have always been the focus of the abductive
and inductive stages of scientific inquiry. Whether data are being explored to discover novel patterns or
anomalies that might initiate new inquiry or being carefully examined for some predicted phenomena that
would test (i.e., further confirm or potentially falsify) some well-formulated theory, data analysis strives to
put the reasoning of scientists and engineers into relatively direct contact with the realities they are trying
understand. When the data are digital, such analyses obviously require computational power. But in a mirror
image to the HPC situation, so long as the data volumes remained tractable, concerns about the amount of
computational power required to do the necessary data analysis could be sidelined: either a small cluster
could be used to analyze data where it was collected (e.g., at the site of the instrument), or, when necessary,
the raw data could be transferred via a high-performance network to a supercomputing center for analysis.

Of course, since the turn of the century, these flows have become progressively more intractable, as
remarkable improvements in sensor technology and other data gathering capabilities produce exponential
growth in research data flows. This data deluge was spotted on the horizon early in the first decade [46], with
projects like the Large Hadron Collider serving as a harbinger of unprecedented increases in data rates across
a wide variety of fields. Yet despite the burgeoning quantities of data that needed to be processed, the big data
revolution was not really launched until the end of the decade, when the explosion of consumer/customer
usage being collected and utilized by online companies (e.g., Google, Amazon, Facebook) motivated the
build out of massive, private, cloud computing infrastructures to store and process it all.

As we discuss in more detail below (Sections 4 and 3.2), this proliferation of distributed data sources
means that scientific cyberinfrastructure design must focus as never before on issues of workflow and data
logistics, thereby covering the full path of data use from its collection to its use as a decision-making
aid. Moreover, this focus is required in no small part by the new efforts, in line with the cycle of inquiry
illustrated in Figure 4, to synthesize elements of HPC and HDA in new application-workflow hybrids. In
short, the concept of a scientific application, familiar from the heyday of traditional computational science, is
being gradually redefined. To set the stage for our application “exemplars,” we first briefly discuss the new
perspective on application workflows that is now emerging.

and geomorphology” [7].
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2.2 Classification of Application-Workflow Archetypes

A good first step in understanding any new area typically consists of working out some rough classification of
the different types of objects that make it up. It is no surprise, then, that every BDEC meeting has dedicated
substantial amounts of effort to categorize the various data-intensive, compute-intensive, and hybridized
applications and application workflows. Viewed from a relatively traditional standpoint, the categories or
classes most frequently discussed included simulations, database and data management problems, scientific
data analysis, and commercial data analytics. The last three have many examples in the National Institute of
Standards and Technology’s (NIST’s) collection of 51 big data use cases,8 and simulations are illustrated in
many HPC benchmarks (e.g., the NASA Advanced Supercomputing [NAS] Parallel Benchmarks) and the
Berkeley Dwarfs. The ways in which such applications are driving new software infrastructure developments
was a frequent point of interest. For example, we noted that MapReduce was originally introduced to
parallelize basic database operations as seen in Apache Hive, but Andrew Ng from Stanford9 observed
that many machine learning algorithms exhibited the “summation form” and could be parallelized with
MapReduce. It was later noted that this could be optimized with so-called Iterative MapReduce—a model
supported by Apache Spark and Flink.

One BDEC white paper by Fox et al. [36] noted that the comparison of simulation and big data problems
can be made more precise by distinguishing data and models for each use case and carefully making model-
to-model and data-to-data comparisons and not confusing them. This paper introduced a common set of 64
properties or facets, divided into four views, that could be used to characterize and compare use cases within
all the application classes defined above. As an example, the first “problem architecture” view includes four
very common facets describing the synchronization structure of a parallel job: (1) pleasingly parallel, (2)
MapReduce, (3) Iterative MapCollective, and (4) Map Point-to-Point. Another important problem architecture
facet is “Map Streaming,” seen in recent approaches to processing real-time data. Other well known facets in
this view are single program, multiple data (SPMD) and bulk-synchronous processing. An execution view
includes relevant facets like model size, variety, data volume, velocity, and veracity. The third data view
includes storage and access models and relevant information on IoT, Geospatial Information Systems (GIS),
and need for provenance. The final processing view includes algorithm characterizations like optimization,
alignment, N-body method, spectral method etc. One can look at use cases, assign facets, and use this
information to understand commonalities and differences and how this is reflected in the hardware and
software.

Complicating this algorithmic perspective of the classification problem is the fact that—from a strictly
data/workflow point of view—data analysis is usually an iterative process. The model is often unknown
beforehand, since principled statistical model selection is not solved in a general setting. Moreover, data
must be interactively understood, and often “debugged”—that is, we need to find anomalies in the data and
detect wrong assumptions on the data. In this context, schemes of distributed computing are evolving, but
users often do not rely on distributed computing, hence the data analysis operations are not expressed in a
language that renders distributed computing suitable.Typical code is a succession of operations written in an
imperative way. Here, it is useful to think of the computing as a dataflow graph, since access to data (and
related bandwidth) can often be a bottleneck.

Three dataflow schemes are often encountered:

1. Extract, transform, and load (ETL): pipelines that apply transformations known beforehand, often
encountered in data-input pre-processing. This is already done in distributed environments (e.g.,with
Hadoop). It can lead to data-parallel pipelines.

2. Database-centric distributed computing, as with Spark: heavily out-of-core, simple operations. Opera-

8 http://dsc.soic.indiana.edu/publications/NISTUseCase.pdf
9http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/

http://dsc.soic.indiana.edu/publications/NISTUseCase.pdf
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
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Figure 5: A functional magnetic resonance imaging (MRI) analysis pipeline with cross-validation schemes.
Regions of interest (ROIs) are deduced from predefined (Harvard-Oxford, Yeo) or data-driven atlases (K-
means, ICA, MDSL) and result in dimension reduction. Extracted time series are fed into a correlation matrix
estimator that finally feeds into the classifer that distinguishes between Autism Spectrum Disorder (ASD)
and Typical Controls (TC). Credit: Abraham et al. [1].

tions are then specified in a data-oriented language, often not imperative, such as the Structured Query
Language (SQL) or Scala. Such a language requires more training to perform complex processing
pipelines.

3. Machine-learning on streams: stochastic gradient descent, as in deep learning. Here, distributing the
model fit needs to be tackled with a different paradigm. However, applications often require fitting
many models independently, which is embarrassingly parallel.

A typical dataflow is illustrated in Figure 5, where several hundred gigabytes of data from the Autism
Brain Imaging Data Exchange are treated and analyzed to extract the most predictive biomarkers. It should
be noted that I/O is critical in this pipeline, and data reduction dominates the computational costs. The
results obtained in Abraham et al. [1] required two months of computation on a high-end cluster with a
dedicated, local network attached storage housing the data. Obviously, this does not scale, and the need for
more efficient data communication and reduction, as well as convergence with an HPC environment, are
clearly needed here.

Although it is somewhat natural to try to classify applications either (most commonly) on the basis of the
algorithms they share or (more rarely) on the basis of the workflow patterns in which they are embedded, the
fact that motivations abound for converging large-scale simulation and big-data workflows that are executed
largely independently today, suggests that we should try to classify application workflows that represent the
combination or interaction of these two dimensions. The interaction matrix shown in Table 1 describes some
benefits that are immediately available to each paradigm and includes the rise of machine learning. For this
purpose, we distinguish workflows that are independent of the data and are throughput-oriented from those
that are learning-oriented and transform themselves by means of the data. Lumping together many varieties
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of batch-oriented scientific simulations, we therefore consider three types of workflows—each of has its own
niche of applications, its own software stack, and its own user community.

To large-scale
simulation

To data analytics
To machine

learning

Simulation provides: —
Physics-based

“regularization”

Data for training,
augmenting

real-world data

Analytics provides:

Steering in
high-dimensional
parameter space;
in-situ processing

—
Feature vectors for

training

Learning provides:

Smart data
compression;

replacement of
models with

learned functions

Imputation of
missing data;
detection and
classification

—

Table 1: A 3×3 matrix showing beneficial interactions in the six off-diagonal locations between large-scale
simulation, data analytics, and machine learning.

As indicated in the first column of the matrix, to take advantage of advances in analytics and learning,
large-scale simulations should evolve to incorporate these technologies in situ, rather than as forms of post
processing. This potentially reduces the burden on file transfers and on the runtime I/O that produces the
files. In some applications at major computing centers (e.g., climate and weather modeling), I/O is well
documented [57] as consuming more resources than the computation itself. In-situ data analytics allows the
simulation to avoid writing data that is needed only to advance the simulation, though this does not apply to
post examination. However, the benefits go far beyond this and into the realm of steering. Smart steering
may obviate significant computation—along with the I/O that would accompany it—in unfruitful regions of
the physical parameter space, as guided by the in-situ analytics. In-situ machine learning offers additional
benefits to large-scale simulation, beginning with smart data compression, which complements analytics in
reducing I/O and storage use. Beyond assisting with the performance of the known implementation, machine
learning has the potential to improve the simulation itself. This is because many simulations incorporate
empirical relationships like constitutive parameters or functions that are not derived from first principles
but are tuned from dimensional analysis, intuition, observation, or other simulations. For such components,
common in multi-scale and multi-physics models, machine learning in the loop may ultimately (or already) be
more effective than the tuning of expert scientists and engineers. Such learning would “probe” a simulation,
necessitating an in-situ process.

Next, turning to the first row of the interaction matrix, simulation potentially provides significant benefits
to analytics and learning workflows once the software and hardware environments converge. Data science
models have had limited penetration in systems representing complex physical phenomena. Theory-guided
data science [51] is an emerging paradigm that aims to improve the effectiveness of data science models by
requiring consistency with known scientific principles (e.g., conservation laws). Theory-guided data science is
gaining attention in applications like turbulence, materials, cosmology, and climate modeling. It is analogous
to “regularization” in optimization, wherein non-unique candidates are penalized by some physically plausible
constraint (such as minimizing energy) to narrow the field. In analytics, among statistically equally plausible
outcomes, the field could be narrowed to those that satisfy physical constraints, as checked by simulations.
Simulation can also provide training data for machine learning, thereby complementing data that is available
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from experimentation and observation. A traditional advantage of simulation over experiment is emphasized
in this context: some interesting regions of the parameter space—physically realizable in principle or
representing an extreme limit that is not realizable (e.g., flow with zero viscosity)—can be opened up to a
learning algorithm.

The other two nontrivial elements of the matrix are between the two workflows within big data. For
machine learning, analytics can provide feature vectors for training. In return, machine learning can provide
analytics with the imputation of missing data and functions of detection and classification. For any of
these “off-diagonal” fruits to be harvested efficiently, the corresponding workflows should be co-hosted.
The scientific opportunities are potentially important enough to overcome the enormous inertia (and spur
convergence) of the specialized communities that have gathered around each of these tremendously successful
paradigms.

2.3 Exemplars of Application-Workflow Convergence: Science at the Boundary of Obser-
vation and Simulation

Over the course of successive BDEC workshops, it quickly became apparent that application communities
would be leading the drive towards convergence. Given the “converged” model of scientific inquiry described
above (Section 2.1), this is more or less to be expected. Indeed, recent developments show that it is already
happening. One contrast with commercial cloud computing that these developments highlight is based on
the fundamental difference between the data generated by human interaction with computers (such as social
media and other commercial sites) and data collected from sensors and observations. The latter is governed
by some underlying physical process even if it is a non-deterministic one or one that has not been understood
yet. The analysis performed on scientific data may, sometimes, resemble that performed on commercial
data—that of drawing inferences without a hypothesis or conjecture. However, such analysis is limited
to instances where there is little or no prior knowledge about the underlying physical processes. In those
instances, inferences help to formulate hypotheses and ultimately the theory. More often some theory exists,
and the observations collect data that is used to prove or falsify a derived prediction that helps refine the
theory. Examples of the different, rough, and overlapping patterns with these research workflows include the
following:

• Patterns of interplay between simulation and data analysis: High-energy physics (HEP) has several
examples where interplay between simulations and data analysis plays a critical role in scientific
insight. One example is large experiments like CERN’s Large Hadron Collider (LHC), which currently
generates about 30 petabytes of data per year, which is expected to grow to 400 petabytes in a
decade. Experiments need support from theory which is provided by the simulations. Confronting
data generated from the simulations with the observational data helps tune both the model and the
experiment design (see the inference cycle in Section 2.1). Another example of synergy between
simulations and experimental data is in determining the placement of sensors in an experiment. This
has been used in designing high-energy density physics laser experiments, where simulations can
predict where to place the measuring instruments to have the best chance of detecting features being
formed. Without this interaction between simulation and placement of instruments in experiments,
entire features can be missed and have been known to have done so in the past. Use of simulations to
determine the placement of instruments or sensors is now making its way into many areas, including
environmental and climate observations.

• Patterns of alternating data generation and consumption: Another interesting class of workflows
are ones that alternate between data generation and data consumption. These kind of workflows occur
in experimental and observational validation and uncertainty quantification. Here, the data volumes and
patterns vary throughout the pipeline. The experimental data may require fine-grained “event” style



16

analysis where data pipelines can be complex and need to be run many times. Demands on I/O can vary
due to the nature of the simulations and the fine-grained nature of the outputs (many small files). An
example of such complex workflows is in dark energy research where understanding Type Ia supernovae
is critical. A typical workflow requires running a model simulation, post processing it, and running
it through another computational stage that results in generating the spectra and the intensity curves.
On the other side, similar artifacts are generated for comparison from the observational data through
various stages of analysis. An important challenge faced in this kind of workflow is data movement.
Large volumes of data are generated both from observations and from computations—typically at
different sites. It is not just the processing, but also the curation, migration, and archiving of data
that becomes the scientists’ concern. Good science requires provenance of data involved in scientific
discovery, which makes the task of managing the data pipelining highly resource intensive for many
scientists.

• Patterns of multi-messenger scientific inquiry: Several discussions at the BDEC workshops high-
lighted the way in which the application of different observational modalities, which can now be
simultaneously applied to the same object, promises to dramatically increase our predictive under-
standing of those objects. Generalizing the idea “multi-messenger astronomy,” [75] we refer to this
application-workflow pattern as “multi-messenger scientific inquiry.”10 The ability to predict the effects
that result from interactions between physical or biological systems, or to predict patient outcomes
or treatment responses, hinges on the accurate multi-resolution characterization of the objects and
systems involved. Happily, the dramatic reduction in costs required to obtain imaging and sensor data
has made it increasingly feasible to capture the necessary data.

The general approach, which cuts across the many relevant application domains, is to carry out and
synthesize the diverse, data streams that record different types of sensor observations of the same
object, or set of objects; and in many such scenarios, analysis and integration of data streams from
different types of sensors is coupled with simulations. The earth sciences offer a number of outstanding
examples, as in the study of the earths magnetic field, where satellite data, ground instruments, paleo
databases, and simulation are all combined. Aspects of this huge field are briefly surveyed below
(Sections 2.3.2 and 2.3.3). Likewise, biomedicine also contains a rich and growing collection of multi-
messenger use cases, where—for example—integration of information from pathology, radiology, and
molecular studies is becoming increasingly crucial in guiding cancer therapy (Section 2.3.4). Finally,
light and neutron source beamline analyses constitute a third collection of multi-messenger use cases.
Requirements have a great deal of commonality across, beamlines and scientific projects. Beamline
experiments frequently generate data that, when reconstructed, can be used to characterize properties
of materials, tissue, or chemical systems.

The examples of convergent application workflows shown here highlight the factors that will have to be taken
into account when developing the platform infrastructure to support them. These considerations led to a
number of pertinent questions that will feed into the following two sections and motivate our discussions in
follow-up BDEC meetings.

2.3.1 Plasma Fusion

Building the scientific foundations needed to accelerate the delivery of fusion power can best be accomplished
by engaging the predictive capability of modern big-data-driven statistical methods featuring machine learning

10Just as multi-messenger astronomy is “the coordinated observation and interpretation of disparate ‘messenger’ signals” from the
same astronomical objects [75], multi-messenger scientific inquiry combines observations and interpretations of disparate streams of
sensor or instrument data of the same objects in an integrated, inferential process.



17

and deep learning. These techniques can be formulated and adapted to enable new avenues of data-driven
discovery in key scientific applications areas such as the quest to deliver Fusion Energy.

An especially time-critical and challenging problem facing the development of a fusion-energy reactor is
the need to deal reliably with major, large-scale disruptions in magnetically confined tokamak systems like to-
day’s EUROfusion Joint European Torus (JET) and the upcoming International Thermonuclear Experimental
Reactor (ITER). The JET team led the development of supervised machine-learning, support vector machine
(SVM) based predictive methods, which have achieved over 80% predictive capability for disruptions that
occur 30 ms prior to damaging events—far exceeding current HPC “first principles” approaches. However,
ITER will require ∼ 95% or better predictive accuracy with less than 5% false positives at least 30 ms before
disruptions. Accordingly, this requirement will demand the deployment of improved physics-based classifiers
that encompass multi-dimensional features—a machine learning challenge for training that exceeds the
current capabilities of SVM methods.

Very encouraging advances in the development and deployment of deep learning recurrent neural nets were
recently demonstrated in the results obtained by the team at the Princeton Plasma Physics Laboratory (PPPL).
The results have already exceeded those of SVM methods (i.e., better than 90% predictive accuracy with
5% false positives at least 30 ms before the occurrence of JET disruptions). Moreover, scalability studies of
the Fusion Recurrent Neural Net (FRNN) deep learning code—first on 200 GPUs on Princeton University’s
“Tiger” cluster and then on 6,000 GPUs on Oak Ridge National Laboratory’s (ORNL’s) “Titan” leadership-
class supercomputer—show encouraging results that indicate that sufficiently rapid training of higher physics
fidelity classifiers is now feasible.

FRNN uses the well-known “Theano” and “Tensorflow” (from Google) back ends to train deep neural
networks (e.g., stacked, long short-term memory [LSTM]). With this approach, a replica of the model is
kept on each worker, processing different mini-batches of the training dataset in parallel. The results on each
worker are combined after each epoch using standard message passing interface (MPI) methods, and the
model parameters are synchronized using parameter averaging. The learning rate is adjusted after each epoch
to improve convergence.

This project has direct access to the huge EUROfusion JET disruption database (over 500 terabytes of
data) to drive these studies. Since the JET signal data comes in sequences of variable length, the training of
recurrent neural networks (RNNs) for time intervals as long as 2,000 time-steps is challenging but achievable
in that FRNN uses a technique of patches and chunks that make it possible to capture physical patterns that
are only visible for significantly long sequences (i.e., about 1–2 seconds). The FRNN project will explore the
viability of modern deep learning code for deployment on leadership-class supercomputers that feature a very
large number of modern Pascal P100 GPUs (e.g., “Piz Daint” at the Swiss National Supercomputing Centre
and “Tsubame 3.0” at the Tokyo Institute of Technology) and future Volta GPUs (e.g., Summit at ORNL).

With the establishment of rapid training capability for deep-learning features, we will be able to develop
high-fidelity classifiers to deliver further improvements in disruption predictions. In doing so, there will
also be a natural complementary element in exascale HPC codes that can accelerate the pace of identifying
supervised machine learning classifiers.

The workflow required for the FRNN data analysis code is similar to typical distributed deep learning
projects. First, the raw data is pre-processed and normalized. The pre-processing step involves cutting,
re-sampling, and structuring the data, as well as determining and validating the disruptive properties of
the shots considered. Various options for normalization are implemented. Secondly, with respect to the
distributed data parallel training of the model, the associated parameters are checkpointed onto disk after
each epoch in an HDF5 file format. Finally, regarding the cross-validation and prediction step on unlabeled
data, the team also plans to implement a “hyper-parameter tuning” approach using a random search algorithm.
The results, including the final neural network model parameters together with statistical summaries of the
variables used during training, are stored as HDF5 files, which enables researchers to produce learning curves
and performance summary plots.
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2.3.2 Earth, Planetary, and Universe Sciences
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Figure 6: Full data path for Earth, Planetary, and Universe sciences.

The Earth, Planetary, and Universe (EPU) sciences are exemplary in their sharing of scientific culture
with observational, data-driven research practices that cover a wide spectrum of spatial and temporal scales.
EPU research addresses fundamental problems associated with the understanding of the formation, structure,
and evolution of EPU systems in their environment (e.g., stellar and fluid envelopes); transient events (e.g.,
stellar explosions, earthquakes, volcanic eruptions) and their radiation (e.g., high-energy astro particles
and gravitational, electromagnetic, acoustic, and seismic waves); and associated applications of societal
and economic impact (e.g., prevention and risk mitigation of volcanic and seismic hazards, exploration
and management of energetic resources, evaluation and monitoring of environmental changes, and spatial
meteorology).

EPU communities are well organized and federated at the national and international levels around
more and more complex space missions (e.g., Euclid, the Laser Interferometer Space Antenna [LISA], the
INTErnational Gamma-Ray Astrophysics Laboratory [INTEGRAL], and the Advanced Telescope for High
ENergy Astrophysics [ATHENA]), large instruments (e.g., the Large Synoptic Survey Telescope [LSST], the
Cherenkov Telescope Array [CTA], and the Square Kilometer Array [SKA]), and observation systems (e.g.,
Cubic Kilometer Neutrino Telescope [KM3NET], AstroMev, the Laser Interferometer Gravitational-Wave
Observatory [LIGO]-Virgo, EarthCube, and the European Plate Observation System [EPOS]) often run by
international inter-governmental consortia and agencies. The communities place a premium on internationally



19

distributed and federated data resources for archiving and distributing data and have pioneered the prevailing
philosophies of globally shared and open data with internationally approved data, metadata, and exchange
standards—including provenance and interoperability—together with a growing commitment to open science.

Building federated computing and data analysis platforms with persistent storage to capture and aggregate
the large volumes of diverse data (e.g., events, time series, images) from the observations systems—which use
distributed archive resources—and from large numerical simulations (e.g., virtual instruments) to accelerate
the path of data use can best be accomplished by engaging a research-driven strategy shown in Figure 6 and
outlined below.

• Design and exploit more and more complex space missions, large instruments, and federated obser-
vation systems that have complex, on-the-fly data processing and analysis workflows for instrument
calibration and data compression, together with large HPC simulations of the experiments in their
environment;

• Develop innovative, big data-driven methods to accelerate the full path of data use, with data-stream
workflows orchestrating data processing and physics-based or data-driven statistical analysis methods,
in a Bayesian inference framework featuring machine learning and deep learning;

• Use advanced, physics-based stochastic simulations of multi-physics and multi-scale natural systems
that map complex model space of high dimensions (e.g., cosmology, magneto-hydrodynamics, and seis-
mology) into data space, exploring prior density probability information together with data assimilation;
and

• Implement modern, big data-driven, high-resolution, and multi-scale imaging techniques featuring
non-linear inversion methods in the framework of new Bayesian approximate and variational inference—
together with machine learning—to efficiently sample posterior probability distributions in high
dimension and quantify statistical incertitude measurements and extreme events.

Recent developments in high-end statistical data analysis have been demonstrated with new results in
the direct, physics-based detection of gravitational wave signals from two ground interferometers (LIGO),
thereby opening new observational conduits in astronomy for dense and massive astrophysics objects (e.g.,
black holes, neutronic stars). These recent developments are also apparent in physics-based extraction of
coherent seismic signals from statistical correlation-based analysis of non-coherent background signals—
generated by environmental sources resulting from the coupling of the solid Earth with external fluid
envelopes (i.e., atmosphere and ocean)—recorded on dense seismic arrays, thereby opening new imaging
methodologies in Earth sciences and exploration geophysics. Finally, these high-end statistical data analyses
have helped with data-driven detection from dense seismic arrays of new, unknown, long-period seismic
signals (tremors) associated with transient deformation processes in volcanic and tectonic contexts, thereby
opening a completely new area of research for the understanding and monitoring of natural hazards.

New discoveries in EPU sciences are critically dependent on innovative computing and data analysis
platforms federating parallel computing and data resources with research-driven architectures and services
that can integrate data-aware computing environments; data-aware architectures; collaboratively designed
software with large, complex observation systems; and new virtualization techniques.

For EPU applications, recent advances in Bayesian approximate and variational inference methods—
together with machine learning—have the potential to dramatically impact event detection, data analysis, and
data modeling methods. New statistical analysis methods featuring machine learning also have an increasing
role in efficient data assimilation and in-situ data analysis of large-scale stochastic simulations of EPU
systems. In parallel, an increasing number of new scientific problems require a combination of model and
multi-type data from experiments and simulations across multiple domains.
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Figure 7: Data assimilation combines obervations with model outputs in an optimal fashion, to improve
predictive capabilities. This provides a concrete illustration of the Inference Cycle of Section 2.1.

2.3.3 Data Assimilation in Climate

Data assimilation combines data coming from both observations and model outputs in an optimal way to
provide a more complete and coherent description of the system and thus improve our predictive capabilities
(Figure 7). An obvious requirement is that a model of said system must be available, whereby the increased
and novel forms of data analysis helps drive the development of the system model. Climate and weather
forecasting applications are among the most common and most important examples of this process, where
observational data is combined with simulation data to create a better model than either could create separately.

Data assimilation can be used with two different aims: (1) reconstruct the actual state of a system by
combining the two types of information; in this case it could be said that observational data and model outputs
complement each other by helping correct the largest errors from one or the other and provide respective
interpolation/extrapolation tools to reconstruct the best possible description of the actual system. (2) Or use
data assimilation for prediction in time; in this case the best reconstruction refers to the initial time of the
forecasting model, and data assimilation ensures both that this initial state is as good as possible from a
physical point of view, and that it is also coherent with the model dynamics, therefore avoiding too-large
transient effects in the simulation.

A technology complementary to simulation, namely emulation, is rapidly evolving in the domain of
geospatial statistics. Emulation is emerging as a reliable and less expensive computational alternative to
simulation in its predictive power; however, it lies wholly within the HDA-driven approach and is not covered
in this brief discussion.

The relationship of assimilation to the computational model and the inputs and outputs of the combined
system is shown in Figure 7. Two major approaches can be used: (1) a variational approach based on
optimization theory, and (2) a statistical approach based on optimal (Kalman) filtering and ensemble averaging.
Today, the tendency is to combine the two into what are know as “hybrid ensemble-variational approaches” [4].
These approaches constitute a major challenge for convergence of HPC with HDA.
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The huge amounts of data required for weather prediction make forecasting the weather a highly data
and compute-intensive exercise. For each forecast, data must be collected from multiple sources—including
satellites, dropsondes, weather stations and buoys, current and historical observations, and simulations of
the Earth’s physical patterns and processes. All of this information is then input into complex, nonlinear
meteorological models that simulate weather patterns that are likely to occur, based on data assimilation, as
shown in Figure 7.

When data assimilation is used for forecasting, the differences between the predicted values and the
observed values are inputs to the assimilation engine. However, the observational data are sparse compared to
the number of degrees of freedom required to specify the state of the system. Therefore, they are not used to
directly reset individual state values. They go into an optimization process typically in the form of a Kalman
Filter. Data assimilation is perhaps best understood in the context of inverse problems—the latter being well
developed in theory and algorithms [4].

With the availability of increasing computing power, data assimilation can rely on an ensemble consisting
of a large number of independent simulations. Given a thousand instances of a petascale simulation, one has
an exascale computation, with the last factor of one thousand in scaling coming in a different dimension than
traditional weak-scaling that employs a finer resolution of a given space-time domain. Data assimilation is
therefore a prime example of the immediate utility of exascale capability, since the software and workflows
already exist. Their combination is not trivial but rides existing efforts to scale up individual simulations with
a higher payoff factor.

Recent work by Miyoshi et al. [61] addressed so-called “big data assimilation” for rapidly changing,
severe-weather forecasting. The aim is to provide early warnings to civilians and administrations of impending,
high-magnitude weather events. By coupling a high resolution “Phased Array Weather Radar” system with
RIKEN’s “K Computer,” they have been able to produce such early warnings for local, severe-weather
events. One hundred simulated states are fed into a (local transform) ensemble Kalman filter, and each state is
simulated in 30 seconds (only) on 3,072 nodes of the 10 petaFLOP/s K Computer. This can be scaled up to the
full 88,128 nodes (705,000 processors) of the K Computer, yielding a full data assimilation cycle that remains
within the 30 second time window and provides a constantly updated 30 minute forecast. It should be noted
that data volumes are of the order of 1 terabyte of observation data and 3 petabytes of simulation-produced
data. To achieve such spectacular execution times, this required extensive code optimization at all levels,
from I/O to basic linear algebra routines.

2.3.4 Cancer Diagnosis and Treatment

The Cancer Moonshot11 aims to accomplish 10 years of cancer research in only 5 years. With complex,
non-linear signaling networks, multi-scale dynamics from the quantum to the macro level, and giant, complex
datasets of patient responses, cancer is a major challenge for HPC and big data convergence. In light of
the difficulty and relative inefficiency of new drug development and screening,12 the CANcer Distributed
Learning Environment (CANDLE) project proposes to employ machine learning techniques to cancer
biology, pre-clinical models, and cancer surveillance. The aim is to “. . . establish a new paradigm for cancer
research for years to come by making effective use of the ever-growing volumes and diversity of cancer-
related data to build predictive models, provide better understanding of the disease, and, ultimately, provide
guidance and support decisions on anticipated outcomes of treatment for individual patients.”13 The project’s
specific objective is to position deep learning at the intersection of Ras14 pathways, treatment strategies, and

11 https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
12Between 2009 and 2013, the United States’ Food and Drug Administration approved 20 new oncologic drugs, having a treatment

costs of $100,000 per year and an average progression-free survival improvement of less than six months.
13http://candle.cels.anl.gov
14A family of proteins whose over activity can ultimately lead to cancer.

 https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
http://candle.cels.anl.gov
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drug response. Computational requirements associated with cancer diagnosis and treatment are extremely
heterogeneous, and the work carried out in the CANDLE project is a very interesting subset of a much
broader set of computational challenges.

Predictive modeling of drug response is a function of tumors (gene expression levels) and drug descriptors.
These can be analyzed by deep, convolutional, supervised learning algorithms. But how can one search a
trillion drug combinations to predict the response of a given tumor to a given drug combination? One possible
answer is deep learning. Within scientific computing applications, hundreds of examples of this technique
are emerging, including fusion energy (see above), precision medicine, materials design, fluid dynamics,
genomics, structural engineering, intelligent sensing, etc. To apply deep learning to drug response modeling
requires a hyper-parameter search of 10,000 dimensions that can only be done by effective parallelism at the
level of 1,000,000–100,000,000 compute cores. In order to achieve this, the following questions need to be
addressed.

1. What are the key frameworks and workloads for deep learning?

2. What hardware and systems architectures are emerging for supporting deep learning?

3. Is deep learning a distinct class worthy of its own software stack in the BDEC Universe?

We will briefly address each of these in turn, noting that they remain largely open questions that are certainly
application dependent.

The number of available frameworks is increasing every day with a concomitant risk of dispersion and
lack of interoperability. The most well-known frameworks are Torch, Theano, Caffe, TensorFlow, and the
Microsoft Cognitive Toolkit (CNTK). Numerous languages are supported, and this can vary from framework
to framework, but they are mostly interactive scripting-type languages such as Julia, Python, Lua, and R. In
addition, the presence of interactive workflows is an important aspect of many deep learning projects. We are
currently witnessing an exponential growth in the number of deep learning-based projects. All of this argues
in favor of some type of standardization that could be motivated by convergence issues.

But to apply deep learning across a broad range of fields, a number of deep learning system architecture
challenges must also be confronted. The first is “node centric” vs. “network centric” architectures with either
integrated resources on a node or disaggregated resources on a network. Then the issue of name space/address
space across instances/stacks can be approached by either one integrated space across all stacks or each stack
maintaining names and addresses. But are the technology components converging? Finally, the issue of
“training” vs. “inferencing” must be addressed. What balance should there be between online vs. offline
training, and what are the possibilities of embedding the training within simulation environments?

We are witnessing the emergence of numerous hardware and system architectures for supporting deep
learning. Here we can point out CPUs (e.g., chips with Advanced Vector Extensions [AVX], chips with
Vector Neural Network Instructions [VNNI], and Xeon Phi), GPUs (e.g., NVIDIA’s P100, AMD’s Radeon
Instinct, Baidu’s GPU), application-specific integrated circuit chips (ASICs) (e.g., Nervana, DianNao, Eyeriss,
GraphCore, Tensor Processing Unit [TPU], deep learning processing unit [DLU]), field-programmable gate
arrays (FPGAs) (e.g., Arria 10, Stratix 10, Falcon Mesa), and neuromorphic technologies (e.g., True North,
Zeroth, N1). But which solution or combination is best for a given application?

So, is Deep Learning a distinct class worthy of its own software stack in the BDEC Universe? The
CANDLE project has developed a stack of its own (see also the data-flow and plasma fusion discussions
above) made up of workflow, scripting, engine, and optimization layers. The workflow contains hyper-
parameter sweeps and data management using the NVIDIA Deep Learning GPU Training System (DIGITS)
or Swift. The scripting consists of a network description and an application programming interface (API)
for execution (e.g., Keras or Mocha). A Tensor/graph execution engine is based on Theano, Tensorflow,
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etc. Finally, an architecture-specific optimization layer is added, based on the NVIDIA CUDA Deep Neural
Networks library (cuDNN) or the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN).

To enable HPC convergence, parallelism options and I/O must be examined. Data Parallelism (distributed
training by partitioning training data) must be managed at an appropriate level within the stack. Model
parallelism (parallel training by partitioning network) could be managed independently. At what level should
streaming training data loaders be implemented? And what about main I/O?

As we have seen, numerous fundamental questions are raised here. These will require careful considera-
tion for a successful convergence of deep learning approaches within the context of HPC.

2.3.5 Numerical LaboratoriesFuture Scenario

Figure 8: Future scenario for numerical laboratory analysis and data flows.

Large supercomputer simulations are rapidly becoming instruments in their own right. Scientists in many
disciplines seek to compare the results of their experiments to numerical simulations based on first principles.
This requires not only that we can run sophisticated simulations and models, but that the results of these
simulations are available publicly through an easy-to-use portal. We have to turn the simulations into “open
numerical laboratories,” in which anyone can perform their own experiments. Integrating and comparing
experiments to simulations is a non-trivial data management challenge (Figure 8). Not every dataset from a
simulation has the same life cycle. Some results are transient and only need to be stored for a short period for
analysis, while others will become community references with a useful lifetime of a decade or more.

As we have learned over the years, once the data volume is too large, we have to move the analysis
(computing resources) to the data rather than the traditional approach, which moved the data to the computing
resources. With these large data volumes, one has to approach the data in a fully algorithmic fashion—manual
exploration of small (or large) files is no longer feasible. Even though the largest simulations today are
approaching hundreds of billions of particles or grid points, the total size of the output generated rarely
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exceeds 100 terabytes and almost never reaches a petabyte. As the interconnect speeds are not going to
increase by a factor of 30–100, it is likely that this limitation will remain. Even with exascale machines,
the publicly available outputs will likely remain in the range of a few petabytes. To date, the usual way of
analyzing someone else’s simulation is to download the data. With petabyte-scale datasets, this is obviously
not going to work. For a scalable analysis, we need to come up with a data access abstraction or metaphor
that is inherently scalable. For the user, it should not matter whether the data in the laboratory is a terabyte or
a petabyte. The casual user should be able to perform very light-weight analyses without downloading much
software or data. Accessing data through the flat files violates this principle: the user cannot do anything
until a very large file has been physically transferred. This implies an access pattern drastically different from
the sequential I/O of the checkpoint restart. We need to support random access patterns, where we have a
“database” of the most interesting events. This approach is reminiscent of how physicists at the LHC are only
storing one out of 10,000,000 events—still yielding tens of petabytes every year.

Supporting such localized access patterns can enable new metaphors for interacting with large numerical
simulations. For example, one can create a so-called immersive environment in which the users can insert
immersive virtual sensors into the simulation, which can then feed a data stream back to the user. By placing
the sensors in different geometric configurations, users can accommodate a wide variety of spatial and
temporal access patterns. The sensors can feed data back on multiple channels, measuring different fields in
the simulation. They can have a variety of operators, like computing the Hessian or Laplacian of a field, or
applying various filters and clipping thresholds. Imagine how scientists could launch mini accelerometers
into simulated tornadoes, emulating the movie Twister!

Scientists at Johns Hopkins have successfully implemented this metaphor for various turbulence datasets
and are now porting it to cosmology simulations. This simple interface can provide a very flexible and
powerful way to do science with large datasets from anywhere in the world. The availability of such a 4-D
dataset “at your fingertips” and the ability to make “casual” queries from anywhere is beginning to change
how we think about the data. Researchers can come back to the same place in space and time and be sure to
encounter the same values.

The Twister metaphor mentioned above has been implemented in the Johns Hopkins Turbulence Database
(JHTDB) [55], the first space-time database for turbulent flows containing the output of large simulations
made publicly available to the research community. It supports a web service that handles requests for
velocities, pressure, various space derivatives of velocity and pressure, and interpolation functions. The data
and its interface are used by the turbulence research community and have led to about 100 publications to
date. As of this writing, the service has delivered over 44,000,000,000,000 (trillion) data points to the user
community. In a recent paper on magnetohydrodynamics (MHD), trajectories were computed by moving
the particles backward in time—impossible to do in an in-situ computation and only made possible by
interpolation over the database [31].

A similar transformation is happening in cosmology. The Sloan Digital Sky Survey (SDSS) SkyServer
framework was reused for the Millennium simulation database [53]. The database has been in use for over 10
years, has hundreds of regular users, and has been used in nearly 700 publications.

These large numerical datasets, analyzed by a much broader range of scientists than ever before, using all
of the tools available in the computer age, are creating a new way to do science, one that we are just starting
to grasp. We cannot predict where exactly it will lead, but it is already clear that these technologies will bring
about dramatic changes in the way we do science and make discoveries and how we will use our exascale
simulations.
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Figure 9: The general problem with multiple high-volume generators at the edge is that these “edge
environments” (i.e., environments across the network from centralized facilities) are, or soon will be,
experiencing unprecedented increases in data rates from diverse and rapidly proliferating sources. Everyone
agrees that this data will have to be buffered/stored and processed in various ways and for various reasons; but
there is currently no shared—open—interoperable infrastructure adequate for the task and no agreed-upon
roadmap for developing it.
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3 Challenges to Converged Infrastructure in Edge Environments

Based on our report on the cumulative work of the BDEC community so far, one might reasonably draw at
least two provisional conclusions. First, at the level of scientific applications and interdisciplinary research,
the convergence of techniques and methods of compute-intensive simulation and data-intensive analytics is
already underway. Several of the examples given in Section 2 show that a more complete and integrated vision
of the general logic of scientific inquiry is already being implemented in multi-phase workflows, and there is
every reason to expect that many more dramatic and complex products of this process will be emerging in the
near and medium term. Second, at the level of (logically) centralized infrastructure (i.e., on stand-alone HPC
systems and distributed cloud facilities [Section 4]), promising avenues for integrating the HPC software
stack and the HDA software stack are being opened and explored from both sides. If the ultimate success of
these two developments, taken together, were sufficient to reestablish the shared foundation of interoperability
and software portability that has proved so catalytic for scientific collaboration and progress over the past two
decades, then the BDEC community—in concert with other ongoing infrastructure planning efforts from
around the world—would be well positioned to draft a roadmap to get there. Unfortunately, the proliferation
of huge and heterogeneous flows of data generated outside such centralized facilities (i.e., across the wide
area network [WAN] in “edge environments”) as well as the need to distribute large datasets from the center
to the edge, represents a third factor that makes the way forward uncertain (Figure 9).

The explosive growth and dispersion of digital data producers in edge environments is a highly multi-
dimensional problem. Looking at just the properties of the data flows being generated, the published lists
of the challenging characteristics they exhibit include their volume, velocity, value, variety, variability, and
veracity [15, 19, 42, 45, 71]. The size dimension tends to be highlighted first, if only because the volumes
are so striking. Big instruments—such as the LHC and the Argonne Photon Source (APS) mentioned below
(Section 4.2)—provide familiar illustrations, but other examples are plentiful. For instance, a review of the
records of over two decades of storage usage for neuroimaging and genetics data shows that the influx is
doubling every year, with some estimates reaching over 20 petabytes per year by 2019 [26]. In a different do-
main, Light Detection And Ranging (LIDAR) survey technology [74], which has hundreds (if not thousands)
of applications in mapping and monitoring for many fields of science, engineering, and technology, already
routinely produces terabyte-level datasets, with cumulative volumes that are correspondingly immense [18].
Autonomous vehicles will generate and consume roughly 40 terabytes of LIDAR data for every 8 hours
of driving, and LIDAR prices have come down 3 orders of magnitude in 10 years. Finally, taking a more
comprehensive perspective, a recent Cisco Global Cloud Index report [50] asserts that mobile data traffic has
increased more than three orders of magnitude over the last decade and will continue to grow at more than
50% annually; by 2020 this data traffic is projected to surpass 500 zettabytes in total [69, 72].

Another set of factors that render edge environments complex is the diversity of the data collecting
devices and the modes in which they can be used. LIDAR remote sensing can be used in several modes:
static terrestrial (e.g., tripod), mobile (e.g., autonomous vehicles), and aerial (e.g., drones). Some, like the
SKA and environmental sensor nets, are highly distributed, so that the data they produce generally needs to
be aggregated and appropriately coordinated or merged. Others, like the LHC, are centralized. Moreover, the
power constraints under which some devices can or must operate obviously affects the schedule on which
they can collect and transmit data. All of these factors will need to be taken into account in designing a DSP
that will need to be deployed in order to support them.

Perhaps the most general designation for the field into which this large welter of problems falls is “data
logistics,” (i.e., the management of the time-sensitive positioning and encoding/layout of data relative to its
intended users and the resources they can use [20]). Any user who wants to analyze data that is generated at
one (or many) locations, but is worked on somewhere else and possibly in many other places or in transit,
confronts challenges of data logistics in this sense. High-profile examples for the international scientific
community, including the LHC, the SKA, and the climate modeling communities (e.g., through the Earth



27

System Grid Federation [ESGF]), illustrate how managing the movement and staging of data—from where it
is collected to where it needs to be analyzed—can take up most of the time to solution.15 Moreover, in many,
if not most cases, some form of data reduction has to be applied locally before any further data movement
can even be attempted (Section 4.2). However, other more mundane examples are plentiful, and, clearly, the
concept of data logistics can be applied much more broadly. At the root of the problem is that the data and
the computing resources needed to process it have to be co-located for work to proceed. From the point of
view of “time to solution,” the challenges of just moving massive data objects into and out of the memory
of HPC systems can also be characterized as logistical in nature. Hence, one can think of data logistics as
defining a continuum, with I/0 issues inside the Internet data center (IDC) or supercomputing facility falling
at one end,16 and big data workflows that begin at remote and/or distributed data sources—possibly scattered
across edge environments—falling at the other.

Now, experience shows us that coping with the logistics of multiform workflows in the wide area is
a non-trivial problem, especially when the only service the underlying network supplies is the routing of
datagrams between end points. As noted above in Section 1.1.2, the Internet’s lack of native support for
point-to-multipoint content distribution, among other things, has forced the research community (and service
providers generally) to deploy workarounds to problems of data logistics since the earliest days of the
network. Figure 3 provides a snapshot summary of successive attempts to bypass this problem: first with
FTP mirrors and web caching, which generally preserve the classic Internet article; and then via CDNs
and cloud computing, which use standard IPs to connect to clients at the edge of the network but deploy
proprietary networks in their core that incorporate storage and computing as services at the intermediate
nodes. Historically, work on CDNs served as the origin of current efforts to develop computing infrastructure
for edge environments (i.e., infrastructure to provide storage, computing, and networking at various places
along the path from the cloud or data center to the edge [67]).

A variety of different approaches under a variety of different names have been proposed for edge
computing infrastructure: the European Telecommunications Standards Institute’s (ETSI’s) Mobile Edge
Computing (MEC) [49], Fog Computing [16], Cloudlet [68], and Edge Caching [10], to name some prominent
contenders [72]. Wherever possible, we use the expression distributed services platform (DSP) as a more
generically descriptive phrase for infrastructure designed to support compute-intensive and/or data-intensive
work that must be carried out between the cloud (or data/HPC center) ingress/egress and the network edge.
This is motivated partly by the fact that there appears to be little consensus at this point about what the right
approach should be or about which of the contenders might come to dominate [37, 72]. In this regard, the
current situation in edge computing infrastructure has plausibly been compared to the situation in networking
“at the dawn of the Internet in the late 1970s to early 1980s” [67]. In any event, the unsettled state of the field
means that our exploration below of some of the important issues to be addressed by, and some of the main
strategies for using, such an infrastructure needs to focus on possible points of agreement upon which the
views of different stakeholders might converge.

3.1 Common Context: Converging on a New Hourglass

If we want a new distributed infrastructure to support science and engineering research in the era of big data,
an infrastructure with the kind of openness, scalability, and flexible resource sharing that has characterized
the legacy Internet paradigm, then a recent community white paper on “intelligent infrastructure” for smart
cities makes the nature of the challenge clear:

15In the 6th Annual ESGF Conference report (see http://esgf.llnl.gov/media/pdf/2017-ESGF F2F Conference Report.pdf), a major
concern expressed was to minimize the time spent finding, using, and storing data.

16This point reminds one of Ken Batcher’s well-known quip that, “A supercomputer is a device for turning compute-bound
problems into I/O-bound problems,” [73] the consequential truth of which is destined to be reinforced by emerging exascale systems.

http://esgf.llnl.gov/media/pdf/2017-ESGF_F2F_Conference_Report.pdf
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Figure 10: The “hourglass model” of the system software stack. The goal is to achieve deployment scalability
while maximizing the diversity of applications. [Credit: Beck [11]]

What is lacking—and what is necessary to define in the future—is a common, open, underlying
‘platform,’ analogous to (but much more complex than) the Internet or Web, allowing applications
and services to be developed as modular, extensible, interoperable components. To achieve
the level of interoperation and innovation in Smart Cities that we have seen in the Internet
will require [public] investment in the basic research and development of an analogous open
platform for intelligent infrastructure, tested and evaluated openly through the same inclusive,
open, consensus-driven approach that created Internet. [63] [Emphasis in source.]

As argued above, the dominant cyberinfrastructure paradigm of the past three decades actually has two
main components: the IP stack and the Unix operating system, the kernel interface of which became the
foundation for an immense ecosystem of largely interoperable open-source tools and operating systems, such
as Linux. If we are to go in search of a future-defining DSP, it seems reasonable to start from a prominent
architectural feature that they share. Specifically, they both conform to the “hourglass” design model for
layered software stacks [11]. The hourglass image (Figure 10) represents the idea that an appropriately
designed common interface can be implemented on a wide variety of technology platforms (yielding a
wide “lower bell”), while at the same time supporting an equally wide variety of applications (yielding a
wide “upper bell”). David Clark, one of the leading designers of the IP stack, called the common middle
interface (i.e., the thin waist of the hourglass), the “spanning layer” because it bridges, through virtualization,
a heterogeneous set of resources that lie below it [23]. In the case of IP, these underlying resources consist of
different types of local area networks. In the case of the Unix/Linux kernel interface, possible technology
substrates include an enormous variety of software/hardware platforms—from massive compute clusters to
handheld devices and wrist watches.

In terms of general cyberinfrastructure design, and cyberinfrastructure for science and engineering in
particular, this combination of properties is critical. From the point of view of application communities,
the ability to easily implement a spanning layer on new hardware is fundamental, because the underlying
platform technologies are constantly evolving. Unless a spanning layer can be ported or reimplemented
on each successive generation, the applications it supports will be stranded on some island of technical
obsolescence. Yet new types of applications and application requirements are also constantly emerging. So
no matter how portable a spanning layer is, if it cannot address innovative application demands, it will be
abandoned for a software stack that can. The challenge, of course, is to provide a service specification (i.e.,
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an API) for the spanning layer that can satisfy both of these requirements.
The waist of the hourglass is called “thin” or “narrow” because it needs to be minimal, restricted, or

otherwise weak to be easily implementable on new software/hardware substrates. However, as shown in
Figure 10, and contrary to what is commonly believed, squeezing the waist of the hourglass, in order to
increase the number of possible implementations covered by the lower bell, will tend to have the reverse
effect on the width of the upper bell (i.e., this will reduce the potential range of supported applications [11]).
Hence the design challenge for creating a specification for a scalable DSP spanning layer is to find one that
optimally balances these two opposing goals. If we assume that we are talking about a software stack for
workflows, which are inherently stateful processes, that would seem to imply that the spanning layer must
include (orthogonal) primitives for communication, computation, and storage. So, striking the right balance
is likely to prove challenging indeed.

Unfortunately, in seeking a new DSP spanning layer to address the challenges of the big data era, the
science cyberinfrastructure community finds itself in something of a dilemma. On one hand, at present there
does seem to be at least one plausible and widely touted candidate for the new spanning layer—operating
system–level virtualization that supports software “containers” (Figure 14 and Section 4.3.2). Certainly,
converging on a common interface for containerization would go a long way to achieving ecosystem
convergence and do so in way that requires something closer to evolutionary, as opposed to revolutionary,
changes to current modes of operation. Perhaps for that reason, and as participants in the BDEC workshops
made clear, the potential of containerization is a very active area of research and experimentation across
all the contexts that scientific cyberinfrastructure will have to address, including commercial clouds, HPC
systems, and computing resources deployed in edge environments. Indeed, the “Two Ecosystems” picture
(Figure 1) was recently updated to show that both HDA and HPC are pursuing containerization strategies.
In Section 4.3.2, we explore the possible benefits and liabilities associated with sliding yet another layer of
virtualization (i.e., for software containers) into the current software stack.

3.2 Common Context: A Common Distributed Services Platform for Data Logistics

Given the complex nature and broad scope of the data logistics problem space, the DSP label captures at least
three features that any reasonably adequate infrastructure capable of meeting these challenges should have.

1. Be wide area capable: The intermediate nodes of the DSP must support services that can be deployed
in a decentralized fashion across the wide area (i.e., outside the machine room and the local area
network [LAN]);

2. Offer flexible compute, storage, and communication services: These nodes must go beyond simple
datagram forwarding to provide compute and storage/buffering services in the system’s core as
well. The need for this capability follows directly from what is perhaps the primary application
requirement for edge computing. Namely, relatively low-latency processing (e.g., aggregation, analysis,
compression, and distillation) of massive quantities of data flowing from edge devices and sensors [25].

3. Provide a scalable model of resource sharing: Like the legacy cyberinfrastructure paradigm that is
becoming increasingly problematic (Section 1.1.2), the DSP (which will replace the legacy paradigm)
must—for both technical and practical reasons—enable a variety of different application communities
to share a core set of services and the resources they require.

Yet, while several of the proposed alternatives for edge computing (e.g., Fog, cloudlet, MEC) might
provide a DSP that meets what seem to be the major technical requirements for this problem space—highly
responsive and resilient cloud services, scalability through local data processing, flexible control of privacy,
and computational offloading for client devices [67]—the overarching goal of the BDEC community requires
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a broader perspective. In particular, the guiding purpose of the BDEC community has always been to foster
the co-design of a software infrastructure for science and engineering research that supports the broadest
possible spectrum of fields or domains and empowers international cooperation both within and among them.
Consequently, since the scientific community, thus broadly conceived, embraces an enormous network of

Figure 11: Stakeholders in the software/data ecosystem for science and engineering.

organizations and actors, extending not just around the world but also across generations, the problem of
designing a DSP that can be voluntarily adopted as foundational by this community raises unique software
ecosystem considerations (Figure 11) that ought to frame our deliberations. Following both the suggestion of
the Computing Community Consortium whitepaper quoted above [63] and the spirit of the original IESP [27],
below we briefly discuss three ecosystem design constraints that seem to be a among the most important:
commonality, openness, and interoperability.

1. A Common Distributed Services Platform: The legacy DSP paradigm—the Internet—enabled the
scientific community to bridge geographic, organizational, political, and technological boundaries and
fostered a profusion of interdisciplinary collaborations across a vast range of fields. The motivation
for seeking a “future-defining” DSP that provides a similarly common foundation for future scientific
inquiry should, therefore, be evident. Of course, it should be equally evident that the problem of
designing a common DSP that everyone in the community might voluntarily adopt, in the absence of
coercive legal or economic power, is truly formidable.

The upper and lower bells of the “hourglass” software architecture model (see Section 3.1 and Figure 10)
are intended to illustrate two critical conditions that any proposed universal solution would apparently
have to satisfy. First, a wide lower bell for a given DSP means that its spanning layer [23, 52, 60]
(i.e., the common interface at the narrow waist) can be implemented on a very large collection of
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heterogeneous hardware technologies, so that all the applications and services above the spanning layer
can, through it, access and utilize the resources these technologies make available. The wider the lower
bell, the stronger the assurance that hardware technology—both legacy and future—will support that
DSP’s spanning layer. Second, a wide upper bell means that the small set of primitive services that
the spanning layer makes available on the systems nodes can be composed, in combination with end
system resources, to support a very large diversity of higher-level services and applications. The wider
the upper bell, the stronger the assurance that more specialized application communities, down to the
level of individuals, can build on top of the shared infrastructure that the community provides. Now, if a
given DSP can thus be implemented with reasonable ease on an extremely broad spectrum of hardware
technologies, and can thus be used to create an enormous diversity of services and applications to
satisfy multifarious user demands, those facts will tend to minimize barriers to its universal adoption.
However, it is important to remember that defining a spanning layer that includes shared compute
and/or storage services, and that is weak enough to achieve the former but strong enough to achieve the
latter, is still an unsolved problem [11, 12].

2. An Open Distributed Services Platform: Even if a DSP spanning layer with requisite technical
properties can be specified, lack of openness would also present a major barrier to the kind of
ubiquitous acceptance the scientific community needs to achieve. Absent proprietary legal constraints,
such a software specification is paradigmatic of a public good (i.e., of something that no one is excluded
from using and which can be exploited in a completely non-rivalrous fashion). At a minimum, then, the
specification should be freely accessible for people to use as their circumstances require. Moreover, the
standardization process should be equally non-proprietary and open and carried out with due process,
broad consensus, and transparency [32]. We know that in the case of the IP stack such openness was
critical to its relatively rapid acceptance by the global scientific community. We also know that this
acceptance, working outward from the universities, government laboratories, and all institutional niches
where research gets done, played an instrumental role in spreading the Internet to society generally. It is
reasonable to expect that if the more general DSP that science now seeks is kept open, then similar—if
not more powerful and more positive—spill-over effects for society are likely to result.

3. An Interoperable Distributed Services Platform: Although both openness and community deploy-
ment are essential objectives for a next generation DSP for data logistics, the linchpin of any plan
for achieving those goals is interoperability (i.e., the capacity for different modules or devices using
shared protocols to exchange information with and/or invoke services on one another, despite dif-
ferences in their implementations). For one thing, interoperability fosters openness by lowering or
eliminating switching costs, which helps users avoid well-known problems like “vendor lock-in,” while
enabling well-known advantages like “fork-lift upgrades.” More importantly, providing a foundation for
widespread interoperability tends to catalyze community adoption and deployment through powerful
direct and indirect network effects, in which increases in the number of adopters of platform-compatible
systems drives up the platform’s value for all of its users [60]. The success of the Internet paradigm has
been due in no small degree to these effects of interoperability, and so one should reasonably expect
the same would be true of a new DSP paradigm that supported similar levels interoperability.

But if we believe that “. . . [a]s a practical matter, real interoperation is achieved by the definition and use
of effective spanning layers,” [23] (see also [52, 59]), then we must also acknowledge that the goal of
creating a more general, future-defining DSP, with a primary spanning layer that the entire community
is willing to adopt, has already shown itself to be very elusive. In the United States alone, over the past
20 years at least four well-supported efforts—Active Networking [70], Globus [35], PlanetLab [3], and
the Global Environment for Network Innovations (GENI) [58]—took up this challenge explicitly; and
while all of them have been (and even continue to be) successful in many other respects, their proposed
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platforms, and the alternative spanning layers that they have tried to build on, have not yet achieved the
kind of broad acceptance and organic growth that the convergent DSP would require.

Although these interrelated design assumptions may not be exhaustive, they are sufficient for this report’s
discussion of the alternative strategies for data logistics and related challenges. There seem to be at least four
non-exclusive alternatives for interfacing HPC to this new paradigm, in which no strong assumptions are
made about where the data are: (1) data streaming, (2) in-transit processing, (3) processing at the edge of
the distributed system (i.e., as close to the data sources as possible), and (4) logically centered cloud-like
processing. This last option is not of the same nature as the first three, and it could encompass them: the
user could have a cloud-inspired vision of processing that is decoupled from physical resource distribution;
under the hood, the actual processing can rely on options 1–3 (i.e., in situ processing, in transit processing, or
streaming across multiple sites).

We briefly discuss each of these strategies in Section 3.3, but expect the BDEC and big data communities
to substantially develop this discussion.

3.3 Strategies for Processing and State Management between the Edge and the Central-
ized Computing Facility

As the examples discussed in Section 2.3 suggest, various combinations of computations and data movement
are required to integrate often noisy information from often spatially distributed sensors to create a high-
quality, multi-scale description of the physical or biological system under study. For instance, a variety of
commonly employed methods cut across many multi-messenger use cases, making this area both an important
opportunity and a complex challenge for the design of shared software infrastructure. Most methods include
the need to (1) carry out low-level reconstruction, filtering, and noise reduction processing to improve data
quality; (2) detect and often segment pertinent objects to extract imaging features and classify objects and
regions of images; (3) characterize temporal changes; and (4) use simulation, machine learning, or statistical
methods to make predictions.

3.3.1 Strategy 1: Streaming

An emerging model of big data applications is that data is generated or collected at multiple places in the
“system.” The data may need to move from location to location within the system, and processing may be
needed at different locations as the data moves through the system. Further, unlike classical HPC, where
the data source and sink are in the same location, in the new model there may be multiple sources and sinks,
and they may not be at the same location. An example is the SKA project. Scattered telescopes collect data,
but because of the vast amounts of data collected, not all the data can be streamed to a single location for
processing. Instead, there are advantages to doing some amount of processing at the instrument. Data is then
streamed to intermediate sources, where once again the ability to aggregate and perform local processing
allows for smarter (required) reduction of the data streams. While the SKA project will have a relatively static
mapping of sources, sinks, and data streams to their processing locations, other applications may be more
dynamic. Regardless, to support this emerging model, tools are being developed that let workflow designers
abstractly describe the sources, sinks, streams, data, and processing elements and then dynamically connect
them as the situation requires.

To accommodate the needs of such applications, stream processing languages have been developed
to allow programmers to specify the needs of their workflows and applications to feed into the tools and
runtimes being developed. Two common examples from the cloud space are Apache Spark and Flink. These
data-centric libraries and runtimes enable the programmer to more easily describe the requirements laid
out above (i.e., be able to specify where data is originating, ending, and how it needs to be processed as it
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moves from source to sink). Many of the languages and runtimes abstract the notion of processing elements,
network connections, data sources, sinks, and processing elements. This provides for a separation of concerns,
thereby enabling the programmers to focus on describing what connections need to exist and what processing
needs to occur without specifying where it occurs and how the processing elements are connected. Some
of the languages and runtimes allow the programmers to provide hints or specify where (on which nodes
or computers) the processing should occur and what networking topology should be used to connect the
processing elements.

The use of data streaming has three benefits: (1) low overhead, particularly for local coupling, means that
it is efficient for scientists to compose low-cost steps for a “fine-grained workflow;” (2) the direct handling of
streams means that scientists can develop methods for live, continuously flowing observations; and (3) the
load placed on the increasingly limiting bottleneck of disk I/O is minimized.

Determining whether we can move to a common model, as we examine the need to converge the tools
for HPC, big data, and analytics, is worth investigating. Because work on stream processing within HPC is
somewhat untrammeled, this would—hopefully—provide an easier path toward convergence. However, there
are challenges. Many existing cloud stream processing capabilities were not designed with HPC in mind, and
developers are only more recently starting to examine the high performance aspects of their runtimes (e.g.,
low latency). This represents a good area of focus for convergence.

3.3.2 Strategy 2: Content Delivery Networks (Processing In-Transit)

Over the past 15 years, the relentless increase in demand for rich multimedia content has driven commercial
providers to build or buy services from sophisticated CDNs to ensure the kind of quality of service that their
customers want and expect [64, 65]. Unfortunately, commercial CDNs are expensive, difficult to operate, and
are practical only for implementing Web and media streaming sites that generate enough income to pay for
their service. Consequently, a myriad of non-commercial research and education communities who need to
distribute large amounts of data to numerous receivers are unable to make use of existing CDN services.

To see why, we need to briefly consider how CDNs work. A CDN delivers data from a collection of
servers distributed in the wide area, either at a large number of collocation sites—like network interchange
points, Internet service provider (ISP) points of presence (e.g., Akamai, Layer3)—or at a smaller number of
cloud data centers (e.g., Google or Amazon). While Uniform Resource Locators (URLs) are used to name
content and services in a CDN, they are not interpreted in the same way as they are in the implementation
of traditional Web services. Instead of using the Domain Name System (DNS) to translate the domain
component to an undifferentiated set of servers, a CDN chooses the best server according to its own resolution
algorithm. CDNs use a proprietary resolution protocol that provides the network interface of an uncacheable
DNS server, which is how it integrates with existing application layer clients like Web browsers.

If a CDN’s resolution algorithm is implemented using only the abstractions provided by the Internet’s
network layer, then the CDN can be viewed as an overlay network implemented at the application layer.
However, it is difficult to obtain accurate and effective resolution using only the abstraction provided by the
Internet’s network layer. So, commercial CDNs instead reach down past the network layer to monitor the
link layer network topology, which is not directly observable using the abstractions provided by the network
layer. From an architectural point of view, commercial CDNs should be characterized as an alternative
network layer that is implemented using a combination of mechanisms from the Internet’s link, network, and
application layers.

The implication of this strategy for implementing CDNs is that the mechanisms used to implement it as
an alternative network layer are proprietary, non-interoperable, and not particularly scalable. Monitoring and
even controlling the network at the link layer (by determining the topological location of replica servers) and
maintaining replicas of complex application layer services are expensive and difficult engineering obstacles.
This makes commercial CDNs expensive to run and creates barriers to interoperation, which—in any case—is
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not seen as congruent with CDN business strategies. These considerations explain why commercial CDN
services are too expensive for large-scale use by the scientific community, in spite of the fact that the cost of
the underlying servers and software is relatively modest. What is missing: (1) a scalable approach to a CDN
implementation (i.e., suitably designed forms of storage and processing at the nodes of the distribution tree)
and (2) the aggregate organizational will of the scientific community.

In the HPC context, a framework for in-transit processing has been proposed by Bennett et al. [14], where
data generated by simulations is transferred from the supercomputer to intermediate storage for asynchronous
processing before archiving. This method has enabled scientists who are dealing with the data deluge at
extreme scale to perform analyses at increased temporal resolutions, mitigate I/O costs, and significantly
improve the time to insight.

3.3.3 Strategy 3: Computing at the Edge (at the Source)

Edge computing can be differentiated from in-transit processing in two ways: (1) it may not need to support
competing users, although it probably does need to support multiple applications on behalf of cooperating
users, and (2) there may be fate sharing between the end user and the edge computation, meaning that fault
tolerance is not required. In addition, the resource limitations of the node on which edge computing is
implemented may be more stringent than the constraints on shared intermediate nodes.

Different edge scenarios may allow the constraints imposed on shared intermediate nodes (weak, simple,
general, and limited) to be loosened in different ways. In some cases, such as indefinite localized storage,
implementation at the edge is the only possibility.

In a network that only implements delivery of data between end systems, all computation and storage
must be implemented at the edges of the network. However, certain shared infrastructure can be thought of as
defining overlay networks that do support these services implemented at the application layer (e.g., CDNs).
The limitation of this approach is the inability to provision and operate shared resources on behalf of a larger
community and the inability to locate such resources at arbitrary points within the network topology.

4 Pathways to Convergence for Large, Logically Centralized Facilities

The examples presented in Section 2 of application-workflow convergence, which integrate both HPC
and HDA methods, promise to open new frontiers of scientific inquiry in almost all fields of science
and engineering. Today, scientific discovery almost universally integrates both advanced computing and
data analytics. This fusion also strongly motivates integrating the associated software with the hardware
infrastructures and ecosystems. Moreover, there are equally strong political and economic motivations for
such an approach, both within countries and across borders. Consequently, when the US National Strategic
Computing Initiative (NSCI) [29, 30] expresses the goal of “. . . [driving] the convergence of compute-intensive
and data-intensive systems,” and this goal is echoed in the strategic plans of the European Union (EU), Japan,
and China (Section 1), we can see that the question of what “convergence” might mean has at least one clear
answer in this context: at minimum, “convergence” means a scientific software ecosystem that overcomes the
current state of “Balkanization.” However, this raises challenges and problem areas that include, but are not
limited to, the following.

• Differing, though converging, cultures and tools: When the 1990s dot-com revolution began, the
underlying hardware and software infrastructure used for e-commerce sites was strikingly similar
to those used in HPC. Software developers could and did move readily across the two domains.
Indeed, the Web and the Web browser originated at scientific computing facilities—CERN and the
National Center for Supercomputing Applications (NCSA), respectively. Today’s cloud services run
atop hardware strikingly similar to that found in HPC systems—x86 systems with accelerators and



35

high-performance interconnects. Although the programming models and tools and the underlying
software differed markedly just a few years ago (Figure 1), there are now signs of convergence.
Container (virtualization) technology is now available on HPC systems, and machine learning tools
and techniques are increasingly being integrated into HPC workflows.

• Shifting workforce skills: Over the past 20 years, the information technology (IT) industry has
expanded dramatically, driven by e-commerce, social media, cloud services, and smartphones, with the
IoT, healthcare sensors, industrial automation, and autonomous vehicles further expanding the domain
of big data analytics and services. In response to seemingly insatiable workforce demands, most
students are now trained in software tools and techniques that target these commercial opportunities
rather than scientific computing and HPC. Few students outside of scientific domains learn C, Fortran,
or numerical methods, which could be considered the traditional “tools of the trade” in computational
sciences and engineering. This trend is an extension of one that began in the 1990s and is irreversible.
Consequently, the HPC community must and is beginning to embrace new tools and approaches while
also encouraging students to learn both HPC and data analytics tools.

• Adopting new infrastructure: The HPC community neither can nor should attempt to replicate the
vibrant big data and machine learning infrastructure and ecosystem. Simply put, the locus of investment
and human resources in data analytics and machine learning now rests with the commercial sector, and
it will drive ecosystem evolution. Lest this seem an insurmountable hurdle, it is worth remembering
that the HPC community has long been dependent on, and a contributor to, the Linux and open-source
software communities. Likewise, as core components of the HDA ecosystem become open source,
they will continue to create benefits for the HPC community. In particular, the Apache software stack,
R, and other machine learning toolkits are galvanizing a generation of faculty and students who see
a multitude of scientific and engineering applications for big data and machine learning technology.
Similarly, science and engineering researchers are increasingly applying machine learning technology
to their own domains.

• Stream and batch model coexistence: Leading-edge scientific computing systems are, by definition,
scarce resources. Thus, the HPC community has long relied on batch scheduling to maximize utilization
of limited hardware resources and to serve multiple scientific communities. By contrast, cloud
services and most sensor data, whether from small environmental monitors or large-scale observatories,
are (soft) real-time streams that necessitate continuous processing with flexible workflow systems.
Not surprisingly, these differences have profound implications for application programming models,
software tools, and system software, as streaming data analysis requires that at least some of the
resources be dedicated for days, months, and sometimes years. As new generations of scientific
instruments and environmental sensors produce ever-larger streams of daily data, real-time data
processing and statistical assimilation with computational models will drive fusion of batch and stream
models and will provide a strong motivation (as well as an opportunity) for the emergence of a flexible
common model to meet the needs of both HPC and HDA.

• Computing at the edge: Another consequence of real-time data streams is the need for computing
and analysis at the edge (i.e., at the data sources). Whether for data reduction and conditioning or more
rapid response than end-to-end network delays would permit for centralized analysis, workflows must
increasingly span a continuum of device types, bandwidth differences, and computing capabilities. The
shift of intelligence to the edge, coupled with central computing support, is a new model that combines
elements of HPC and HDA.

• Virtualization for sharing: Traditional virtual machine (VM) environments based on hypervisors
and replicated operating systems imposed large overheads and latencies, thereby rendering them less
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Figure 12: Trends of speed, energy efficiency, and power consumption of the worlds fastest computers [56, 77].

suitable for tightly coupled scientific applications. However, new technology (e.g., Linux “containers”
like Docker), have far less overhead for such workloads and are increasingly being deployed for
scientific computing. This enables developers to shape their application’s computing environment
and enables the provider to simultaneously run many such environments. Containerization also
brings scientific application portability, allowing workflows and software to be packaged, shared,
and redeployed without complex and often arduous configuration. In turn, this enables users and
communities to evaluate approaches and software easily and rapidly.

• Resource allocation and efficiency: The value of a large, centralized resource rests in part on its
scale. By allocating a substantial portion of the total resource, one can achieve results not possible
with smaller-scale infrastructure. This is equally true for commercial cloud infrastructure and the
largest HPC systems. On large HPC systems, this resource management uses work queueing (i.e.,
batch processing). Policies control resource allocation (e.g., to select only the most worthwhile
applications and to match the resource funders’ priorities). Permission for use depends on the quality
of an application’s optimization (for a given platform). Implicit in such an approach is the need for
efficiency, lest a precious resource be consumed unnecessarily. Efficiency may refer to application
execution efficiency, system utilization rate, and/or energy efficiency (Section 4.1). The cloud and big
data communities tend to emphasize user experience and scalability far more than efficiency, though
this is also changing rapidly as parallel computing techniques are being applied to machine learning.
This is an additional convergence opportunity, as both the HPC and big data application communities
learn from each other.

The raison d’être for BDEC is to help plan and create, in a coordinated and international way, a new
generation of software infrastructure for scientific research. However, our discussion in this section—of
strategies for integrating the infrastructures and ecosystems of large HPC computing platforms and facilities,
on the one hand, and of commercial cloud facilities, on the other—can address only some of them, and those
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only partially. In particular, in this section we largely abstract away from the large set of difficult issues
surrounding the explosive growth of data in edge computing environments, which is discussed in Section 3.

4.1 Common Context: Energy as an Overarching Challenge for Sustainablity

One challenge probably deserves special attention: making the scientific enterprise sustainable given current
technology would seem to demand that the total energy consumption of a given investigation be minimized
or at least kept within reasonable limits. Given that information and computing technology (ICT) required
about 4.7% of the world’s electricity in 201217 and continues to grow [39], its role in this problem cannot
be assumed to be negligible, especially if we include all aspects of ICT supporting a scientific endeavor.
These statistics are not limited to the energy used for simulations and statistical analyses. Data movement
from the instrument to quality assurance and integration organizations, to archival and curation sites, to each
scientific step that accesses the data, to visualizations, to researchers’ work spaces, and even to archives, can
all represent a very significant use of energy.

With this in mind, we identified four steps towards energy minimization: (1) reduce computational costs
by using platforms that are well-matched to the stage within the scientific method; (2) reduce data-movement
costs by using collocation, compression, and caching; (3) encourage reuse of calculations and data through
effective sharing, metadata, and catalogs—a strategy that a provenance system supports well; and (4) reduce
computing system entropy (e.g., workload interference, system jitter, tail latency, and other noise) through
on-demand isolation, noise-resistant priority, cache quality of service (QoS), and novel uncertainty bounding
techniques. The cyberinfrastructure itself has the task of taking care of energy minimization as it has access
to the required information; leaving this burden to the domain scientists is undesirable, since it would divert
them from their scientific goals.

Moving information is fundamentally energy consuming, more so if it is moved quickly. Moving it
across boundaries (e.g., from site to site, from an HPC system to an analysis platform system within the
same site, from node to node, or from one storage medium to another) incurs even greater costs. Avoiding
unnecessary repetitious transfers (e.g., by caching, reducing distances and boundary crossing by collocation,
reducing speed requirements by prefetching, and reducing volume by compression) can all help reduce these
costs. Reducing data transport costs and delays also encourages collocation of simulation platforms with
data-analysis platforms and with archival storage sites holding reference data.

However, challenges exist because of the limits of what can be achieved as environmental and social sci-
ence observation systems are inevitably a globally distributed endeavour. Furthermore, the many approaches,
different timescales, and different manifest effects make for growing diversity of primary data collection
and quality assurance. This is undertaken by a wide range of organizations, in many locations, that are
managing a wide variety of globally dispersed instruments. Data quality control also has to be done close to
the acquisition system. It is crucial that, as methods for caching data are developed, they do not detract from
the recognition of the value of data collectors, quality assurance teams, and data curation organizations.

Hence, a political and accounting model is needed to ensure energy savings and to sustain the respect
for the value of contributing institutions. For example, institutions responsible for emergency response
information services and hazard estimation, as well as research, will need to recruit the relevant experts and
have demonstrable resources that are needed in a major emergency. Major research universities and national
research centers need to have a sufficiently powerful computational resource acting as a “totem” so that they
can continue to attract leading researchers, projects, contracts, and funding. Therefore, there are pressures to
maintain the visibility of independent resources and to sustain their diversity. A cyberinfrastructure that spans
autonomous resources needs to minimize energy consumption to reduce environmental impact. However,
due consideration for the organizational and social issues must be given. Encouraging sharing and efficient

17Recent estimates place this as high as 10% .
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use of simulation runs and their results may have two benefits: (1) a reduction in environmental impact and
(2) an improvement in the quality and pace of scientific discovery—as has been demonstrated in cosmology
and climate modeling.

Publishing and sharing the models and the results of simulation runs, for an appropriate period, could
establish virtual numerical laboratories (Section 2.3.5), where many researchers could explore interpretations
and comparisons of simulation results with primary data. This amortizes the costs of the simulation runs and
data gathering over more investigations and over time.

4.2 Common Context: Data Reduction as a Fundamental Pattern in HPC and Big Data
Convergence

Data reduction is a common issue for both centralized and edge computing infrastructures and facilities. In
this section, we look at the “centralized” viewpoint; though the examples and arguments here also apply to
the outer edge, where—as explained in Section 3—data logistics are a key issue with the concomitant need
for reduction to prevent saturating the upstream (towards the center) communication channels.

Scientific simulations and instruments are already generating more data than can be stored, transmitted,
and analyzed. One of the most challenging issues in performing scientific simulations, running large-scale
parallel applications, or performing large-scale physics experiments today, is the vast amount of data to
store on disks, to transmit over networks, or to process in post analysis. The Hardware/Hybrid Accelerated
Cosmology Code (HACC), for example, can generate 20 petabytes of data for a single 1-trillion particle
simulation. And yet a system like the “Mira” supercomputer at the Argonne Leadership Computing Facility
(ALCF) has only 26 petabytes of file storage, and a single user cannot request 75% of the total storage
capacity for a simulation. Climate research also deals with a large volume of data during simulation and post
analysis. As indicated by [40], nearly 2.5 petabytes of data were produced by the Community Earth System
Model (CESM) for the Coupled Model Inter-comparison Project (CMIP) Phase 5, which further introduced
170 terabytes of post-processing data submitted to the ESGF [76]. Estimates of the raw data requirements for
CMIP Phase 6 exceed 10 petabytes [6].

Scientific experiments on large-scale instruments also require significant data reduction, and updates
of these instruments will produce orders of magnitudes more data. For example, the National Institutes for
Health’s (NIH’s) Brain Initiative focuses on high-throughput x-ray tomography of whole mouse brains using
the upgraded APS source. Researchers need to generate high-throughput mosaic tomography with a total
reconstruction volume of about 40 teravoxels (corresponding to 160 terabytes) per specimen, followed by
automated transport, cataloging, analysis, and comparison of a very large number of specimens in order
to understand disease-correlated changes in brain structure. Another example is the integrated circuit (IC)
imaging study under Intelligence Advanced Research Projects Activity’s (IARPA’s) Rapid Analysis of Various
Emerging Nanoelectronics (RAVEN) program, still at the APS. Every IC will involve about 8 petavoxels
(corresponding to 32 petabytes) in the reconstructed image obtained via x-ray ptychography. Todays detector
can acquire up to 500 frames per second, and each frame is about 1,000×1,000, at 16 bits (0.98 gigabytes
per second). With the APS-U, researchers expect to acquire data at a 12 KHz frame rate or 23 gigabytes
per second, for a total volume of data reaching 70 exabytes. In these two cases, the data produced will be
transferred to a supercomputing facility for data analysis. Even upgrading the connection between the APS
and the ALCF will not allow one to transfer the data quickly enough to keep up with the flow produced by
the instrument. For example, a 20 gigabit per second connection would still require months to move the data
from the source to its analysis location.

The communication, analysis, and storage of data from these experiments will only be possible through
aggressive data reduction that is capable of shrinking datasets by one or more orders of magnitude. Aggressive
data reduction techniques already exist but in a very ad-hoc form. The LHC, for example, already reduces the
data produced by the detectors and plans to reduce the data even more in Run 3 [2]. The raw data per event is
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about 1 megabyte for Atlas and the Compact Muon Solenoid (CMS), and 100 kilobytes for LHCb. Atlas
currently produces events at 100 Mhz for Run 2, CMS currently produces events at 100 Mhz for Run 2, and
LHCb currently produces events at 1 Ghz for Run 2. For Run 3, Atlas will produce events at 0.4 Mhz, CMS
will produce events at 0.5 Mhz, and LHCb will produce events at 40 Mhz.

These detectors will produce a gigantic amount of data at an extraordinary rate: 60 terabytes per second
for ATLAS and CMS and 2 terabytes per second for LHCb. To tackle this unprecedented data flow, the
Alice project has defined a new combined offline-online framework called “O2” that supports data flows and
processing. It performs online compression of events to reduce the data rate of storage to ∼20 gigabytes
per second. For Run 3; the O2 framework design features 463 FPGA detectors for readout and fast cluster
finding; 100,000 CPU cores to compress 1.1 terabytes per second data streams; 5,000 GPUs to speed up the
reconstruction; and 50 petabytes of disk storage to enable more precise calibration.

Aggressive data reduction is already used in the consumer environment, and the consumer big data
domain is preceding the scientific domain on the systematic use of lossy data reduction. Most of the photos
taken by smartphones or digital cameras are stored in a lossy compressed version. This is also true for music
files, and digital music is stored in lossy compressed format on most devices. The projection made by Cisco
about future Internet traffic is striking: in 2025, 80% of Internet traffic will be video streaming, which means
that more than 80% of the data transiting on the Internet will be lossy compressed. Microsoft has already
deployed FPGAs into its data center to accelerate Lempel-Ziv-Markov chain algorithm (LZMA) and JPEG
compression as well as other frequent operations, such as encryption.

An important distinction between scientific and consumer big data domains is the specificity of the data
reduction techniques. As mentioned previously, aggressive data reduction techniques in the scientific domain
are currently ad hoc. Conversely, the consumer big data domain relies on generic compressors (e.g., JPEG
for images, MP3 for audio, and MPEG4 for video). This also reveals a certain advance of the consumer big
data domain over the scientific domain. An important push toward the use of generic lossy compressors
in scientific applications is the trend toward a generalization of its usage. The United States’ Exascale
Computing Project (ECP) helped identify and better quantify these needs. Many scientific applications at
extreme scale already need aggressive data reduction. Spatial sampling and decimation in time are used to
reduce data, but these techniques also significantly reduce the quality of the data analytics performed on the
sampled or decimated datasets. Advanced lossy compression techniques provide a solution to this problem
by enabling the user to control the data reduction error. Another important distinction between scientific and
consumer big data domains is the difference in quality assessment of the reduced dataset. JPEG, MP3, and
MPEG4 are not only generic, they are also universal: all users have the same perception of images and sound.
This allows for defining compression quality criteria that correspond to a very large population of users. This
is not the case in the scientific big data domain, where each combination of application and dataset may lead
users to define different sets of quality criteria. One open question is the relevant set of quality criteria for
scientific datasets. Users have already expressed the need to assess spectral alteration, correlation alteration,
the statistical properties of the compression error, the alteration of first-order and second-order derivatives,
and more. As the domain of lossy data reduction for scientific datasets grows, the community will learn what
metrics are relevant and needed.

Although compression is critical for enabling the evolution of many scientific domains to the next stage,
the technology of scientific data compression and the understanding on how to use it are still in their infancy.
The first piece of evidence is the lack of results in this domain: over the 26 years of the prestigious Institute
of Electrical and Electronics Engineers (IEEE) Data Compression Conferences, only 12 papers identify an
aspect of scientific data in their title (e.g., floating-point data, data from simulation, numerical data, and
scientific data). The second piece of evidence is the poor performance on some datasets.

Beyond the research on compression, scientists also need to understand how to use lossy compression.
The classic features of compressors (e.g., integer data compression, floating-point data compression, fast
compression and decompression, error bounds for lossy compressors) do not characterize compressors,
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specifically, with respect to their integration into an HPC and HDA workflow. For example, in the APS’s
IC imaging application, assuming a lossy compressor capable of 100× compression, can we perform the
tomography and the data analytics directly from the compressed data? Obviously, if the subsequent analysis
steps can only work from decompressed data, large storage and significant decompression time will be
needed. If the data needs to be decompressed, can we decompress it only partially to allow for pipelined
decompression, reconstruction, and analytics? Note that partial decompression requires random access to the
compressed dataset—a capability that is not systematically considered a priority today in aggressive data
reduction techniques. The same set of questions applies to large-scale simulations: if we can avoid data
sampling and decimation and compress the raw dataset by a factor of 100, can the following data analytics
steps be performed on the compressed data?

4.3 Architecture

4.3.1 Radically Improved Resource Management for Next-Generation Workflows

As large HPC systems become major nodes in data-intensive workflows, which encompass not just classical
HPC applications, but also big data, analytics, machine learning, and more, it becomes important to provide
both the hardware and software support to run those workflows as seamlessly as possible. It is certainly clear
that the diverse application communities described in Section 2.3 would benefit from a combination of HPC,
data-intensive, and high-throughput computing resources. Many of the requirements of such communities are
summarized below.

• Software stack: Ability to run an arbitrarily complex software stack on demand.

• Resilience: Ability to handle failures of job streams and ability to checkpoint/restart applications (ide-
ally using application-based methods) for dynamically allocating resources to urgent computing/post-
processing workloads (e.g., massive amount of data coming from large-scale instrumentation, clinical
data from hospitals)

• Resource flexibility: Ability to run complex workflows with changing computational “width.”

• Centralized intelligence of the resource manager: Knowing the behavior/request of each application,
the policies of the center, the current status of the systems, and the number of jobs running/to be
executed, with the ability to “smart schedule” jobs on the system with the appropriate level of resource
allocation (in terms of energy, memory, and storage placement).

• Wide-area data awareness: Ability to seamlessly move computing resources to the data (and vice
versa where possible); ability to access remote databases and ensure data consistency.

• Automated workloads: Ability to run automated production workflows.

• End-to-end, simulation-based analyses: Ability to run analysis workflows on simulations using a
combination of in situ and offline/co-scheduling approaches.

Although the notion of being able to launch multiple application workflows from the exemplars presented
in Section 2.3 in a converged manner is attractive, having to launch them on a single converged hardware
platform is not. Fortunately, however, this is a place where the hourglass model can be beneficial. We want to
be able to support workflows consisting of multiple and divergent applications (e.g., classical HPC, machine
learning, visualization), the top portion of the hourglass. We also envision, as described in the hardware
trends section, an increasing proliferation of hardware—be it in processors, accelerators, FPGAs, etc.—to
target these divergent applications. This is positive, as this hardware will best meet (in terms of performance,
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Figure 13: The OpenHPC modular software stack, with the components of the control system, required for a
flexible workflow configuration, on the left.

power, and cost) the needs of the different applications. This is the bottom portion of the hourglass. However,
in an ideal world, the application would just be built and execute on the correct hardware. Thus the middle,
narrow portion of the hourglass allows application developers to just be concerned with their code. Between
the ideal world and what is implementable in an early version, there is a continuum of system software
options that allow the application programmer to focus less on how to run their workflow and more on what
interactions between different applications in their workflow need to occur. Thus, the goal of this section is to
describe, from a system management perspective, the different levels we can take to move us toward the ideal
world, where the users need only to care about their application.

We define “system management” as how a machine (or collection of machines) is controlled via system
software to boot, execute workflows, and allow administrators or users to interact with and control the system.
The “control system” is comprised of a set of components in the software stack that enable this functionality.
From the OpenHPC18 software stack depicted in Figure 13, we define the “control system” to be those
components shown on the left side in blue. Many of these components need to be extended to provide a
converged view and operation of the machine—especially in the face of divergent hardware. As described
above, there is a continuum from a manually (by application effort) converged machine to a fully automated
one.

We view the roadmap to successful convergence as moving along this continuum, freeing the user from
the responsibility of managing the underlying machines themselves. This accomplishes two things. It makes
the user wishing to leverage a converged system more productive. More importantly, it opens up such an
architecture to a much broader user base. Without system software efforts in moving us towards the converged
hourglass model, it will be difficult to gain widespread use of the increasingly complex machines.

So we can clearly describe the different capabilities needed, we divide the continuum into the following
discrete points.

C1. The user workflow (via scripting) knows about the different underlying machines and architectures
and launches its individual application on the various machines, interacts with the various resource
management and monitoring components, and collates the data coming from the different machines

18 http://www.openhpc.community/

http://www.openhpc.community/
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and applications. The user must manage the individual steps in the workflow and ensure that the data is
correctly transferred and is where it needs to be.

C2. The user workflow knows about the different underlying machines and architectures and indicates
where and how different applications in the workflow should run. The underlying control system
manages the launching of the different applications and the staging of the data before and between the
application execution. It returns to the user when the workflow is finished.

C3. The user specifies the workflow by describing each application. The compiler, runtimes (e.g., MPI,
partitioned global address space [PGAS], and Open Multi-Processing [OpenMP]), and control system
automatically construct the workflow, launch the individual applications, shepherd the data to the
applications, collate the results, and present the collated results of the workflow to the user. Note: there
is probably a reasonable point between C2 and C3, but given that C2 is a significant piece and likely
challenging enough in the short to middle term, we leave the various aspects of moving from C2 to C3
as good topics for advanced research without presupposing how they would be divided.

We now describe the system software including the control system work that needs to be accomplished
for each of the points. Even though C1 appears to place all of the burden on the user, there is still control
system work that needs to occur to obtain a reasonable C1. In particular, today’s accelerators, FPGAs, and
non-standard core computing elements are not well understood by the operating system, resource manager, or
monitoring and control systems. More work needs to be put into enhancing these components to comprehend
the new types of hardware that will be available. Much, but probably not all, of this work will be undertaken
by vendors producing new hardware. However, there will still be open-source work (e.g., Slurm in the RM
space or the Performance API [PAPI] in the monitoring space) that either the vendors would need to fund or
the community will need to contribute.

As indicated, C2 is the desired intermediate step, where we believe efforts should be directed to achieve
widespread use of the converged system. Significant control system work must be undertaken to achieve C2.
First, high-level architecture work should determine the best way to bring machines together. We use resource
management as an example, but it applies for many of the other components (e.g., provisioning and fabric
management). Work should also be done to determine whether there should be a single resource manager that
spans each of the underlying machines or whether there should be an overarching (new) resource manager that
knows how to communicate with the resource managers on each machine. Either path is a non-trivial effort.
It is likely the latter can be more easily achieved because individual resource managers will be developed to
handle each machine—by the open-source community, by the vendor producing a given machine, or by a
combination of both. However, the downside of this overarching resource manager approach is that there will
likely be inefficiencies and potentially missing functionality in each individual manager. The positive side of
this approach is that the effort to build even a single resource manager and keep it current with the broadening
architecture is very large, so keeping the sum total effort reduced is a plus. The overarching approach also
has the advantage of being able to more readily leverage particular features put in by a particular resource
manager for a given hardware platform. A hybrid approach is also possible. There are likely to be resource
managers that work on many of the underlying hardware platforms, and some additional capability could
be added with modest cost to enable them to recognize that they are managing a machine in a group of
machines—where another of those machines is managed by another copy of the same resource manager.

In addition to this, the control system components must be made aware of the different types of machines
and be able to map between the user-specific “where and how” to the underlying machine. In this model, the
components also (given a sufficiently rich enough description) need to be able to ensure the data is available
to a particular application of a workflow at the right time in the right place. This could be as simple as a single,
globally shared file system. However, given the impending memory hierarchy architecture, it is much more
likely to mean that many of the components (e.g., provision and resource managers) need to be connected to
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a data manager that knows in what non-volatile memory (NVM) a particular dataset resides and also has the
capability to move the data around and pre-stage it for efficiency. In this model, the user still needs to have
knowledge of the various applications in their workflow and where they would like those applications to run.

Thirdly, C3 represents an ideal state, where the user writes the applications in the workflow and describes
how they are related. During the compilation phase, information is extracted to determine the best underlying
architecture on which to run. The various runtimes move the computations dynamically between the different
hardware types on a given machine, and the control system components move the computation between
different machines at the appropriate times. Data is moved around between the NVM connected to each of
the computing components. This removes the burden of determining the best type of hardware on which
to run, and it removes the burden of creating the workflow specifying where the individual applications
need to run each application (or even subsets or phases of applications). While there is considerable and
unknown research work that needs to be accomplished, some aspects of this work are already underway. For
example, the OpenMP runtime manages systems with standard cores and GPUs, or cores and accelerators, and
moves computation automatically based on monitoring information from the application. For C3, necessary
components will likely be researched in the medium term, with the overall puzzle being filled in based on
research trends and availability of funding.

Having described the steps for system software along the path toward providing a converged machine,
including the different possible points along the path and the work needed to achieve them, it is important
to note that OpenHPC is not the only implementation strategy. In particular, OpenStack19 provides a set of
alternative implementations to many of the control system components depicted in Figure 13. For example,
OpenHPC provides validated recipes using bare-metal provisioners like Warewulf and xCAT, while OpenStack
uses Glance and Ironic for image management and provisioning. OpenStack has focused on the cloud, while
OpenHPC has focused on classical HPC. As this report exemplifies, there is interest from both sides for
bringing the stacks together. There are two approaches. It is possible to use an OpenStack environment to
deploy OpenHPC runtimes and development tools across a set of compute resources. The nodes would run
with the high performance of OpenHPC and provide HPC performance in a cloud environment. The other
approach would be to run elements of OpenStack within an OpenHPC environment. The former approach
was demonstrated as a proof of concept at SC16. Other work in this vein has been to run an instance of
OpenHPC in Azure. These examples demonstrate the value of having a more unified approach for some types
of workflows.

4.3.2 Considering Containerization as the New “Narrow Waist”

A typical HPC application code is composed of source code (Fortran, C, C++, Python), which is explicitly
developed and managed by the application development team, and of links to reusable component libraries.
Commonly used libraries like MPI and basic linear algebra subprograms (BLAS) are often obtained from
pre-built object code that is installed and managed by a system administrator. However, other libraries like
solvers, I/O tools, and data analysis packages are often downloaded from a website supported by the library
development team and built from source code.

This model of building from source is accepted and common in the HPC community, but unfamiliar to
much of the HDA community. Although software components developed by the HPC community may have
much to offer the HDA community in terms of scalable computational and data management capabilities, the
build-from-source assumption is a nonstarter.

One of the first places where this spanning layer analysis is likely to be used is in the consideration of
“container” technology (Figure 14). Containerization has emerged as a technology that, already used in HDA,
has strong potential to serve as a software bridge to the HPC community. Containers avoid the runtime

19 https://www.openstack.org/

https://www.openstack.org/
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Figure 14: One vision of containerization as the narrow waist of the system software stack. Credit: Fu et al.
[38]

overhead of VMs by being integrated into the host kernel, thereby making execution times within a container
essentially the same as those from a native installation on a given system. This fact has spurred interest
on the part of HPC system vendors to start supporting containers on leadership-computing platforms. For
this reason and others, and as shown in Figure 14, containers are already being considered as a potential
spanning layer for cloud infrastructure [38]. Since containers have emerged as a viable delivery platform for
HPC software, and are already widely used in HDA, they have become an attractive target for convergence
between HDA and HPC. Packaging reusable HPC software components in containers dramatically reduces
the usage barrier for the HDA community (and the HPC community), providing a large collection of high
performance capabilities never seen before by the HDA community. For the HPC community, containers also
dramatically reduce the usage barrier, thereby making previously challenging workflow setups almost trivial,
and providing a portable software environment on many HPC systems. Also, once containers are adopted by
the HPC community, HDA components become available to the HPC community. Thus, the bidirectional
benefits of containerization are very compelling.

The HPC community is just starting its exploration of the potential for containerization. Further HPC
opportunities include isolation to reduce performance variability due to kernel interrupts, coexistence of
distinct software stacks on the same hardware platform, launch-time detection of special compute devices
such as GPUs, and more. Issues to be explored are listed below.

• The use of containers promises greater portability and isolation. The former reduces or eliminates
sensitivity to differences in the underlying platform, thereby increasing flexibility when multiple
platform versions are in use; and the latter provides better protection from performance variability by
reducing interrupts in multi-kernel environments.

• The enhanced portability provided by containers suggests that they might be used to create a spanning
layer that provides a bridge between the data center/cloud and edge systems. In that context, two issues
will need to be explored. First, loading the entire runtime environment of an indeterminate number of
processes on an edge system—and making available the CPU, memory, and other resources to enable
them to run to completion—is a heavy lift. A thin edge node may not be able to support many, or
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even a single large container. The second issue is that the runtime environment in such a scenario is
indivisible. A process invoked on one processor may be tied to that processor until it completes. A
container that has allocated, and is using, resources within the host operating system may have to reside
on that host until its entire cohort of processes has completed. If changing or unexpected events prevent
the successful completion of the containers execution, it may or may not be possible to checkpoint and
migrate the environment, depending on the characteristics of the host operating system.

• While the HDA community’s container ecosystems are already very valuable to the HPC community,
notable security features—essential for any effective deployment in a multi-user environment—are
currently missing. But HPC environments are always multi-job, mult-user environments. Furthermore,
sensitive system and user data are typically present on the system at any given time. Common container
environments such as Docker [cite] effectively permit root access from the container into the host
environment, which is clearly unacceptable on an HPC platform. Augmented environments such
as Shifter [cite] can encapsulate a standard container and improve the security and device detection
capabilities needed for HPC.

4.4 Software

As the new era of big data and extreme-scale computing continues to develop, it seems clear that both
centralized systems (i.e., HPC centers and commercial cloud systems) and decentralized systems (i.e., any
of the alternative designs for edge/fog infrastructure) will share many common software challenges and
opportunities. For example, continued exponential growth in data volumes will make data reduction of one
form or another indispensable on all fronts. None the less, we locate much of the discussion of software issues
and possibilities in this section on centralized infrastructure, because—despite the recognized differences and
uncertainties—architectural and hardware questions for HPC and cloud computing environments are still
far clearer than they are for edge/fog environments, where proposals, blueprints, and promises now prevail.
Thus, many of the software issues that are discussed in this section will need to be revisited for edge/fog
environments as their platform models acquire more definition and begin to stabilize.

4.4.1 Software Libraries for Common Intermediate Processing Tasks

One common theme in the workflow descriptions at the BDEC workshop was the amount of “intermediate”
(or pre) processing that data requires before the more substantial analysis and visualization processes occur.
For instance, we describe “multi-messenger” forms of inquiry in Section 2.3, which tend to exhibit a relatively
common set of requirements, listed below.

• Identify and segment trillions of multi-scale objects from spatio-temporal datasets.

• Extract features from objects and spatio-temporal regions.

• Support queries against ensembles of features extracted from multiple datasets.

• Use statistical analyses and machine learning to link features to physical and biological phenomena.

• Use feature-driven simulation; extracted features used as simulation initial, boundary conditions, and
to assimilate data into simulations.

• Develop and enrich in-situ/in-transit framework with machine/deep learning capabilities for on-the-fly
automatic pertinent structures detection/extraction for both static and dynamic analysis.

• As a reverse loop, perform smart computational steering of the application—also seen above in
Section 2.3.5.
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Many of the intermediate transformations in this list are normally described in generic terms: cleaning,
subsetting, filtering, mapping, object segmentation, feature extraction, registration, etc. The question
is whether or not some of these operations are generic enough that a common set of software tools—
appropriately layered and modularized—could be developed to serve the diverse purposes of a number of
different communities at the same time. For example, image-driven workflows from fields such as medical
imaging, microscopy, and remote (satellite) sensing, utilize all of the operations given above. Although the
co-design effort that would probably be necessary to produce it would be challenging to organize, common
software infrastructure that (suitably configured) could satisfy intermediate processing needs in a wide variety
of fields would be a boon to data-driven research.

• A common and visible data model: One major obstacle to creating shared software infrastructure for
intermediate processing is the absence of interoperable data object models, or, just as importantly, a
way of making the object model being used visible. The effort to develop a common model achieved
limited success when object-oriented databases (OODBs) were introduced in the 1990s. However, that
success was largely restricted to tightly coupled systems, and these tools did not succeed for many
more loosely coupled situations, which are typical of today’s many emerging BDEC domains and
workflows. Web-based approaches (e.g., the representational state transfer [REST] API) are likely to be
viable for only a relatively small segment of these big data applications. Common object models have
been established in some application domains (e.g., multi-physics applications and climate modeling),
but creating a common software stack that supports more general interoperability has proved elusive.
Moreover, for any such model to succeed, it will need to be flexible enough to provide data layout
distribution options to support the kind of parallelism that applications and I/O services will require.

• Shared software infrastructure for intermediate processing: The digitization of all scientific data
has opened up a major opportunity space for research methods that integrate or synthesize data
of multiple types and/or from multiple sources or sensor modalities. This is particularly true for
application areas, now common, that utilize and combine multi-dimensional, spatial-temporal datasets.
Examples include radioimaging and microscopy imaging combined with “omic” data; simulation
data (e.g., for oil fields, carbon sequestration, groundwater pollution/remediation) combined with
seismic and earth sensor data; and weather prediction based on the real-time integration of data from
simulations, satellites, ground sensors, and live video feeds. The Google self-driving car provides a
more practical consumer illustration of real-time integrated analysis of correlative data from multiple
sensor modalities and sources. The multi-dimensional data space that these applications define tends to
be high resolution in each of their correlative dimensions, so that, when even a modest number of data
steps is involved, extremely large volumes of data need to be accessed and processed in a coordinated
way.

4.4.2 Math Libraries, Software Ecosystems for Application Development

Leveraging HPC Math Libraries in HDA
The HPC community has a large and growing collection of high performance math libraries for scientific
computing. Many of these libraries have been carefully designed and implemented to exploit scalable parallel
systems, from multi-core and GPU-enabled laptops to the largest computing systems in the world. At the
same time, these libraries are typically used by the HPC community in the form of user-compiled source
code. Furthermore, the interfaces to these libraries are complex, with many options that require substantial
experience in mathematical algorithms and parallel computing.

The advent of component-based software ecosystems like Docker, enables pre-compilation and predefined
parameterization of HPC math libraries for dedicated problem solving in a component software ecosystem.
For example, the Trilinos eigensolver package, “Anasazi,” has many algorithmic and parameter options that
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can be adapted to provide capabilities for a variety of problems. Furthermore, Anasazi has a complex build
environment that supports optimized compilation on a variety of platforms. While attractive to experts, the
sheer range of choices can be a nonstarter for someone who simply wants a solver for large sparse eigenvalue
problems.

Containers provide an opportunity to encapsulate the complexity of a solver like Anasazi by supporting
pre-compilation of the source and a simplified interface, such that the resulting container can be considered a
filter that takes a sparse matrix as input and produces eigenvalues and eigenvectors as output; executes on a
laptop, parallel cluster, or supercomputer; and provides a portable workflow environment for the user. This
capability will enable turnkey use of sophisticated solvers for both HPC and HDA users.

New Efforts for Dense Linear Algebra Standards
The emergence of new HDA markets has created renewed and expanded interest in standard functionality
and interfaces for dense linear algebra. The so-called “batched BLAS” is a new standards effort looking to
efficiently compute dense linear operations on a large collection of matrices at the same time. These kernels
have always been of interest in finite element computations, part of the HPC community, but have never had
the market potential to drive a standard. The emergence of “deep learning” algorithms in HDA provides new
incentives, and the linear algebra community is now working toward a standard. Batched BLAS and other
potential standards that can benefit both HPC and HDA represent a synergistic opportunity that would not be
otherwise easy to exploit.

Challenges in the HPC Software Ecosystem
While in many ways the HPC software ecosystem is rich, stable, and provides a ready-made environment for
attaining good performance, there are some challenges that only time, exploration, and “coopetition” can
resolve. Of particular importance are standards for shared memory parallel programming. While MPI is the
ubiquitous and acknowledged standard for inter-node (across node) parallel programming and execution,
intra-node parallel programming and execution environments are not nearly as stable. Presently, there are two
dominant efforts, OpenMP and Open Accelerators (OpenACC), that are targeting two distinct approaches to
node-level parallelism.

OpenMP and its predecessors have been available for more than three decades, and these programming
models are particularly suitable for multi-core CPUs and many-core parallel processors (e.g., Intel Xeon Phi
or GPUs). OpenACC started as a forked effort of OpenMP, with the intent to focus more specifically on
accelerators like NVIDIA GPUs. While there is resolve on the part of the HPC community to bring OpenMP
and OpenACC back together, the obvious self-interest of specific vendors leads to competitive concerns
that fundamental design choices could bias the community for or against a particular architecture. This
“coopetition” is healthy and necessary to ensure a truly portable standard that can support the all-important
intra-node parallelism approaches. Even so, the present state of uncertainty makes the writing of portable
intra-node parallel code particularly challenging at this time.

4.4.3 Interoperability between programming models and data formats

While HPC programming applications have traditionally been based on MPI to support parallel and distributed
execution, and based on OpenMP or other alternatives to exploit the parallelism inside the node, big data
programming models are based on interfaces like Hadoop, MapReduce, or Spark. In addition to different
programming models, the programming languages also differ between the two communities—with Fortran
and C/C++ being the most common languages in HPC applications, and Java, Scala, or Python being the
most common languages in big data applications.

This divergence between programming models and languages poses a convergence issue, not only with
regard to interoperability of the applications but also to the interoperability between data formats from



48

different programming languages. In this scenario, we need to consider how to build end-to-end workflows,
providing a coordination layer that enables the management of dynamic workflows composed of simulations,
analytics, and visualizations—including I/O from streams. In such a scenario, simulations can be MPI
applications written in Fortran or C/C++, and the analytics codes can be written in Java or Python (maybe
parallelized with Spark). To enable the efficient exchange of data between the simulations and analytics
parts of the workflows, other means beyond traditional POSIX files should be considered. Alternatives for
implementing this are being considered, with approaches like dataClay or Hecuba, which provide persistent
storage libraries and tools. However, further research still remains to better support data interoperability
between different programming languages.

5 Conclusions and Recommendations

The goal of the BDEC workshops has been to develop an ICT planning document for science and engineering
that articulates an analysis and vision of the conjoint evolution of data-intensive research and extreme-
scale computing. As we argued above, however, since there is no widely agreed upon model for the new
kind of DSP that data-intensive workflows of the big data era seem to require, traditional technology road
mapping techniques may be inappropriate. Following the structure of the document, we divided our findings
and recommendations into three categories: (1) global recommendations, (2) recommendations for edge
environments, and (3) recommendations for centralized facilities. However, our ultimate goal is to prepare
the ground for the kind of community-driven “shaping strategy” [43, 44] approach that we believe would
be both more appropriate and more successful (Section 1.2). Consequently, the conclusions as they appear
below may have to be refactored to serve the shaping strategy model.

5.1 Global Recommendations

The major recommendation is to address the basic problem of the two paradigm splits: the HPC/HDA
software ecosystem split and the wide-area data logistics split. For this to be achieved, new standards are
needed to govern the interoperability between data and compute. However, if we want a new distributed
infrastructure to support science and engineering research in the era of big data—an infrastructure with
the kind of openness, scalability, and flexible resource sharing that has characterized the legacy Internet
paradigm—then we will have to define a new, common, and open DSP, one that offers programmable access
to shared processing, storage, and communication resources, and that can serve as a universal foundation
for the component interoperability that novel services and applications will require. As the data revolution
continues, such well-designed DSP infrastructure will be necessary to support such compute-intensive and/or
data-intensive work that many application areas will have to carry out between the ingress/egress to the cloud
(or data/HPC center) and the network edge. As the history of the Internet shows, the scientific community
is, with appropriate public investment in basic research and development, uniquely positioned to create and
develop the kind of DSP that the emerging era of extreme-scale data and computing requires, building on the
kind of open, consensus-driven approach that helped establish the Internet.

5.2 Recommendations for Decentralized Facilities for Edge and Peripheral Ecosystems

1. Converging on a New Hourglass Architecture for a Common DSP: The “hourglass” represents
the idea that an appropriately designed common interface can be implemented on an ever-increasing
variety of technology platforms (yielding a wide “lower bell”), while at the same time supporting
an equally diverse and growing variety of applications (yielding a wide “upper bell”). The common
interface, or “thin waist of the hourglass,” is called the “spanning layer” because it bridges, through
virtualization, a heterogeneous set of resources that lie below it but leaves the application and services
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above it free to evolve independently. This point clearly ties in with the global recommendation
above. Unfortunately, in seeking a new spanning layer to address the challenges of the big data era,
the science cyberinfrastructure community finds itself in something of a dilemma. On one hand, at
present there does seem to be at least one plausible and widely touted candidate for the new spanning
layer—operating system–level virtualization that supports software “containers.” Certainly, converging
on a common interface for containerization would go a long way to achieving ecosystem convergence
and do so in way that requires something closer to evolutionary, as opposed to revolutionary, changes
to current modes of operation.

Containerization should thus be a very active area of research and experimentation across all contexts
that scientific cyberinfrastructure will have to address, including commercial clouds, HPC systems,
and computing resources deployed in edge environments. At the same time, the fact that containers
preserve legacy silos for storage, processing, and communication at a low-level, and may therefore
bring with them unexpected impediments to interoperable convergence, suggests that other ideas for a
new spanning layer should also be aggressively pursued.

2. Target Workflow Patterns for Improved Data Logistics: There seem to be at least four non-
exclusive alternatives for interfacing HPC to this new DSP paradigm, in which no strong assumptions
are made about where the data are located: (1) data streaming, (2) in-transit processing, (3) pro-
cessing at the edge of the distributed system (i.e., as close as possible to the data sources), and (4)
logically centered cloud-like processing. These should be the basis for new research funding with an
applications-oriented objective.

3. Cloud Stream Processing Capabilities: Stream processing in cloud computing was not designed
with HPC in mind, and there is a need to examine the high performance aspects of the runtimes used in
this environment.

4. Content Delivery/Distribution Networks: Commercial CDNs are expensive to run and create barriers
to interoperation. To resolve this requires (1) a scalable approach to CDN implementation (i.e., suitably
designed forms of storage and processing at the nodes of the distribution tree) and (2) the aggregate
organizational will of the scientific community.

5. Software Libraries for Common Intermediate Processing Tasks: One common theme in the work-
flow descriptions is the amount of “intermediate” (or pre-) processing that data requires before the more
substantial analysis and visualization processes can occur. Some of these operations are generic enough
that a common set of software tools—appropriately layered and modularized—could be developed to
serve the diverse purposes of a number of different communities at the same time.

5.3 Recommendations for Centralized Facilities

1. Energy as an Overarching Challenge for Sustainability: We can identify four steps towards energy
minimization: (1) reduce computational costs by using platforms that are well-matched to the stage
within the scientific method; (2) reduce data-movement costs by using collocation, compression,
and caching; (3) encourage reuse of calculations and data through effective sharing, metadata, and
catalogs—a strategy that a provenance system supports well; and (4) reduce computing system entropy
(e.g., workload interference, system jitter, tail latency, and other noise) through on-demand isolation,
noise-resistant priority, cache QoS, and novel uncertainty bounding techniques. The cyberinfrastructure
itself has the task of taking care of energy minimization as it has access to the required information;
leaving this burden to the domain scientists is undesirable, since it would divert them from their
scientific goals.



50

2. Data Reduction as a Fundamental Pattern: The communication, analysis, and storage of data from
large scientific experiments will only be possible through aggressive data reduction that is capable of
shrinking datasets by one or more orders of magnitude. Although compression is critical to enabling
the evolution of many scientific domains to the next stage, the technology of scientific data compression
and the understanding of how to use it are still in their infancy. Beyond the research on compression,
scientists also need to understand how to use lossy compression. If the data needs to be decompressed,
can we decompress it only partially to allow for pipelined decompression, reconstruction, and analytics?
The same set of questions applies to large-scale simulations: if we can avoid data sampling and
decimation and compress the raw dataset by a factor of 100, can the data analytics be performed on the
compressed data?

3. Radically Improved Resource Management: As HPC workflows start encompassing not just classi-
cal HPC applications, but also big data, analytics, machine learning, and more, it becomes important to
provide both the hardware and software support to run those workflows as seamlessly as possible. We
define “system management” to be how a machine (or collection of machines) is controlled via system
software to boot, execute workflows, and allow administrators or users to interact with and control the
system. The roadmap to successful convergence requires freeing the user from the responsibility of
managing the underlying machines themselves.

4. Software Issues: As the new era of big data and extreme-scale computing continues to develop, it
seems clear that both centralized systems (e.g., HPC centers and commercial cloud systems) and
decentralized systems (e.g., any of the alternative designs for edge/fog infrastructure) will share many
common software challenges and opportunities. Eminent among these are the following needs.

• Leverage HPC math libraries for HDA;

• Increase efforts for dense linear algebra standards;

• Develop new standards for shared memory parallel processing; and

• Ensure interoperability between programming models and data formats.

5. Machine Learning: Machine learning is emerging as a general tool to augment and extend mechanistic
models in many fields and is becoming an important component of scientific workloads. From a
computational architecture standpoint, deep neural network (DNN) based scientific applications have
some unique requirements. They require high compute density to support matrix-matrix and matrix-
vector operations, but they rarely require 64-bit or even 32-bit precision arithmetic, thus architects
should continue to create new instructions and new design points to accelerate the training stage of
the neural network. Most current DNNs rely on dense, fully connected networks and convolutional
networks and are thus reasonably matched to current HPC accelerators (i.e., GPUs and Xeon Phi).
However, future DNNs may rely less on dense communication patterns. In general, DNNs do not have
good strong-scaling behavior. So, to fully exploit large-scale parallelism, they rely on a combination of
model, data, and search parallelism.

Deep learning problems also require large quantities of training data to be made available or gener-
ated at each node, thus providing opportunities for non-volatile random access memory (NVRAM).
Discovering optimal deep learning models often involves a large-scale search of hyperparameters. It
is not uncommon to search a space of tens of thousands of model configurations. Naive searches are
outperformed by various intelligent searching strategies, including new approaches that use generative
neural networks to manage the search space. HPC architectures that can support these large-scale
intelligent search methods, and also support efficient model training, are needed.
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A List of Acronyms and Abbreviations

AI artificial intelligence
ALCF Argonne Leadership Computing Facility
API application programming interface
APS Argonne Photon Source
ASD Autism Spectrum Disorder
ASIC application-specific integrated circuit chip
ATHENA Advanced Telescope for High ENergy Astrophysics
AVX Advanced Vector Extensions
BDEC Big Data and Extreme-scale Computing
BLAS basic linear algebra subprograms
BSD Berkeley Software Distribution
CANDLE CANcer Distributed Learning Environment
CDN content delivery network
CESM Community Earth System Model
CMIP Coupled Model Inter-comparison Project
CMS Compact Muon Solenoid
CNTK Microsoft Cognitive Toolkit
CTA Cherenkov Telescope Array
cuDNN CUDA Deep Neural Network library
DIGITS Deep Learning GPU Training System
DLU deep learning processing unit
DNN deep neural network
DNS Domain Name System
DSP distributed services platform
ECP Exascale Computing Project
EESI European Exascale Software Initiative
EPOS European Plate Observation System
EPU Earth, Planetary, and Universe sciences
ESGF Earth System Grid Federation
ETL extract, transform, and load
ETSI European Telecommunications Standards Institute
FDSN Federated Digital Seismic Network
FITS Flexible Image Transport System
FPGA field-programmable gate array
FRNN Fusion Recurrent Neural Net
GENI Global Environment for Network Innovations
GIS Geospatial Information Systems
HACC Hardware/Hybrid Accelerated Cosmology Code
HDA high-end data analysis
HEP high-energy physics
HPC high-performance computing
IARPA Intelligence Advanced Research Projects Activity
IC integrated circuit
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ICT information and computing technology
IDC Internet data center
IEEE Institute of Electrical and Electronics Engineers
IESP International Exascale Software Project
INTEGRAL INTErnational Gamma-Ray Astrophysics Laboratory
IoT Internet of things
ISP Internet service provider
IT information technology
ITER International Thermonuclear Experimental Reactor
IVOA International Virtual Observatory Alliance
JET Joint European Torus
JHTDB Johns Hopkins Turbulence Database
KM3NET Cubic Kilometer Neutrino Telescope
LAN local area network
LHC Large Hadron Collider
LIDAR Light Detection And Ranging
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LSST Large Synoptic Survey Telescope
LSTM long short-term memory
MEC Mobile Edge Computing
MHD magnetohydrodynamics
MKL-DNN Intel Math Kernel Library for Deep Neural Networks
MPI message passing interface
MRI magnetic resonance imaging
NAS NASA Advanced Supercomputing
NCSA National Center for Supercomputing Applications
NIH National Institutes for Health
NIST National Institute of Standards and Technology
NSCI National Strategic Computing Initiative
NSF National Science Foundation
NVM non-volatile memory
OODB object-oriented database
OpenACC Open Accelerators
OpenMP Open Multi-Processing
ORNL Oak Ridge National Laboratory
PAPI Performance Application Programming Interface
PCA principal component analysis
PDE partial differential equation
PGAS partitioned global address space
PPPL Princeton Plasma Physics Laboratory
QoS quality of service
RAVEN Rapid Analysis of Various Emerging Nanoelectronics
REST representational state transfer
RNN recurrent neural network
ROI region of interest
SAN storage area network
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SC International Conference for High-Performance Computing, Networking, Storage, and Analysis
SDSS Sloan Digital Sky Survey
SKA Square Kilometer Array
SNA Systems Network Architecture
SPMD single program, multiple data
SQL Structured Query Language
SVD singular value decomposition
SVM support vector machine
TC Typical Controls
TPU Tensor Processing Unit
URL Uniform Resource Locators
VM virtual machine
VNNI Vector Neural Network Instructions
WAN wide area network
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B.1.2 BDEC Charleston Agenda 
Monday, April 29 
 

o 5:30 p.m. to 7:30 p.m. – Registration and Reception 
 
Tuesday, April 30 
 

• 8:00 a.m. to 9:00 a.m. – Breakfast 
 

• 8:30 a.m. to 9:00 a.m. – Registration 
 

• Session 1 (Chair: Jack Dongarra, University of Tennessee) 
 

o 9:00 a.m. to 9:10 a.m. – Welcome to Big Data and Extreme Computing: Goals and 
Overview 
 Pete Beckman, Argonne National Laboratory 
 Jean-Yves Berthou, French National Research Agency (ANR) 
 Jack Dongarra, University of Tennessee 
 Yutaka Ishikawa, University of Tokyo 
 Satoshi Matsuoka, Tokyo Institute of Technology 
 Philippe Ricoux, Total SA 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/1_beckman-

bdec_0.pdf 
o 9:10 a.m. to 9:30 a.m. – Big Data's Biggest Needs – Deep Analytics for Actionable 

Insights 
 Alok Choudhary, Northwestern University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/2_alok-BDEC-

charleston-2013.pdf 
o 9:30 a.m. to 9:50 a.m. – Big Data and Big Crunch for the Square Kilometre Array 

 Tim Cornwell, Square Kilometre Array 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/3_cornwell_ska

_bdec2013.pdf 
o 9:50 a.m. to 10:10 a.m. – Turning Large simulations into Numerical Laboratories 

 Alex Szalay, Johns Hopkins University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/4_szalay-bdec-

2013.pdf 
 

• 10:10 a.m. to 10:40 a.m. – Break 
 

• Session 2 (Chair: Jean-Yves Berthou, French National Research Agency [ANR]) 
 

o 10:40 a.m. to 11:00 a.m. – Can we converge big data, big compute and big Interaction in 
future hardware and software? 
 Rick Stevens, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/5_BDEC-

RICK.pdf 
o 11:00 a.m. to 11:20 a.m. – Big Data Parallel Processing of Personal Genomes 

 Shinichi Morishita, University of Tokyo 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6_BDEC_Shini

chi Morishita_U_Tokyo.pdf 
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o 11:20 a.m. to 11:40 a.m. – Beyond Embarrassingly Parallel Big Data 
 William Gropp, University of Illinois 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/7_gropp_Beyon

dIndepData.pdf 
o 11:40 a.m. to 12:00 p.m. – Weather and Climate Modelling: ready for exascale? 

 Pier Luigi Vidale, University of Reading 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/8_BDEC_PLV-

Apr-2013.pdf 
 

• 12:00 p.m. to 1:00 p.m. – Lunch 
 

• Session 3 (Chair: Pete Beckman, Argonne National Laboratory) 
 

o 1:00 p.m. to 2:30 p.m. – Panel 1 
 Jean-Michel Alimi, Laboratoire Univers et Théories 
 Reagan Moore, University of North Carolina at Chapel Hill 
 Wolfgang E. Nagel, TU Dresden, ZIH 
 Osamu Tatebe, University of Tsukuba 
 Pier Luigi Vidale, University of Reading 
 Toyotaro Suzumura, Tokyo Institute of Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC_Panel_1

_Complete.pdf 
 

• 2:30 p.m. to 3:00 p.m. – Break 
 

• Session 4 
 

o 3:00 p.m. to 5:00 p.m. – Breakout Groups 1 
 Track 1 – International Collaboration, Frameworks, Funding, and Co-design: 

Bronis de Supinski, Jean-Yves Berthou 
 Track 2 – Architecture: Rick Stevens, Satoshi Matsuoka 
 Track 3 – Software: Vivek Sarkar, William Kramer, Wolfgang Nagel 

o 5:00 p.m. to 5:30 p.m. – Breakout Report 2 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/15_BDEC_Brea

kouts_Day1_Complete_0.pdf 
 

• 5:30 p.m. to 6:30 p.m. – Cocktail Reception 
 

• 6:30 p.m. – Dinner 
 
Wednesday, May 1 
 

• 8:00 a.m. to 9:00 a.m. – Breakfast 
 

• Session 5 (Chair: Philippe Ricoux, Total SA) 
 

o 9:00 a.m. to 9:20 a.m. – Integrative Biomedical Informatics, Big Data and Extreme Scale 
Computing 
 Joel Saltz, Emory University 
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 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/16_BDEC_Salt
z_May1_2013.pdf 

o 9:20 a.m. to 9:40 a.m. – On the Role of Indexing for Big Data in Scientific Domains 
 Arie Shoshani, Lawrence Berkeley National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/17_BDEC_Shos

hani_indexing.pdf 
o 9:40 a.m. to 10:00 a.m. – Big Data and extreme-scale computing challenges in solid Earth 

Sciences 
 Jean-Pierre Vilotte, Institut de Physique du Globe de Paris 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/18_BDEC-

Vilotte-Final.pdf 
 

• 10:00 a.m. to 10:30 a.m. – Break 
 

• Session 6 (Chair: Yutaka Ishikawa, University of Tokyo) 
 

o 10:30 a.m. to 10:50 a.m. – Co-existence: Can Big Data and Big Computation Co-exist on 
the Same Systems? 
 William Kramer, University of Illinois 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/19_Kramer-

BDEC - v1.pdf 
 

o 10:50 a.m. to 11:10 a.m. – Synergistic Challenges in Data-Intensive Science and Extreme 
Computing 
 Vivek Sarkar, Rice University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/20_Sarkar-

BDEC-presentation-April-2013-v2.pptx_.pdf 
 

o 11:10 a.m. to 11:30 a.m. – Computational Challenges in Big Data Assimilation with 
Extreme-scale Simulations 
 Takemasa Miyoshi, RIKEN Advanced Institute for Computational Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/21_Miyoshi_20

130501.pdf 
 

• 11:30 a.m. to 12:30 p.m. – Lunch 
 

• Session 7 (Chair: Satoshi Matsuoka, Tokyo Institute of Technology) 
 

o 12:30 p.m. to 2:00 p.m. – Panel 2 
 Sandro Fiore, University of Salento & CMCC, Italy 
 Kenji Ono, RIKEN Advanced Institute for Computational Science 
 Geoffrey Fox, Indiana University 
 Andrew Lumsdaine, Indiana University 
 Shinichi Morishita, University of Tokyo 
 Ranga Vatsavai, Oak Ridge National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/27_BDEC_Pane

l_2_Complete.pdf 
 

• 2:00 p.m. to 2:30 p.m. – Break 
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• Session 8 
 

o 2:30 p.m. to 4:30 p.m. – Breakout Groups 2 
 Track 1 – Interoperability: Bronis de Supinski, Jean-Yves Berthou 
 Track 2 – Workflows: Rick Stevens, Satoshi Matsuoka 
 Track 3 – Taxonomy: Vivek Sarkar, Bill Kramer, Wolfgang Nagel 

o 4:30 p.m. to 5:00 p.m. – Breakout Report 2 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/30_BDEC_Brea

kouts_Day2_Complete.pdf 
 

• 5:00 p.m. – Dinner on your own 

B.1.3 BDEC Charleston White Papers 
1. Ranga Vatsavai, Budhendra Bhaduri, “Geospatial Analytics for Big Spatiotemporal Data: Algorithms, 

Applications, and Challenges,” BDEC Workshop, Charleston, SC, White Paper, April 2013. 
2. Toyotaro Suzumura, “Big Data Processing in Large-Scale Network Analysis and Billion-Scale Social 

Simulation,” BDEC Workshop, Charleston, SC, White Paper, April 2013. 
3. Ian Foster, “Extreme-Scale Data Lifecycle Management as a Service,” BDEC Workshop, Charleston, 

SC, White Paper, April 2013. 
4. Jean-Michel Alimi, “The Challenges of the Next Decade in Numerical Cosmology: Big Data and 

Extreme-Scale Computing,” BDEC Workshop, Charleston, SC, White Paper, April 2013. 
5. Pier Luigi Vidale, Hilary Weller, B. N. Lawrence, “Weather and Climate Modeling: ready for 

exascale?,” BDEC Workshop, Charleston, SC, White Paper, April 2013. 
6. Osamu Tatebem, “File system and runtime system for big data,” BDEC Workshop, Charleston, SC, 

White Paper, April 2013. 
7. Dan Reed, “Data Economies and Cultural Incentives,” BDEC Workshop, Charleston, SC, White 

Paper, April 2013. 
8. Giovanni Aloisio, Sandro Fiore, Ian Foster, Dean Williams, “Scientific big data analytics challenges 

at large scale,” BDEC Workshop, Charleston, SC, White Paper, April 2013. 
9. Wolfgang E. Nagel, Ralph Müller-Pfefferkorn, Michael Kluge, Daniel Hackenberg, “Execution 

Environments for Big Data: Challenges for Storage Architectures and Software,” BDEC Workshop, 
Charleston, SC, White Paper, April 2013. 

10. Kenji Ono, “Life cycle management of big data for extreme-scale simulation,” BDEC Workshop, 
Charleston, SC, White Paper, April 2013. 

11. Geoffrey Fox, “Distributed Data and Software Defined Systems,” BDEC Workshop, Charleston, SC, 
White Paper, April 2013. 

12. Andrew Lumsdaine, “New Execution Models are Required for Big Data at Exascale,” BDEC 
Workshop, Charleston, SC, White Paper, April 2013. 

13. Shinichi Morishita, “Big Data Parallel Processing of Personal Genomes,” BDEC Workshop, 
Charleston, SC, White Paper, April 2013. 

14. Reagan Moore, “Integration of Scientific Analyses and Storage,” BDEC Workshop, Charleston, SC, 
White Paper, April 2013. 
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B.2 BDEC Fukuoka, 2014 

B.2.1 BDEC Fukuoka Attendees 
Jim Ahrens (Los Alamos National Laboratory) 
Yutaka Akiyama (Tokyo Institute of Technology) 
Jean-Claude Andre (Jca Consultance & Analyse) 
Mutsumi Aoyagi (Kyushu University) 
Akira Asawa (Hitachi) 
Chaitan Baru (San Diego Supercomputer Center) 
Pete Beckman (Argonne National Laboratory) 
Jean-Yves Berthou (French National Research Agency) 
Budhendra Bhaduri (Oak Ridge National Laboratory) 
Thierry Bidot (NEOVIA) 
Francois Bodin (Institute for Research in Computer Science and Random Systems) 
Taisuke Boku (University of Tsukuba) 
Franck Cappello (Argonne National Laboratory / University of Illinois) 
Alok Choudhary (Northwestern University) 
Bronis de Supinski (Lawrence Livermore National Laboratory) 
Ewa Deelman (University of Southern California Information Sciences Institute) 
Jack Dongarra (University of Tennessee) 
Sudip Dosanjh (Lawrence Berkeley National Laboratory) 
Anshu Dubey (Lawrence Berkeley National Laboratory) 
Toshio Endo (Tokyo Institute of Technology) 
Teresa Finchum (University of Tennessee) 
Sandro Fiore (Euro-Mediterranean Center on Climate Change / University of Salento) 
Ian Foster (Argonne National Laboratory / University of Chicago) 
Geoffrey Fox (Indiana University) 
Katsuki Fujisawa (Chuo University / Japan Science and Technology Agency) 
Keiichiro Fukazawa (Kyushu University) 
Al Geist (Oak Ridge National Laboratory) 
Sergi Girona (Partnership for Advanced Computing in Europe / Barcelona Supercomputing Center) 
William Gropp (University of Illinois) 
Toshihiro Hanawa (University of Tokyo) 
William Harrod (United States Department of Energy) 
Yuta Higuchi (Fujitsu / Laboratoire Univers et Théories) 
Kimihiko Hirao (RIKEN Advanced Institute for Computational Science) 
Atsushi Hori (RIKEN Advanced Institute for Computational Science) 
Soonwook Hwang (Korean Institute of Science and Technology Information) 
Koji Inoue (Kyushu University) 
Masaki Ishida (Data Direct Networks) 
Yutaka Ishikawa (University of Tokyo) 
Takeshi Iwashita (Kyoto University) 
David Kahaner (Asian Technology Information Program) 
Takahiro Katagiri (University of Tokyo) 
Yoshio Kawaguchi (MEXT) 
Kate Keahey (Argonne National Laboratory) 
Dries Kimpe (Argonne National Laboratory) 
Itaru Kitayama (RIKEN Advanced Institute for Computational Science) 
Masaru Kitsuregawa (University of Tokyo) 
Shingo Komatsu (Cray Japan, Inc.) 
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William Kramer (National Center for Supercomputing Applications / University of Illinois) 
Tomohiro Kudoh (AIST) 
Jesus Labarta (Barcelona Supercomputing Center) 
Jean-Francois Lavignon (Bull) 
Maryline Lengert (European Space Agency) 
Yutong Lu (National University of Defense Technology) 
Volker Markl (Technical University of Berlin) 
Naoya Maruyama (RIKEN Advanced Institute for Computational Science) 
Satoshi Matsuoka (Tokyo Institute of Technology) 
Piyush Mehrotra (NASA Ames Research Center) 
Bernd Mohr (Jülich Supercomputing Centre) 
Terry Moore (University of Tennessee) 
Wolfgang Nagel (TU Dresden ZIH) 
Kengo Nakajima (University of Tokyo) 
Hiroshi Nakamura (University of Tokyo) 
Mamoru Nakano (Cray Japan, Inc.) 
Hiroshi Nakashima (Kyoto University) 
Takeshi Nanri (Kyushu University) 
Sai Narasimhamurthy (Xyratex) 
Itsuki Noda (National Institute of Advanced Industrial Science and Technology) 
Kenji Ono (RIKEN Advanced Institute for Computational Science) 
Irene Qualters (National Science Foundation) 
Tracy Rafferty (University of Tennessee) 
Philippe Ricoux (Total SA) 
Joel Saltz (Stony Brook University) 
Hitoshi Sato (Tokyo Institute of Technology) 
Mitsuhisa Sato (RIKEN Advanced Institute for Computational Science / University of Tsukuba) 
Marie-Christine Sawley (Intel) 
Satoshi Sekiguchi (AIST) 
Masaaki Shimizu (Hitachi) 
Shinji Shimojo (Osaka University) 
Chie Shiraiwa (NEC Corporation) 
Shinji Sumimoto (Fujitsu) 
Martin Swany (Indiana University) 
Alex Szalay (Johns Hopkins University) 
Yusong Tan (National University of Defense Technology) 
Yoshio Tanaka (National Institute of Advanced Industrial Science and Technology) 
William Tang (Princeton University / Princeton Plasma Physics Lab) 
Osamu Tatebe (University of Tsukuba) 
Rie Toh (NEC Corporation) 
Hirofumi Tomita (RIKEN Advanced Institute for Computational Science) 
Robert Triendl (Data Direct Networks) 
Jean-Pierre Vilotte (Paris Institute of Earth Physics) 
Vladimir Voevodin (Moscow State University Research Computing Center) 
Marcus Wilms (DFG) 
Min Xie (National University of Defense Technology) 
Akinori Yonezawa (RIKEN Advanced Institute for Computational Science) 
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B.2.2 BDEC Fukuoka Agenda 
Wednesday, February 26 
 

• 6:00 p.m. – Registration and Reception 
 
Thursday, February 27 
 

• 9:00 a.m. – Registration 
 

• Session 1 
o 9:15 a.m. to 9:30 a.m. – Welcome to Big Data and Extreme Computing: Goals and 

Overview 
 Pete Beckman, Argonne National Laboratory 
 Jean-Yves Berthou, French National Research Agency (ANR) 
 Jack Dongarra, University of Tennessee 
 Yutaka Ishikawa, University of Tokyo 
 Satoshi Matsuoka, Tokyo Institute of Technology 
 Philippe Ricoux, Total SA 

o http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk1-Beckman.pdf9:30 
a.m. to 9:45 a.m. – Japan’s Policy toward Exascale Computing 
 Yoshio Kawaguchi, MEXT 

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk2-
Kawaguchi_0.pdf 

o 9:45 a.m. to 10:20 a.m. – Invited Talk from Japan 
 Masaru Kitsuregawa, University of Tokyo  

 
• 10:20 a.m. to 10:30 a.m. – Break 

 
• Session 2 

 
o 10:30 a.m. to 10:50 a.m. – Overview of Department of Energy Activities 

 William Harrod, United States Department of Energy 
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk2-
Kawaguchi_0.pdf 

o 10:50 a.m. to 11:10 a.m. – Overview of National Science Foundation Activities 
 Irene Qualters, National Science Foundation 

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk5-
Qualters.pdf 

o 11:10 a.m. to 11:20 a.m. – EU and International Futures Call 
 Marcus Wilms, DFG 

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk6-
Wilms_0.pdf 

o 11:20 a.m. to 11:25 a.m. – High Performance Computing in Horizon 2020 
 Jean-Yves Berthou, French National Research Agency 

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk7-
Berthou.pdf 

o 11:25 a.m. to 11:35 a.m. – PRACE: Expression of Interest Big Data 
 Sergi Girona, Partnership for Advanced Computing in Europe 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk8-

Girona.pdf 
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o 11:35 a.m. to 11:45 a.m. – Building a Globally Competitive HPC Technology Ecosystem 
in Europe 
 Jean-Francois Lavignon, Bull 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk9-

Lavignon.pdf 
o 11:45 a.m. to 11:55 a.m. – European Exascale Software Initiative (EESI2): Towards 

Exascale Roadmap Implementation 
 Philippe Ricoux, Total SA 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk10-

Ricoux.pdf 
o 11:55 a.m. to 12:25 p.m. – China Overview Talk 

 Yutong Lu, HPCL 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk11-Lu.pdf 

o 12:25 p.m. to 1:05 p.m. – Japan Overview Talk 
 Hirofumi Tomita, RIKEN Advanced Institute for Computational Science 
 Yutaka Ishikawa, University of Tokyo 
 Mitsuhisa Sato, RIKEN Advanced Institute for Computational Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Talk12-tomita-

sato-ishikawa.pdf 
 

• 1:05 p.m. to 1:45 p.m. – Lunch 
 

• Session 3 
 

o 1:45 p.m. to 2:30 p.m. – BDEC 1 and a Strawman Architecture for a Data Facility 
 Pete Beckman, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/talk13-

Beckman.pdf 
o 2:30 p.m. to 4:00 p.m. – Seven 6-minute Talks Based on White Papers and Panel 

Discussion 
 Chair: Bill Gropp 
 Scribes: Bill Kramer & Piyush Mehrotra 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/White_Paper_T

alks_1.pdf 
 

• 5:30 p.m. – Evening Reception 
 
Friday, February 28 
 

• Session 4 
 

o 9:00 a.m. to 10:45 a.m. – Eight 6-minute Talks Based on White Papers and Panel 
Discussion 
 Chair: Taisuke Boku 
 Scribes: Marie-Christine Sawley and Dries Kimpe 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/White_Paper_T

alks_3.pdf 
 

• 10:45 a.m. to 11:00 a.m. – Break 
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• Session 5 
 

o 11:00 a.m. to 12:30 p.m. – Three Breakout Sessions 
 Apps: Joel Saltz & Bronis de Supinski 
 Architecture: Satoshi Matsuoka & Pete Beckman 
 Data: Chaitan Baru & Jim Ahrens 

o 12:30 p.m. to 1:00 p.m. – Breakout Report 
 Pete Beckman, Argonne National Laboratory 
 Jim Ahrens, Los Alamos National Laboratory 
 Joel Saltz, Stony Brook University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-Day2-

MorningBreakout-All_0.pdf 
 

• 1:00 p.m. to 1:30 p.m. – Lunch 
 

• Session 6 
 

o 1:30 p.m. to 3:30 p.m. – Three Breakout Sessions 
 Apps: Joel Saltz & Bronis de Supinski 
 Architecture: Satoshi Matsuoka & Pete Beckman 
 Data: Chaitan Baru & Jim Ahrens 

 
• 3:30 p.m. to 4:00 p.m. – Break 

 
• Session 7 

 
o 4:00 p.m. to 5:00 p.m. – Breakout Report 

 Pete Beckman, Argonne National Laboratory 
 Chaitan Baru, San Diego Supercomputer Center 
 Bronis de Supinski, Lawrence Livermore National Laboratory 
 Joel Saltz, Stony Brook University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-Day2-

AfternoonBreakout-all.pdf 
o 5:00 p.m. to 5:30 p.m. – Future Planning 
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B.2.3 BDEC Fukuoka White Papers 
1. Jim Ahrens, "Increasing Scientific Data Insights About Exascale Class Simulations Under Power and 

Storage Constraints," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 
2. Giovanni Aloisio, Jean-Claude Andre, Italo Epicoco, Silvia Mocavero, "The role of mini-apps in 

weather and climate models performance optimization," 2nd BDEC Workshop, Fukuoka, Japan, 
White Paper, February 2014. 

3. Chaitan Baru, Michael Norman, "Path Forward for Big Data and Extreme Computing," 2nd BDEC 
Workshop, Fukuoka, Japan, White Paper, February 2014. 

4. Franck Cappello, Tom Peterka, "The Need for Resilience Research in Workflows of Big Compute 
and Big Data Scientific Applications," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 
2014. 

5. Alok Choudhary, "In-situ Big Data Analysis at Scale for Extreme Scale Systems,” 2nd BDEC 
Workshop, Fukuoka, Japan, White Paper, February 2014. 

6. Ewa Deelman, "Science Automation using Workflows in the Big Data and Extreme Scale Computing 
Era," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

7. Sudip Dosanjh, Shane Canon, Jack DeSlippe, Kjiersten Fagnan, Richard Gerber, Lisa Gerhardt, Jason 
Hick, Douglas Jacobsen, David Skinner, Nicholas J. Wright, "Extreme Data Science," 2nd BDEC 
Workshop, Fukuoka, Japan, White Paper, February 2014. 

8. Anshu Dubey, W. Bethel, Prabhat, J. Shalf, Arie Shoshani, B. Van Straalen, "Holistic View of 
Composable Data Analysis: Insights From Software Frameworks for Extreme Scale Computing," 2nd 
BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

9. Sandro Fiore, Ian Foster, Dean Williams, Giovanni Aloisio, "A software infrastructure for big data 
analytics," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

10. Ian Foster, "Extreme-scale computing for new instrument science," 2nd BDEC Workshop, Fukuoka, 
Japan, White Paper, February 2014. 

11. Geoffrey Fox, Judy Qiu, Shantenu Jha, "High Performance High Functionality Big Data Software 
Stack," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

12. Katsuki Fujisawa, Toyotaro Suzumura, Hitoshi Sato, Toshio Endo, "High-performance Software 
Stacks for Extremely Large-scale Graph Analysis System," 2nd BDEC Workshop, Fukuoka, Japan, 
White Paper, February 2014. 

13. Atsushi Hori, "SACLA and the K Computer," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, 
February 2014. 

14. Kate Keahey, "Virtual Observatories: A Facility for Online Data Analysis," 2nd BDEC Workshop, 
Fukuoka, Japan, White Paper, February 2014. 

15. Michael Kluge, Andreas Knüpfer, Ralph Müller-Pfefferkorn, Wolfgang E. Nagel, "Holistic 
Performance Analysis for BDEC Systems– a Big Data Challenge?!," 2nd BDEC Workshop, Fukuoka, 
Japan, White Paper, February 2014. 

16. William Kramer, "The Under-Represented Resiliency Issues for Big Data and Extreme Scale 
Computing," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

17. Tomohiro Kudoh, Shu Namiki, Ryousei Takano, Kiyo Ishii, Yoshio Tanaka, Isao Kojima, Tsutomu 
Ikegami, Satoshi Itoh, Satoshi Sekiguchi, "Impact of huge bandwidth optical interconnection network 
and a new memory paradigm with global address space for BDEC systems," 2nd BDEC Workshop, 
Fukuoka, Japan, White Paper, February 2014. 

18. Jesus Labarta, Eduard Ayguade, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian 
Cristal, Osman Unsal, David Carrera, Yolanda Becerra, Enric Tejedor , Mateo Valero, "BSC vision 
on Big Data and extreme scale computing," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, 
February 2014. 

19. Jean-Francois Lavignon, "Energy aware big data management and processing," 2nd BDEC 
Workshop, Fukuoka, Japan, White Paper, February 2014. 
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20. Maryline Lengert, Bob Jones, David Foster, Steven Newhouse, "Strategic collaboration between HPC 
and Cloud to address big data in global scientific challenges," 2nd BDEC Workshop, Fukuoka, Japan, 
White Paper, February 2014. 

21. Thomas Lippert, Boris Orth, Bernd Mohr, "The Human Brain Project," 2nd BDEC Workshop, 
Fukuoka, Japan, White Paper, February 2014. 

22. Volker Markl, "On Next Generation Big Data Analytics Systems," 2nd BDEC Workshop, Fukuoka, 
Japan, White Paper, February 2014. 

23. Piyush Mehrotra, L. Haper Pryor, "Supporting Big Data Analytics at the NASA Advanced 
Supercomputing (NAS) Division," 2nd BDEC Workshop, Fukuoka, Japan, White Paper, February 
2014. 

24. Hitoshi Sato, "Towards Extreme-scale Graph Processing with Deepening Memory Hierarchy," 2nd 
BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 

25. Martin Swany, "Exofiles: Unbundling the Filesystem," 2nd BDEC Workshop, Fukuoka, Japan, White 
Paper, February 2014. 

26. Alex Szalay, "From Large Simulations to Interactive Numerical Laboratories," 2nd BDEC Workshop, 
Fukuoka, Japan, White Paper, February 2014. 

27. Jean-Pierre Vilotte, Jean-Yves Berthou, Patrick Monfray, Mathieu Girerd, "E-Infrastructures & Data 
Management Collaborative Research Action (E-Infra CRA): A Belmont Forum Initiative," 2nd 
BDEC Workshop, Fukuoka, Japan, White Paper, February 2014. 
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B.3 BDEC Barcelona, 2015 

B.3.1 BDEC Barcelona Attendees 
James Ahrens (Los Alamos National Laboratory) 
Jean-Claude Andre (Jca Consultance & Analyse) 
Gabriel Antoniu (INRIA) 
Mark Asch (Ministry of Higher Education and Research) 
Eduard Ayguade (Barcelona Supercomputing Center) 
Rosa Badia (Barcelona Supercomputing Center) 
Pete Beckman (Argonne National Laboratory) 
Ramón Beivide (Barcelona Supercomputing Center) 
Jean-Yves Berthou (French National Research Agency) 
Thierry Bidot (European Exascale Software Initiative (EESI)) 
Mathis Bode (RWTH Aachen University) 
Francois Bodin (Institute for Research in Computer Science and Random Systems) 
Augusto Burgueño-Arjona (European Commission / DG Connect) 
Franck Cappello (Argonne National Laboratory / University of Illinois) 
Marc Casas (Barcelona Supercomputing Center) 
Alok Choudhary (Northwestern University) 
Toni Cortes (Barcelona Supercomputing Center) 
Sam Crawford (University of Tennessee) 
Fernando Cucchietti (Barcelona Supercomputing Center) 
Bronis de Supinski (Lawrence Livermore National Laboratory) 
Ewa Deelman (University of Southern California Information Sciences Institute) 
Jack Dongarra (University of Tennessee) 
Sudip Dosanjh (Lawrence Berkeley National Laboratory) 
Anshu Dubey (Lawrence Berkeley National Laboratory) 
Iain Duff (UK Science & Technology Facilities Council) 
Toshio Endo (Tokyo Institute of Technology) 
Giovanni Erbacci (CINECA) 
Hugo Falter (ParTec Cluster Competence Center) 
Geoffrey Fox (Indiana University) 
Fabrizio Gagliardi (Barcelona Supercomputing Center) 
Adriano Galano (Fujitsu) 
Al Geist (Oak Ridge National Laboratory) 
Françoise Genova (Strasbourg Astronomical Data Centre) 
Sergi Girona (Partnership for Advanced Computing in Europe / Barcelona Supercomputing Center) 
Ramon Goni (Barcelona Supercomputing Center) 
Jean Gonnord (Atomic Energy and Alternative Energies Commission (CEA)) 
William Gropp (University of Illinois) 
Michael Heroux (Sandia National Laboratories) 
Herbert Huber (Leibniz Supercomputing Centre) 
Yutaka Ishikawa (RIKEN Advanced Institute for Computational Science) 
Takeshi Iwashita (Hokkaido University) 
Kate Keahey (Argonne National Laboratory) 
Alison Kennedy (EPCC) 
David Keyes (King Abdullah University of Science and Technology (KAUST)) 
Jamie Kinney (Amazon) 
Bastian Koller (High Performance Computing Center Stuttgart) 
Masaaki Kondo (University of Tokyo) 
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William Kramer (National Center for Supercomputing Applications / University of Illinois) 
Stefan Krieg (Jülich Supercomputing Centre) 
Jesus Labarta (Barcelona Supercomputing Center) 
Jean-Francois Lavignon (Bull) 
Bryan Lawrence (National Centre for Atmospheric Science) 
Jysoo Lee (Korean Institute of Science and Technology Information) 
Yutong Lu (National University of Defense Technology) 
Filippo Mantovani (Barcelona Supercomputing Center) 
Naoya Maruyama (RIKEN Advanced Institute for Computational Science) 
Satoshi Matsuoka (Tokyo Institute of Technology) 
Piyush Mehrotra (NASA Ames Research Center) 
Marek Michalewicz (Agency for Science, Technology, and Research (A*STAR)) 
Peter Michielse (SURFsara) 
Takemasa Miyoshi (RIKEN Advanced Institute for Computational Science) 
Bernd Mohr (Jülich Supercomputing Centre) 
Terry Moore (University of Tennessee) 
Carlos Morais-Pires (European Commission) 
Miquel Moretó (Barcelona Supercomputing Center) 
Malcolm Muggeridge (Seagate Technology, LLC) 
Wolfgang Nagel (TU Dresden ZIH) 
Hidemoto Nakada (National Institute of Advanced Industrial Science and Technology) 
Kengo Nakajima (University of Tokyo) 
Hiroshi Nakashima (Kyoto University) 
Jean-Philippe Nomine (Atomic Energy and Alternative Energies Commission (CEA)) 
Modesto Orozco (Barcelona Supercomputing Center) 
Mark Parsons (EPCC) 
Stan Posey (NVIDIA) 
Jeremy Purches (NVIDIA) 
Irene Qualters (National Science Foundation) 
Anna Queralt (Barcelona Supercomputing Center) 
Tracy Rafferty (University of Tennessee) 
Dan Reed (University of Iowa) 
Stephane Requena (Grand équipement national de calcul intensif (GENCI)) 
Alejandro Ribés (Électricité de France) 
Philippe Ricoux (Total SA) 
Morris Riedel (Jülich Supercomputing Centre) 
Catherine Riviere (Grand équipement national de calcul intensif (GENCI)) 
Joel Saltz (Stony Brook University) 
Hitoshi Sato (Tokyo Institute of Technology) 
Marie-Christine Sawley (Intel) 
Estela Suárez (Forschungszentrum Jülich) 
Francesc Subirada (Barcelona Supercomputing Center) 
Martin Swany (Indiana University) 
Alex Szalay (Johns Hopkins University) 
William Tang (Princeton University / Princeton Plasma Physics Lab) 
Jordi Torres (Barcelona Supercomputing Center) 
Panagiotis Tsarchopoulos (European Commission) 
Akira Ukawa (RIKEN Advanced Institute for Computational Science) 
Osman Unsal (Barcelona Supercomputing Center) 
Patrick Valduriez (INRIA) 
Mateo Valero (Barcelona Supercomputing Center) 
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Wim Vanroose (University of Antwerp) 
Pier Luigi Vidale (University of Reading) 
Vladimir Voevodin (Moscow State University Research Computing Center) 
Dengping Wei (National University of Defense Technology) 
Marcus Wilms (DFG) 
Robert Wisniewski (Intel) 
Ramin Yahyapour (GWDG) 
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B.3.2 BDEC Barcelona Agenda 
Wednesday, January 28 

 
• 6:30 p.m.– Welcome Reception & Registration 

 
Thursday, January 29 

 
o 8:30 a.m. to 9:00 a.m. – Registration 
o 9:00 a.m. to 9:05 a.m. – Welcome 

 Mateo Valero, Barcelona Supercomputing Center 
o 9:05 a.m. to 9:20 a.m. – Goals and Overview for BDEC Barcelona 

 Jean-Yves Berthou, French National Research Agency 
 Pete Beckman, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/1-BDEC-Goals-

Overview.pdf 
 

• Session 1 – Regional Vision and Strategy 
 

o 9:20 a.m. to 9:40 a.m. – EU Overview 
 Augusto Burgueño-Arjona, European Commission 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/2-Augusto-

BDEC29Jan15_ABA.pdf 
o 9:40 a.m. to 9:50 a.m. – EU HPC Roadmap and the EXDCI Initiative  

 Sergi Girona, Partnership for Advanced Computing in Europe 
 Francois Bodin, Institute for Research in Computer Science and Random 

Systems 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/3-

EXDCI@BDEC.pdf 
o 9:50 a.m. to 10:05 a.m. – NSF Overview 

 Irene Qualters, National Science Foundation 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/4-

BDEC_NSF.pdf 
o 10:05 a.m. to 10:20 a.m. – DOE Overview 

 William Harrod, United States Department of Energy 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/5-

2015BDEC_Harrod.pdf 
o 10:20 a.m. to 10:35 a.m. – Japan Overview 

 Satoshi Matsuoka, Tokyo Institute of Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-

Matsuoka-Japan-update-final.pdf 
o 10:35 a.m. to 10:50 a.m. – China Overview 

 Yutong Lu, National University of Defense Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/7-BDEC2015-

nudt-yutongLu.pdf 
o 10:50 a.m. to 10:55 a.m. – Korea Overview 

 Jysoo Lee, Korean Institute of Science and Technology Information 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Position%20Sta

tement%20-%20Jysoo%20Lee.pdf 
o 10:55 a.m. to 11:00 a.m. – Singapore Overview 

 Marek Michalewicz, Agency for Science, Technology, and Research (A*STAR) 
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 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/9-
BDEC_2015_Michalewicz.pdf 

 
• 11:00 a.m. to 11:30 a.m. – Break 

 
• Session 2 – White Papers on HPC Software and Infrastructure 

 
o 11:30 a.m. to 11:40 a.m. – RoMoL: Riding on Moore’s Law 

 Mateo Valero,  Barcelona Supercomputing Center 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/10-BDEC2015-

valero.pdf 
o 11:40 a.m. to 11:50 a.m. – The Role of Scientific Workflows in Bridging Big Data and 

Extreme Scale Computing  
 Ewa Deelman, University of Southern California Information Sciences Institute 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/11-deelman-bd-

ec-2015.pdf 
o 11:50 a.m. to 12:00 p.m.– Execution Environments for Big Data: Challenges for User 

Centric Scenarios 
 Wolfgang E. Nagel, TU Dresden ZIH 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/12-Nagel-

BDEC.pdf 
o 12:00 p.m. to 12:10 p.m.– A Case For Investing in Software Architectures and 

Framework Research  
 Anshu Dubey, Lawrence Berkeley National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/13-

Dubey_BDECBarcelona.pdf 
o 12:10 p.m. to 12:20 p.m.–  LRZ’s Position in European Supercomputing 

 Herbert Huber, Leibniz Supercomputing Centre 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/14-Huber-

LRZ%20BDEC%20Barcelona.pdf 
o 12:20 p.m. to 12:30 p.m.– Power Management Framework for Extreme-Scale Computing 

 Masaaki Kondo, University of Tokyo 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/15-

BDEC20150129-kondo.pdf 
o Q&A for Session 2 

 
• Session 3 – White Papers on HPC and Big Data Applications 

 
o 12:30 p.m. to 12:40 p.m.– Two Remarks on Future Developments of Climate Simulation, 

with Strong Impact on Computing and Data Processing  
  Jean-Claude Andre, Jca Consultance & Analyse 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/16-BDEC2015-

Andre.pdf 
o 12:40 p.m. to 12:50 p.m.– Ogres: A Systematic Approach to Big Data Benchmarks 

 Geoffrey Fox, Indiana University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/17-BDEC2015-

Fox.pdf 
o 12:50 p.m. to 1:00 p.m.– Data and Next Generation Scalable Applications 

 Michael Heroux, Sandia National Laboratories 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/18-BDEC2015-

Heroux.pdf 
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o 1:00 p.m. to 1:10 p.m.– In-situ Analysis and Visualization of Ensemble Data Sets: the 
case of Fluid Dynamics Simulations in Energy Production 
 Alejandro Ribés, Électricité de France 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/Rib

es-white-paper-Barcelone.pdf 
o 1:10 p.m. to 1:20 p.m.– Finding Regularity in Irregularities 

 Hiroshi Nakashima, Kyoto University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/20-BDEC2015-

Nakashima.pdf 
o 1:20 p.m. to 1:30 p.m.– Data Analytics, Sensor Data, Simulation, and Cancer Research 

 Joel Saltz, Stony Brook University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/19-BDEC2015-

Saltz.pdf 
o Q&A for Session 3 

 
• 1:30 to 2:30 p.m. – Lunch Break 

 
• Breakout Sessions 

 
o 2:30 p.m. to 2:45 p.m.– Introduction to Breakout Sessions 
o 2:45 p.m. to 4:45 p.m.– Breakout Sessions 

 Room 6: Applications and Science 
 Room 8: Algorithms and Applied Math 
 Room 7: Architecture and Operations 
 Room 9: Software Stack 

 
• 4:45 p.m. to 5:15 p.m. – Break 

 
• Breakout Reports 

 
o 5:15 p.m. to 5:20 p.m.– Applications and Science 

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-
day1-applications.pdf 

o 5:20 p.m. to 5:25 p.m.– Algortithms and Applied Math 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-

day1-HN-algorithms.pdf 
o 5:25 p.m. to 5:30 p.m.– Architecture and Operations 

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-
day1-architecture.pdf 

o 5:30 p.m. to 5:35 p.m.– Software Stack 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-

day1-software.pdf 
 

• 8:00 p.m.– Evening Banquet 
 
Friday, January 30 
 

• Session 4 – Keynotes 
 

o 9:00 a.m. to 9:20 a.m. – Big Data Meets HPC  
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 Dan Reed, University of Iowa 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/1-

Barcelona_Reed.pdf 
o 9:20 a.m. to 9:40 a.m. – Data-intensive HPC: Opportunities and Challenges  

 Patrick Valduriez, INRIA 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/2-Valduriez-

Data-intensiveHPC.pdf 
o 9:40 a.m. to 10:00 a.m. – The Post-K Project and its Big Data Aspects 

 Yutaka Ishikawa, RIKEN Advanced Institute for Computational Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/3-BDEC2015-

ishikawa.pdf 
 

• Session 5 – White Papers on HPC Software and Infrastructure 
 

o 10:00 a.m. to 10:10 a.m. – DataClay: Towards Usable and Shareable Storage 
 Toni Cortes, Barcelona Supercomputing Center 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/4-BDEC2015-

cortes.pdf 
o 10:10 a.m. to 10:20 a.m. –  Supercomputers at Exascale: BigData and Extreme 

Computing of the Total Monitoring 
 Vladimir Voevodin, Moscow State University Research Computing Center 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/5-BDEC2015-

voevodin.pdf 
o 10:20 a.m. to 10:30 a.m. – Chameleon: A Large-Scale, Reconfigurable Experimental 

Environment for Cloud Research 
 Kate Keahey, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-BDEC2015-

keahey.pdf 
o 10:30 a.m. to 10:40 a.m. – Percipient Storage: A Storage Centric Approach to BDEC 

 Malcolm Muggeridge, Seagate Technology, LLC 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/7-BDEC2015-

muggeridge.pdf 
o 10:40 a.m. to 10:50 a.m. – Accelerating Time to Insight in the Exascale Ecosystem 

Through the Optimization of Scientific Workflows 
 James Ahrens, Los Alamos National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/8-BDEC2015-

ahrens.pdf 
o 10:50 a.m. to 11:00 a.m. – Dataflow-centric Warehouse-scale Computing 

 Hidemoto Nakada, National Institute of Advanced Industrial Science and 
Technology 

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/9-BDEC2015-
nakada.pdf 

o Q&A for Session 5 
 

• 11:00 a.m. to 11:30 a.m. – Break 
 

• Session 6 – White Papers on Applied Mathematics/Algorithms 
 

o 11:30 a.m. to 11:40 a.m. – Writing Efficient Computational Workflows in Python  
 Rosa M. Badia, Barcelona Supercomputing Center 
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 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/10-BDEC2015-
badia.pdf 

o 11:40 a.m. to 11:50 a.m. – Numerical Libraries and Software Framework for Application 
Programs in the Post Peta Era 
 Takeshi Iwashita, Hokkaido University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/11-BDEC2015-

iwashita.pdf 
o 11:50 a.m. to 12:00 p.m.– Using Data Analytics to Detect Corruptions in Numerical 

Simulations on Potentially Unreliable Environments 
 Franck Cappello, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/12-BDEC2015-

cappello.pdf 
o 12:00 p.m. to 12:10 p.m.– Bringing Compute to the Data 

 Bryan Lawrence, National Centre for Atmospheric Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/13-BDEC2015-

lawrence.pdf 
o 12:10 p.m. to 12:20 p.m.– Optimization of Serial and Parallel Communications Towards 

Scalable Algorithms on Supercomputers in Next Generation 
 Kengo Nakajima, University of Tokyo 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/14-BDEC2015-

Nakajima.pdf 
o 12:20 p.m. to 12:30 p.m.– Scaling Resiliency and Analysis Via Machine Learning 

 Alok Choudhary, Northwestern University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/15-BDEC2015-

choudhary.pdf 
o Q&A for Session 6 

 
• Breakout Sessions 

 
o 12:30 to 4:00 p.m.– Breakout Sessions 

 Room 6: Applications and Science 
 Room 8: Algorithms and Applied Math 
 Room 7: Architecture and Operations 
 Room 9: Software Stack 
 

• 1:30 p.m. to 2:30 p.m.– Lunch Break 
 

• Breakout Reports 
 

o 4:00 p.m. to 4:15 p.m.– Applications and Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-

day2-applications.pdf 
o 4:15 p.m. to 4:30 p.m.– Algorithms and Applied Math 

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-
day2-algorithms.pdf 

o 4:30 p.m. to 4:45 p.m.– Architecture and Operations 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-

day2-architecture.pdf 
o 4:45 p.m. to 5:00 p.m.– Software Stack 

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/bdec-breakout-
day2-software.pdf 
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• Concluding Remarks 

o BDEC Steering Committee 
o http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Writing%20Timeline.pd

f 
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B3.3 BDEC Barcelona White Papers 
1. Ahrens J (2015), "Accelerating Time to Insight in the Exascale Ecosystem Through the Optimization 

of Scientific Workflows", In 3rd BDEC Workshop., January, 2015. 
2. Andre J-C (2015), "Two Remarks on Future Developments of Climate Simulation, with Strong 

Impact on Computing and Data Processing", In 3rd BDEC Workshop., January, 2015. 
3. Ayguade E, Badia RM, Becerra Y, Carrera D, Cortes T, Labarta J, Queralt A, Tejedor E, Torres J and 

Valero M (2015), "Writing Efficient Computational Workflows in Python", In 3rd BDEC Workshop., 
January, 2015. 

4. Beckman P, Choudhary A, Dongarra J, Fox G, Gropp W and Reed D (2015), "Scalable Ecosystems 
for Data Science (SEDS)", In 3rd BDEC Workshop., January, 2015. 

5. Cappello F, Gomez LB and Di S (2015), "Using Data Analytics to Detect Corruptions in Numerical 
Simulations on Potentially Unreliable Environments", In 3rd BDEC Workshop., January, 2015. 

6. Casas M, Moretó M, Ayguade E, Labarta J and Valero M (2015), "A Brief Overview on Runtime-
Aware Architectures", In 3rd BDEC Workshop., January, 2015. 

7. Cortes T, Queralt A, Martí J and Labarta J (2015), "DataClay: Towards Usable and Shareable 
Storage", In 3rd BDEC Workshop., January, 2015. 

8. Deelman E (2015), "The Role of Scientific Workflows in Bridging Big Data and Extreme Scale 
Computing", In 3rd BDEC Workshop., January, 2015. 

9. Dubey A (2015), "A Case For Investing in Software Architectures and Framework Research", In 3rd 
BDEC Workshop., January, 2015. 

10. Erbacci G and Fiameni G (2015), "Towards a Data Science Infrastructure: Cineca's Position in the 
European Supercomputing Infrastructure", In 3rd BDEC Workshop., January, 2015. 

11. Fox G, Jha S, Qiu J and Luckow A (2015), "Ogres: A Systematic Approach to Big Data 
Benchmarks", In 3rd BDEC Workshop., January, 2015. 

12. Heroux M (2015), "Data and Next Generation Scalable Applications", In 3rd BDEC Workshop., 
January, 2015. 

13. Huber H (2015), "LRZ's Position in European Supercomputing", In 3rd BDEC Workshop., January, 
2015. 

14. Iwashita T (2015), "Numerical Libraries and Software Framework for Application Programs in the 
Post Peta Era", In 3rd BDEC Workshop., January, 2015. 

15. Keahey K (2015), "Chameleon: A Large-Scale, Reconfigurable Experimental Environment for Cloud 
Research", In 3rd BDEC Workshop., January, 2015. 

16. Kondo M (2015), "Power Management Framework for Extreme-Scale Computing", In 3rd BDEC 
Workshop., January, 2015. 

17. Kramer W (2015), "Decadal Trends for Advanced, High Spectrum Computing and Data Analysis", In 
3rd BDEC Workshop., January, 2015. 

18. Lawrence B (2015), "Bringing Compute to the Data", In 3rd BDEC Workshop., January, 2015. 
19. Mehrotra P and Pryor LH (2015), "Next Steps in Supporting Big Data Analytics at the NASA 

Advanced Supercomputing (NAS) Division", In 3rd BDEC Workshop., January, 2015. 
20. Michalewicz M, Poppe Y, Wee TT and Deng Y (2015), "A Path to Reach Exascale Concurrent 

Supercomputing across the Globe Utilising Trans-continental InfiniBand and Galaxy of 
Supercomputers", In 3rd BDEC Workshop., January, 2015. 

21. Miyoshi T (2015), "Toward Exascale Weather Forecast Application in the Big Data Era: A 
Perspective beyond "Big Data Assimilation"", In 3rd BDEC Workshop., January, 2015. 

22. Muggeridge M (2015), "Percipient Storage: A Storage Centric Approach to BDEC", In 3rd BDEC 
Workshop., January, 2015. 

23. Nagel WE, Jäkel R and Müller-Pfefferkorn R (2015), "Execution Environments for Big Data: 
Challenges for User Centric Scenarios", In 3rd BDEC Workshop., January, 2015. 

24. Nakada H, Kojima I, Takano R and Kudoh T (2015), "Dataflow-centric Warehouse-scale 
Computing", In 3rd BDEC Workshop., January, 2015. 
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25. Nakajima K (2015), "Optimization of Serial and Parallel Communications Towards Scalable 
Algorithms on Supercomputers in Next Generation", In 3rd BDEC Workshop., January, 2015. 

26. Nakashima H (2015), "Finding Regularity in Irregularities", In 3rd BDEC Workshop., January, 2015. 
27. Reverdy V and Alimi J-M (2015), "Achieving Genericity and Performance using Embedded Domain 

Specific Languages", In 3rd BDEC Workshop., January, 2015. 
28. Ribés A (2015), "In-situ Analysis and Visualization of Ensemble Data Sets: the case of Fluid 

Dynamics Simulations in Energy Production", In 3rd BDEC Workshop., January, 2015. 
29. Saltz J (2015), "Data Analytics, Sensor Data, Simulation, and Cancer Research", In 3rd BDEC 

Workshop., January, 2015. 
30. Stefanov K and Voevodin V (2015), "Supercomputers at Exascale: BigData and Extreme Computing 

of the Total Monitoring", In 3rd BDEC Workshop., January, 2015. 
31. Unsal O (2015), "Software/Hardware Co-design for Big Data and the impact of Future Hardware 

Trends", In 3rd BDEC Workshop., January, 2015. 
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B.4 BDEC Frankfurt, 2016 

B.4.1 BDEC Frankfurt Attendees 
James Ahrens (Los Alamos National Laboratory) 
Jean-Michel Alimi (Observatoire de Paris) 
Giovanni Aloisio (Euro-Mediterranean Center on Climate Change / University of Salento) 
Jean-Claude Andre (Jca Consultance & Analyse) 
Gabriel Antoniu (INRIA) 
Mark Asch (University of Picardy Jules Verne) 
Edouard Audit (Atomic Energy and Alternative Energies Commission [CEA]) 
Rosa Badia Sala (Barcelona Supercomputing Center) 
Peter Beckman (Argonne National Laboratory) 
Costas Bekas (IBM Research) 
Francesco Benincasa (Barcelona Supercomputing Center) 
Thierry Bidot (Néovia Innovation) 
Mathis Bode (RWTH Aachen University) 
Francois Bodin (University of Rennes 1) 
Taisuke Boku (University of Tsukuba) 
Christophe Calvin (Atomic Energy and Alternative Energies Commission [CEA]) 
Franck Cappello (Argonne National Laboratory) 
Marc Casas (Barcelona Supercomputing Center) 
Barbara Chapman (Stony Brook University) 
Susumu Date (Osaka University_ 
Bronis de Supinski (Lawrence Livermore National Laboratory) 
Ewa Deelman (University of Southern California Information Sciences Institute) 
Jack Dongarra (University of Tennessee) 
Sudip Dosanjh (Lawrence Berkeley National Laboratory) 
Anshu Dubey (Argonne National Laboratory) 
Giovanni Erbacci (CINECA) 
Hugo Falter (ParTec Cluster Competence Center) 
Sandro Fiore (Euro-Mediterranean Center on Climate Change / University of Salento) 
Geoffrey Fox (Indiana University) 
Fabrizio Gagliardi (Barcelona Supercomputing Center) 
Adriano Galano (Fujitsu) 
Sergio Girona (Barcelona Supercomputing Center) 
Jean Gonnord (Atomic Energy and Alternative Energies Commission [CEA]) 
Jim Harrell (Cray) 
William Harrod (United States Department of Energy) 
Michael Heroux (Sandia National Laboratories) 
Vasant Honavar (Pennsylvania State University) 
Hans-Christian Hoppe (Intel) 
Yutaka Ishikawa (RIKEN Advanced Institute for Computational Science) 
Takeshi Iwashita (Hokkaido University) 
Kate Keahey (Argonne National Laboratory) 
Alison Kennedy (Partnership for Advanced Computing in Europe) 
Jamie Kinney (Amazon) 
Masaaki Kondo (University of Tokyo) 
Tomohiro Kudoh (National Institute of Advanced Industrial Science and Technology) 
Jesus Labarta (Barcelona Supercomputing Center) 
Jean-Francois Lavignon (Bull / Atos) 
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Jysoo Lee Korean (Institute of Science and Technology Information) 
Corentin Lefevre (Néovia Innovation) 
Barney Maccabe (Oak Ridge National Laboratory) 
Michael Malms (IBM Research) 
Satoshi Matsuoka (Tokyo Institute of Technology) 
Piyush Mehrotra (NASA Ames Research Center) 
Marek Michalewicz (Agency for Science, Technology, and Research [A*STAR]) 
Bernd Mohr (Jülich Supercomputing Centre) 
Terry Moore (University of Tennessee) 
Malcolm Muggeridge (Seagate Technology, LLC) 
Kengo Nakajima (University of Tokyo) 
Hiroshi Nakashima (Kyoto University) 
Jean-Philippe Nomine (Atomic Energy and Alternative Energies Commission [CEA]) 
Marcin Ostasz (Barcelona Supercomputing Center) 
Tracy Rafferty (University of Tennessee) 
Rajiv Ramnath (National Science Foundation) 
Dan Reed (University of Iowa) 
Joel Saltz (Stony Brook University) 
Mitsuhisa Sato (RIKEN Advanced Institute for Computational Science / University of Tsukuba) 
Thomas Schulthess (ETH Zurich / Swiss National Supercomputing Centre) 
Satoshi Sekiguchi (National Institute of Advanced Industrial Science and Technology) 
Xuanhua Shi Huazhong University Of Science And Technology) 
Rick Stevens (Argonne National Laboratory) 
Martin Swany (Indiana University) 
Alex Szalay (Johns Hopkins University) 
Osamu Tatebe (University of Tsukuba) 
Rajeev Thakur (Argonne National Laboratory) 
Panagiotis Tsarchopoulos (European Commission) 
Junichi Tsujii (AIST) 
Akira Ukawa (RIKEN Advanced Institute for Computational Science) 
Jean-Pierre Vilotte (Paris Institute of Earth Physics) 
Robert Wisniewski (Intel) 
Kathy Yelick (Lawrence Berkeley National Laboratory) 
Rio Yokota (Tokyo Institute of Technology) 
Igor Zacharov (Eurotech) 
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B.4.2 BDEC Frankfurt Agenda 
Wednesday, June 15 
 

• 6:00 p.m. to 8:00 p.m. – Reception and Registration 
 
Thursday, June 16 
 

• Introduction and Keynotes 
 

o 9:00 a.m. to 9:15 a.m. – Welcome, Overview and Goals of the Meeting 
 Sergio Girona, Barcelona Supercomputing Center 
 Mark Asch, University of Picardy Jules Verne 

o 9:15 a.m. to 9:45 a.m. – Keynote #1 
 Vasant Honavar, Pennsylvania State University 

o 9:45 a.m. to 10:15 a.m. – Numerical Laboratories on Exascale 
 Alex Szalay, Johns Hopkins University 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/szalay-

bdec16Jun16.pdf 
o 10:15 a.m. to 10:45 a.m. – AI Platform and Challenges: Perspectives from AI Research 

Center (AIRC) 
 Junichi Tsujii, AIST 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Tsujii-

BDEC16Jun16.pdf 
 

• 10:45 a.m. to 11:15 a.m. – Coffee Break 
 

• BDEC Pathways to Convergence – Flashes 
 

o 11:15 a.m. to 1:00 p.m. – White Paper Presentations (Session 1) 
 Using an LWK in a Multi-Kernel Environment to Improve Containers 

• Balazs Gerofi, Yutaka Ishikawa, Rolf Riesen, Robert Wisniewski 
• Presented by Robert Wisniewski 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/wisniewski-bdec-multi-kernel-.pdf 
 OpenHPC: a Collaborative Environment for Development of a Cohesive 

Comprehensive HPC Software Stack Suitable for Cloud Integration 
• Robert Wisniewski 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/wisniewski-bdec-openhpc.pdf 
 Pathways to Convergence 

• Osamu Tatebe 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/tatebe.pdf 
 Integrative Multi-Scale Imaging, Simulation and Precision Cancer Therapy 

• Joel Saltz 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Saltz%20Position%20Writeup%20BDEC%202016%20.pdf 
 Toward the Converge of In-Situ Data Analysis and Deep-Learning Methods for 

Efficient Pre/Post Processing of Pertinent Structure Among Massive Amount of 
Scientific Data 
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• Sandro Fiore, Giovanni Aloisio, Philippe Ricoux, S. Brun, Jean-Michel 
Alimi, Mathis Bode, R. Apostolov, Stephane Requena 

• Presented by Jean-Michel Alimi 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Requena_BDEC_%20convergence_DA_ML_VF.pdf 
 Names Matter: Eliminate the False Dichotomy Between Big Data and HPC 

• Dan Reed 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Reed%20BDEC%202016.pdf 
 Framework for Development of Data-Movement Centric Applications 

• Kengo Nakajima 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/NakajimaKengo.pdf 
 Merging Big Data and HPC for Large-scale Analysis/Analytics at the NASA 

Advanced Supercomputing (NAS) Division 
• Piyush Mehrotra 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/mehrotra-BDEC%202016.pdf 
 

• 1:00 p.m. to 2:00 p.m. – Lunch Break 
 

• Pathways to Convergence 
 

o 2:00 p.m. to 4:00 p.m. – White Paper Presentations (Session 2) 
 Why convergence? A contrarian view and a path to convergence enabling 

specialization 
• Barney Maccabe 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Maccabe%20Why%20Convergence.pdf 
 Current Status and Future Prospects of Optical Communications Technology and 

Possible Impact on Future BDEC Systems 
• Tomohiro Kudoh, Kiyo Ishii, Shu Namiki 
• Presented by Tomohiro Kudoh 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/kudoh_BDEC201606v2.pdf 
 Numerical Algorithms, Libraries, and Software Frameworks for Future HPC 

Systems (Towards the Post Moore Era) 
• Takeshi Iwashita 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/iwashita-BDEC2016.pdf 
 Big Data, Simulations and HPC Convergence 

• Geoffrey Fox, Judy Qiu, Shantenu Jha, Supun Kamburugamuve, Saliya 
Ekanayake 

• Presented by: Geoffrey Fox 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/fox-HPCBigDataConvergence.Summary_IURutgers.pdf 
 Big Data Analytics and High Performance Computing Convergence Through 

Workflows and Virtualization 
• Ewa Deelman 
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• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa
pers/deelman-bdec2016.pdf 

 Scalable Compression as a Fundamental Pattern for HPC–Big Data Convergence 
• Franck Cappello, Sheng Di 
• Presented by: Franck Cappello 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Cappello_BDEC-Compression-as-a-pattern.pdf 
 On-Demand Data Analytics and Storage for Extreme-Scale Simulations and 

Experiments 
• Franck Cappello, Katrin Heitmann, Gabrielle Allen, Salman Habib, Ed 

Seidel, Brandon George, Brett Bode, Tim Boerner, Maxine D. Brown, 
Michelle Butler, Randal L. Butler, Kenton G. McHenry, Athol J 
Kemball, Rajkumar Kettimuthu, Ravi Madduri, Alex Parga, Roberto R. 
Sisneros, Corby B. Schmitz, Sean R. Stevens, Matthew J. Turk, Tom 
Uram, David Wheeler, Michael J. Wilde, Justin M. Wozniak 

• Presented by Franck Cappello 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Cappello_BDEC-On-demand-infrastructure.pdf 
 Big Data for Climate and Air Quality 

• Pierre-Antoine Bretonnière, Francesco Benincasa, Francisco Doblas-
Reyes, Kim Serradell 

• Presented by Francesco Benincasa 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Benincasa-
BDECcontributionaboutWeatherClimateandAirQuality_F.pdf 

 Enablement of Multi-Scale Simulation, Analytics and Visualization Workflows 
• Marc Casas, Miquel Moretó, Rosa Badia Sala, Raul Sirvent, Eduard 

Ayguade, Jesus Labarta, Mateo Valero 
• Presented by Rosa Badia 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Badia-BDEC_white_paper_2016_v0.5.pdf 
 Toward Large Scale Distributed Experiments for Climate Change Data Analytics 

in the Earth System Grid Federation (ESGF) Eco-System 
• Sandro Fiore, Dean Williams, Valentine Anantharaj, Sylvie Joussaume, 

Davide Salomoni, Stephane Requena, Giovanni Aloisio 
• Presented by Sandro Fiore 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Aloisio%20BDEC_Abstract_final.pdf 
 SAGE: Percipient Storage for Exascale Data Centric Computing 

• Malcolm Muggeridge, Sai Narasimhamurthy 
• Presented by Malcolm Muggeridge 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Muggeridge-%20-%20BDEC%20-%202016.pdf 
 Data Intensive and High Performance Computing: The View from High Energy 

Physics 
• Anshu Dubey, Salman Habib 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/Dubey_Habib-HEP.pdf 
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 CEA: Connecting Co-design Capabilities with the Operation of Large HPC and 
Data Processing Facilities 

• Edouard Audit, Christophe Calvin, Jean Gonnord, Jacques-Charles 
Lafoucrière, Jean-Philippe Nomine 

• Presented by Edouard Audit 
• http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepa

pers/CEA-BDEC%20-%20Position%20Paper.pdf 
 

• 4:00 p.m. to 4:30 p.m. Coffee Break 
 

• Breakout Groups 
 

o 4:30 p.m. to 4:50 p.m. – Pathways to Convergence: Where do we go from here? 
 Jack Dongarra, University of Tennessee 
 Peter Beckman, Argonne National Laboratory 
 Terry Moore, University of Tennessee 

o 4:50 p.m. to 6:30 p.m. – Breakouts on Pathways 
 

• 8:00 p.m. – Dinner 
 
Friday, June 17 
 

• Roadmaps and Overviews 
 

o 9:00 a.m. to 9:30 a.m. – Convergence: What it Means to Me 
 Rick Stevens, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-

Convergence-Thoughts-Stevens.pdf 
o 9:30 a.m. to 9:50 a.m. – EU Overview 

 Jean Gonnord, Atomic Energy and Alternative Energies Commission (CEA) 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/2-Gonnard-

BDEC17Jun16.pdf 
o 9:50 a.m. to 10:10 a.m. – USA-NSF Overview 

 Rajiv Ramnath, National Science Foundation 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/3-Ramnath-

BDEC17Jun16.pdf 
o 10:10 a.m. to 10:30 a.m. – Japan Overview 

 Yutaka Ishikawa, RIKEN Advanced Institute for Computational Science 
 Satoshi Matsuoka, Tokyo Institute of Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/4-Matsuoka-

BDEC-Japan-Update-17Jun16.pdf 
o 10:30 a.m. to 11:00 a.m. – China Big Data and HPC Initiatives Overview 

 Xuanhua Shi, Huazhong University Of Science And Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/5-Shi-BDEC-

China_update17Jun16.pdf 
o 11:00 a.m. to 11:30 a.m. – Data and Data-intensive computing challenges in Earth and 

Universe Sciences 
 Jean-Pierre Vilotte, Paris Institute of Earth Physics 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Vilotte-

BDEC16Jun16.pdf 
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o 11:30 a.m. to 12:15 p.m. – Breakout Review and Reporting 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-

Breakouts-All.pdf 
 

• 12:15 p.m. to 1:30 p.m. – Lunch Break 
 

• Keynotes 2 
 

o 1:30 p.m. to 2:00 p.m. – Keynote #5 
 Gabriel Antoniu, INRIA 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/6-Antoniu-

BDEC17Jun16.pdf 
 

• Breakout Groups 2 
 

o 2:00 p.m. to 4:00 p.m. – Breakouts on Pathways and Reporting 
• 4:00 p.m. to 4:30 p.m. – Coffee Break 

 
• Breakout Reports and Closing 

 
o 4:30 p.m. to 5:30 p.m. – Breakout Reports 
o 5:30 p.m. to 5:45 p.m. – Conclusion and Next Steps 
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B.4.3 BDEC Frankfurt White Papers 
1. Balazs Gerofi, Yutaka Ishikawa, Rolf Riesen, and Robert Wisniewski, “Using an LWK in a Multi-

Kernel Environment to Improve Containers,” Workshop on Big Data and Extreme-Scale Computing 
(BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

2. Robert Wisniewski, “OpenHPC: a Collaborative Environment for Development of a Cohesive 
Comprehensive HPC Software Stack Suitable for Cloud Integration,” Workshop on Big Data and 
Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

3. Osamu Tatebe, “Pathways to Convergence”, Workshop on Big Data and Extreme-Scale Computing 
(BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

4. Joel Saltz, “Integrative Multi-Scale Imaging, Simulation and Precision Cancer Therapy,” Workshop 
on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White Paper, June 
2016. 

5. Sandro Fiore, Giovanni Aloisio, Philippe Ricoux, S. Brun, Jean-Michel Alimi, Mathis Bode, R. 
Apostolov, and Stephane Requena, “Toward the converge of in-situ data analysis and deep-learning 
methods for efficient pre/post processing of pertinent structure among massive amount of scientific 
data,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, 
White Paper, June 2016. 

6. Dan Reed, “Names Matter: Eliminate the False Dichotomy between Big Data and HPC,” Workshop 
on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White Paper, June 
2016. 

7. Kengo Nakajima, “Framework for Development of Data-Movement Centric Applications,” 
Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White 
Paper, June 2016. 

8. Piyush Mehrotra, “Merging Big Data and HPC for Large-scale Analysis/Analytics at the NASA 
Advanced Supercomputing (NAS) Division,” Workshop on Big Data and Extreme-Scale Computing 
(BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

9. Barney Maccabe, “Why Convergence? A Contrarian View and a Path to Convergence Enabling 
Specialization,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, 
Germany, White Paper, June 2016. 

10. Tomohiro Kudoh, Kiyo Ishii, and Shu Namiki, “Current Status and Future Prospects of Optical 
Communications Technology and Possible Impact on Future BDEC Systems,” Workshop on Big 
Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

11. Takeshi Iwashita, “Numerical Algorithms, Libraries, and Software Frameworks for Future HPC 
Systems (Towards the Post Moore Era),” Workshop on Big Data and Extreme-Scale Computing 
(BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

12. Geoffrey Fox, Judy Qiu, Shantenu Jha, Supun Kamburugamuve, and Saliya Ekanayake, “Big Data, 
Simulations and HPC Convergence,” Workshop on Big Data and Extreme-Scale Computing (BDEC 
2016), Frankfurt, Germany, White Paper, June 2016. 

13. Ewa Deelman, “Big Data Analytics and High Performance Computing Convergence Through 
Workflows and Virtualization,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), 
Frankfurt, Germany, White Paper, June 2016. 

14. Franck Cappello and Sheng Di, “Scalable Compression as a Fundamental Pattern for HPC–Big Data 
Convergence,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, 
Germany, White Paper, June 2016. 

 
15. Franck Cappello et al. “On-Demand Data Analytics and Storage for Extreme-Scale Simulations and 

Experiments,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, 
Germany, White Paper, June 2016. 

16. Pierre-Antoine Bretonnière, Francesco Benincasa, Francisco Doblas-Reyes, and Kim Serradell, “Big 
Data for Climate and Air Quality,” Workshop on Big Data and Extreme-Scale Computing (BDEC 
2016), Frankfurt, Germany, White Paper, June 2016. 
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17. Marc Casas, Miquel Moretó, Rosa Badia Sala, Raul Sirvent, Eduard Ayguade, Jesus Labarta, and 
Mateo Valero, “Enablement of Multi-Scale Simulation, Analytics and Visualization Workflows,” 
Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White 
Paper, June 2016. 

18. Sandro Fiore, Dean Williams, Valentine Anantharaj, Sylvie Joussaume, Davide Salomoni, Stephane 
Requena, and Giovanni Aloisio, “Toward Large Scale Distributed Experiments for Climate Change 
Data Analytics in the Earth System Grid Federation (ESGF) Eco-System,” Workshop on Big Data 
and Extreme-Scale Computing (BDEC 2016), Frankfurt, Germany, White Paper, June 2016. 

19. Malcolm Muggeridge and Sai Narasimhamurthy, “SAGE: Percipient Storage for Exascale Data 
Centric Computing,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), Frankfurt, 
Germany, White Paper, June 2016. 

20. Anshu Dubey and Salman Habib, “Data Intensive and High Performance Computing: The View from 
High Energy Physics,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), 
Frankfurt, Germany, White Paper, June 2016. 

21. Edouard Audit, Christophe Calvin, Jean Gonnord, Jacques-Charles Lafoucrière, and Jean-Philippe 
Nomine, “CEA: Connecting Co-design Capabilities with the Operation of Large HPC and Data 
Processing Facilities,” Workshop on Big Data and Extreme-Scale Computing (BDEC 2016), 
Frankfurt, Germany, White Paper, June 2016. 
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B.5 BDEC Wuxi, 2017 

B.5.1 BDEC Wuxi Attendees 
Jean-Claude Andre (Jca Consultance & Analyse) 
Mark Asch (University of Picardy Jules Verne) 
Rosa Badia Sala (Barcelona Supercomputing Center) 
Pete Beckman (Argonne National Laboratory) 
Thierry Bidot (Néovia Innovation) 
Francois Bodin (University of Rennes 1) 
Franck Cappello (Argonne National Laboratory) 
Alok Choudhary (Northwestern University) 
Ewa Deelman (University of Southern California Information Sciences Institute) 
Jack Dongarra (University of Tennessee) 
Anshu Dubey (Argonne National Laboratory) 
Tarek El-Ghazawi (The George Washington University) 
Hugo Falter (ParTec Cluster Competence Center) 
Geoffrey Fox (Indiana University) 
Haohuan Fu (National Supercomputing Center in Wuxi) 
Balazs Gerofi (RIKEN Advanced Institute for Computational Science) 
Judit Gimenez Lucas (Barcelona Supercomputing Center) 
Sergio Girona (Barcelona Supercomputing Center) 
William Gropp (National Center for Supercomputing Applications) 
Yutaka Ishikawa (RIKEN Advanced Institute for Computational Science) 
Kate Keahey (Argonne National Laboratory) 
Katarzyna Keahey (Argonne National Laboratory) 
David Keyes (King Abdullah University of Science and Technology / Columbia University) 
William Kramer (National Center for Supercomputing Applications / University of Illinois) 
Jean-Francois Lavignon (Bull / Atos) 
Miron Livny (University of Wisconsin-Madison) 
Satoshi Matsuoka (Tokyo Institute of Technology) 
Takemasa Miyoshi (RIKEN Advanced Institute for Computational Science) 
Terry Moore (University of Tennessee) 
Jean-Pierre Panziera (Bull / Atos) 
Depei Qian (Jiaotong University) 
Tracy Rafferty (University of Tennessee) 
Robert Ross (Argonne National Laboratory) 
Hitoshi Sato (National Institute of Advanced Industrial Science and Technology) 
Thomas Schulthess (ETH Zurich / Swiss National Supercomputing Centre) 
Rick Stevens (Argonne National Laboratory) 
Martin Swany (Indiana University) 
Sandor Szalay (Johns Hopkins University) 
William Tang (Princeton University / Princeton Plasma Physics Lab) 
Gael Varoquaux (INRIA) 
Jean-Pierre Vilotte (Paris Institute of Earth Physics) 
Robert Wisniewski (Intel) 
Zhiwei Xu (Institute of Computing Technology, Chinese Academy of Sciences) 
Watson Yin (Baidu) 
Ya-qin Zhang (Baidu) 



 B-34 

B.5.2 BDEC Wuxi Agenda 
Wednesday, March 8 
 

• 7:00 p.m. – Reception at the Grand Kingtown Hotel Wuxi 
 
Thursday, March 9 
 

• Welcome & Keynotes 
 

o 8:20 a.m. to 8:30 a.m. – Intro & Welcome 
 Jack Dongarra, University of Tennessee 
 Pete Beckman, Argonne National Laboratory 

o 8:30 a.m. to 8:50 a.m. – Keynote 
 Watson Yin, Baidu 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Baidu_ABC_Pl

atform.pdf 
o 8:50 a.m. to 9:15 a.m. – Keynote 

 Zhiwei Xu, Institute of Computing Technology, Chinese Academy of Sciences 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Xu-BDEC-

Wuxi.pdf 
o 9:15 a.m. to 9:45 a.m. – Keynote 

 Rick Stevens, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-Wuxi-

Rick.pdf 
 

• Overviews 
 

o 9:45 a.m. to 10:00 a.m. – China Overview 
 Haohuan Fu, National Supercomputing Center in Wuxi 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/China-

Overview16to9_Fu.pdf 
o 10:00 a.m. to 10:15 a.m. – United States Overview 

 Robert Ross, Argonne National Laboratory 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/ross-bdec-ecp-

update-20170308.pdf 
o 10:15 a.m. to 10:30 a.m. – European Union Overview 

 Jean-Pierre Panziera, Bull 
 Sergio Girona, Barcelona Supercomputing Center 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Europe_BDEC.

pdf 
o 10:30 a.m. to 10:45 a.m. – Japan Overview 

 Satoshi Matsuoka, Tokyo Institute of Technology 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/BDEC-Japan-

update-20170309.pdf 
o 10:45 a.m. to 11:00 a.m. – Overview of Pathways Document and Intro to Breakouts  

 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Breakout-
overview2.pdf 

 
• 11:00 a.m. to 11:15 a.m. – Break 
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• 11:15 a.m. to 12:30 p.m. – First Breakout Session 
o HPC/Cloud/Datacenter 

 Facilitator/Scribes: Satoshi Matsuoka, Kate Keahey, Thomas Schulthess 
o Data Workflows and Edge Computing 

 Facilitator/Scribes: Ewa Deelman, Gabriel Antoniu, Geoffrey Fox 
o Applications/Algorithms 

 Facilitator/Scribes: David Keyes, Jean-Pierre Vilotte, Anshu Dubey 
 

• 12:30 p.m. to 1:30 p.m. – Lunch Break 
 

• Afternoon Sessions 
 

o 1:30 p.m. to 2:00 p.m. – Keynote 
 Takemasa Miyoshi, RIKEN Advanced Institute for Computational Science 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Miyoshi-

BDEC.pdf 
o 2:00 p.m. to 2:15 p.m. – NSF and Extreme Scale 

 William Gropp, National Center for Supercomputing Applications 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/nsf-

bdec.gropp_.pdf 
 

• 2:15 p.m. to 3:45 p.m. – Second Breakout Session 
 

o HPC/Cloud/Datacenter 
 Facilitator/Scribes: Satoshi Matsuoka, Kate Keahey, Thomas Schulthess 

o Data Workflows and Edge Computing 
 Facilitator/Scribes: Ewa Deelman, Gabriel Antoniu, Geoffrey Fox 

o Applications/Algorithms 
 Facilitator/Scribes: David Keyes, Jean-Pierre Vilotte, Anshu Dubey 

 
• Breakout Reports 

 
o 3:45 p.m. to 4:15 p.m. –Breakout Reports and Synthesis of Document Status 

 
• 4:15 p.m. – Tour of Supercomputer Center 

 
• 5:00 p.m. – Banquet 

 
Friday, March 10 
 

• Keynotes 
 

o 8:30 a.m. to 9:00 a.m. – Keynote 
 Thomas Schulthess, ETH Zurich 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Schulthess@BD

EC_Wuxi_Mar2017.pdf 
o 9:00 a.m. to 9:30 a.m. – Keynote 

 Gael Varoquaux, INRIA 
 http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Varoquaux-

BDEC-Wuxi.pdf 
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• 9:30 a.m. to 11:30 a.m. – Third Breakout Session 

 
o HPC/Cloud/Datacenter 

 Facilitator/Scribes: Satoshi Matsuoka, Kate Keahey, Thomas Schulthess 
o Data Workflows and Edge Computing 

 Facilitator/Scribes: Ewa Deelman, Gabriel Antoniu, Geoffrey Fox 
o Applications/Algorithms 

 Facilitator/Scribes: David Keyes, Jean-Pierre Vilotte, Anshu Dubey 
 

• 11:30 a.m. to 12:30 p.m. – Lunch 
 

• 12:30 p.m. to 2:30 p.m. – Fourth Breakout Session 
 

o HPC/Cloud/Datacenter 
 Facilitator/Scribes: Satoshi Matsuoka, Kate Keahey, Thomas Schulthess 

o Data Workflows and Edge Computing 
 Facilitator/Scribes: Ewa Deelman, Gabriel Antoniu, Geoffrey Fox 

o Applications/Algorithms 
 Facilitator/Scribes: David Keyes, Jean-Pierre Vilotte, Anshu Dubey 

 
• Breakout Reports 

o 2:30 p.m. to 3:30 p.m. – Reports from Breakouts, Document Synthesis and Next Steps 
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