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“Civilization advances by extending the 
number of important operations which we 
can perform without thinking about them”

Alfred North Whitehead, Professor at 
Harvard, 1910s
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Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics
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Before We Start
Where We Are

Week 9: Batch Data Processing => MapReduce
3/23 3/24

Lecture C1
Batch Data 
Processing

(Quiz & Reading)

3/25
Lab I8

MapReduce 
Hadoop Cluster

3/26
Hands-on H4
MapReduce 

Programming

3/27

Concepts Platform Programming

Week 10: Dataflow Processing => Spark
3/30 3/31

Lecture C2
Dataflow 

Processing
(Quiz & Reading)

4/1
Lab I9

Spark Single 
Node

4/2
Hands-on H5

Spark 
Programming

4/3
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MapReduce Programming Model
Context

The programmer essentially only specifies two (sequential) functions

STEP 1. MAP: map(k1,v1) → list(k2,v2)

• Inputs data record and outputs a set of intermediate key-value pairs, each of 
type k2 and v2

• Types can be simple or complex user-defined objects
• Each map call is fully independent (no execution ordering, sync or comm)

STEP 2. SUFFLING: Internal grouping of all intermediate pairs with same key 
together and passes them to the workers executing reduce

STEP 3. REDUCE: reduce(k2,list(v2)) → list(k3,v3)

• Combines information across records that share this same intermediate key
• Each reduce call is fully independent
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MapReduce Programming Model
Context
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Hands-on Examples
Requirements

1. Unix-like shell (Linux, Mac OS or Windows/Cygwin)

2. Python installed

$ cat files | mapper.py| sort | reducer.py

Both the mapper and the reducer should be python executable scripts that 
read the input from stdin (line by line) and emit the output to stdout
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Design Patterns

Summarization

Inverted Index

Filtering

Other Patterns

Roadmap
MapReduce Design Patterns



Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
10

Design Patterns
What Are Design Patterns? 

ü Reusable solutions to problems (HWC!) 

ü Domain independent

ü Not a cookbook

ü Not a guide 

ü Not a finished solution 
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Design Patterns
Why Design Patterns? 

ü Makes the intent of model and platform 
easier to understand 

ü Provides a common language for solutions

ü Be able to reuse code

ü Describes known performance profiles and 
limitations of solutions
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Design Patterns
When Should I Use MapReduce?

Query 
• Index and Search: inverted index
• Filtering
• Classification

Analytics
• Summarization and statistics
• Sorting and merging
• Frequency distribution
• SQL-based queries: group-by, having, etc. 
• Generation of graphics: histograms, scatter plots.

. . . large datasets in off-line mode for boosting other 
on-line processes
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Design Patterns
Main Functions and Patterns

Main Patterns

1.Summarization

2.Inverted Index

3.Filtering
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Summarization
Calculating Aggregate Statistical Values

Examples
1. Word count 
2.Record count 
3.Min/Max/Count 
4.Average/Median/Standard deviation 
5. ... 

Description
• A general pattern for calculating aggregate statistical values over 

your data

Intent
• Group records together by a key field and calculate a numerical 

aggregate per group to get a top-level view of the larger data set
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Summarization
Word Count

map

input: [line of text file]
for each word 

output: <word, 1> 

input: [<word, 1>]
count for same word 
output: <word, sum> 

Find the frequency of each word in text files
• Map: Process lines and generate as output <word, 1>
• Reduce: Add all values for the same word

reduce
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mapper.py reducer.py

Summarization
Word Count
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Summarization
Record Count

input: [line of log file]
for each line with a URL

output: <URL, 1> 

input: [<URL, 1>]
Count for same URL
output: <URL, #>

Find the frequency of each URL in web logs
• Map: Process web page access logs and generate <URL, 1> as 

output
• Reduce: Add all values for the same URL

map reduce

64.242.88.10 - - [07/Mar/2004:16:37:27 -0800] "GET /twiki/bin/view/TWiki/DontNotify HTTP/1.1" 200 4140
64.242.88.10 - - [07/Mar/2004:16:39:24 -0800] "GET /twiki/bin/view/Main/TokyoOffice HTTP/1.1" 200 3853
…
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Summarization
Max-Min

input: [<username, date, 
text>]
for each line 
output: <username, date, 

1>

input: [<username, date, 1>]
First, Last and Count for 
same username
output: <username, 
first_date, last_date>

Given a list of tweets determine first and last time an user commented 
and the number of times. 
• Data is a set of lines < username, date, text >

map reduce

Peter [07/Mar/2020:16:39:24 -0800] “Stay at home”
John  [07/Mar/2020:16:39:25 -0800] “Me too”
…
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Summarization
Average

input: [<date, company, 
start_price, end_price>]
if date matches
output: [<company, 

end_price-start_price>]

input: [<company, 
end_price-start_price>]
Average for same company
output: <company, 
average>

Find average daily gains in stock for each company
• Data is a set of lines <date, company, start_price, end_price>
• This example is for company from 1/1/2000 – 12/31/2015

map reduce

Date,Company,Open,Close
2009-01-02,Alphabet,153.302917,159.870193,159.621811
…
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Inverted Index
Mapping Content to Location

Description
• A general pattern for mapping content to locations such as words 

or numbers, to its locations in a database file or in a document or a 
set of documents

Intent
• Most of the text searching systems rely on inverted index to search 

the documents that contains a given word or a term
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Inverted Index
Word to Documents

input: [line from document 
doc_id]
for each word

output: <word, doc_id> 

input: [<word, doc_id>] 
concatenate for same word

output: <word, [doc_ids]> 

Find what documents contain a specific word
• Map: Parse document and generate <word, doc_id> pairs
• Reduce: For each word, sort the corresponding document IDs

map reduce

all id_432, id_76
also id_432
…
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Hands-on
Word to Documents – Inverted Index

ü Implement word to documents

ü Adapt mapper and reducer from wordcount

ü Pre-create a file with the file name as first 
item in each line

ü Extend to see the number of occurrences per 
file

https://goo.gl/dX1Kn7
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Inverted Index
Reverse Web-link Graph

input: [line of HTML file 
URL_source]
for each URL_target

output: <URL_target,   
URL_source>

input: [<URL_target, 
URL_source>]
concatenate for same 
URL_target
output: <URL_target, 
[URL_sources]> 

Find where page links come from
• Map: Output <target, source> for each link to target in a page source
• Reduce: Concatenate the list of all source URLs associated with a target

map reduce

Xxx
URL_target
Yyy
zzz

URL_sources

URL_target, URL_sources
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Filtering
Filtering Out Records

Examples
1. Closer view of dataset 
2.Data cleansing 
3.Tracking a thread of events 
4.Simple random sampling 
5.Distributed Grep 
6.Removing low scoring dataset 
7.Log Analysis 
8.Data Querying and Validation
9.…

Description
• It evaluates each record separately and decides, based on some 

condition, whether it should stay or go 

Intent
• Filter out records that are not of interest and keep ones that are. 
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Filtering
Distributed Grep

input: [line of text file]
if pattern matches

output: <“”, line> 

input: [<“”, line>] 
output: line

Search for words in a document
• Map: Generate a line if it matches a given pattern
• Reduce: Just copy the intermediate data to the output

map reduce
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Other Patterns
Organization, Join and Input/Output

ü Summarization patterns: Get a top-level view by summarizing and grouping data

ü Filtering patterns: View data subsets such as records generated from one user

ü Data organization patterns: Reorganize data to work with other systems, or to make 
MapReduce analysis easier

ü Join patterns: Analyze different datasets together to discover interesting 
relationships

ü Metapatterns: Piece together several patterns to solve multi-stage problems, or to 
perform several analytics in the same job

ü Input and output patterns: Customize the way you use Hadoop to load or store data
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Next Steps

• Get ready for next lecture:
C2. Dataflow Processing (Tuesday 3/31)
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Questions
MapReduce Design Patterns

http://piazza.com/harvard/spring2020/cs205/home


