
Using MPI @ FASRC

1

March 2020
CS205

Francesco Pontiggia, PhD
Sr. Research Facilitator

Objectives

2

§ To introduce the basic concepts of MPI, and
give you the minimum knowledge to write
simple parallel MPI programs

§ To provide the basic knowledge required for
running your parallel MPI applications efficiently
on the FAS-RC cluster

Outline

3

§ Introduction and MPI Basics

§ MPI Exercises

§ Summary

4

Introduction and MPI
Basics

What is MPI?

5

§ M P I = Massage Passing Interface

§ MPI is a specification for the developers and users of
message passing libraries. By itself, it is NOT a library

§ MPI primarily addresses the message-passing parallel
programming model: data is moved from the address space
of one process to that of another process through
cooperative operations on each process

§ Most recent version is MPI-3.1

§ Actual MPI library implementations differ in which version
and features of the MPI standard they support

MPI Programming Model

6

q Originally MPI was designed for distributed
memory architectures

q As architectures evolved, MPI implementations
adapted their libraries to handle shared,
distributed, and hybrid architectures

q Today, MPI runs on virtually any hardware platform
§ Shared Memory
§ Distributed Memory
§ Hybrid

q Programing model remains clearly distributed
memory model, regardless of the underlying
physical architecture of the machine

q Explicit parallelism – programmer is responsible for
correct implementation of MPI

Reasons for using MPI

7

q Standardization - MPI is the only message passing specification which
can be considered a standard. It is supported on virtually all HPC
platforms

q Portability - There is little or no need to modify your source code when
you port your application to a different platform that supports (and is
compliant with) the MPI standard

q Performance Opportunities - Vendor implementations should be able
to exploit native hardware features to optimize performance. Any
implementation is free to develop optimized algorithms

q Functionality - There are over 430 routines defined in the most recent
MPI

q Availability - A variety of implementations are available, both vendor
and public domain

MPI Language Interfaces

8

§ C/C++

§ Fortran

§ Java

§ Python (pyMPI, mpi4py, pypar, MYMPI)

§ R (Rmpi)

§ Perl (Parallel::MPI)

§ MATLAB (DCS)

§ Others

Compiling MPI Programs on Odyssey

9

MPI Implementation Compiler Flag

OpenMPI
MVAPICH2
Intel MPI

mpicc
mpicxx
mpif90

None

Intel:
module load intel/19.0.5-fasrc01
module load openmpi/4.0.2-fasrc01
mpicxx –o mpi_test.x mpi_test.cpp

GNU:
module load gcc/9.2.0-fasrc01
module load openmpi/4.0.2-fasrc01
mpicxx –o mpi_test.x mpi_test.cpp

https://docs.rc.fas.harvard.edu/kb/mpi-software-on-odyssey/

Running MPI Programs on FAS-RC cluster (1)

10

Interactive test jobs:

(1) Start an interactive bash shell
> srun -p test -n 4 --pty -–mem=4G -t 0-06:00 /bin/bash

(2) Load required modules, e.g.,
> module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01

(3) Compile your code (or use a Makefile)
> mpicxx –o hello_mpi.x hello_mpi.cpp

(4) Run the code
> mpirun -np 4 ./hello_mpi.x

Hello world from process 0 out of 4
Hello world from process 1 out of 4
Hello world from process 2 out of 4
Hello world from process 3 out of 4

11

Batch jobs:

(1) Compile your code, e.g.,
> module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01
> mpicxx –o mpi_hello.x mpi_hello.cpp

(2) Prepare a batch-job submission script
#!/bin/bash
#SBATCH -J mpi_job # Job name
#SBATCH -o slurm.out # STD output
#SBATCH -e slurm.err # STD error
#SBATCH -p shared # Queue / partition
#SBATCH -t 0-00:30 # Time (D-HH:MM)
#SBATCH --mem-per-cpu=4000 # Memory per MPI task
#SBATCH -n 8 # Number of MPI tasks

module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01 # Load required modules
srun -n $SLURM_NTASKS --mpi=pmix ./hello_mpi.x

(3) Submit the job to the queue
> sbatch mpi_test.run

Running MPI Programs on FAS-RC cluster (2)

§ Sometimes programs can be picky about having MPI available on
all the nodes it runs on so it could be useful to have MPI module
loads in your .bashrc file

§ Some codes are topology sensitive thus the following slurm options
can be helpful
o --contiguous # Contiguous set of nodes
o --ntasks-per-node # Number of tasks per node
o --hint # Bind tasks according to hints
o --distribution, -m # Specify distribution method for tasks

§ For hybrid mode jobs you would set both -c and -n

12

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/

Running MPI Programs on FAS-RC cluster (3)

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html

13

MPI Exercises

Exercises - Setup

14

§ Login to the cluster

§ Make a directory for this session, e.g.,

> mkdir ~/MPI

§ Get a copy of the MPI examples. These are hosted at Github at
https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

> cd ~/MPI
> git clone https://github.com/fasrc/User_Codes.git
> cd User_Codes/Courses/CS205/MPI_2020

§ Load compiler and MPI library software modules

> module load gcc/8.2.0-fasrc01
> module load openmpi/4.0.1-fasrc01

(using gcc-8 instead of gcc-9 for fortran compatibility)

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

MPI Exercises - Overview

15

1. MPI Hello World program

2. Parallel FOR loops in MPI – dot product

3. Scaling – speedup and efficiency

4. Parallel Matrix-Matrix multiplication

5. Parallel Lanczos algorithm

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

MPI Program Structure

16

MPI Communicators

17

§ MPI uses objects named communicators to define which processes
can communicate with each other

§ Most MPI routines require you to specify a communicator as an
argument

§ MPI_COMM_WORLD is a predefined communicator including all MPI
processes

§ Within a communicator, each process is identified by its rank – a
unique integer identifier. Ranks are contiguous and start at 0

MPI Header Files

18

§ Required for all MPI programs that make MPI library calls

C/C++ Include File Fortran Include File
#include “mpi.h” include ‘mpif.h’

§ With MPI-3 Fortran, the use mpi_f08 module is preferred over using

the include file mpif.h

Format of MPI Calls

19

C/C++ Bindings
Format rc = MPI_Xxxx(parameter, …)

Example rc = MPI_Bsend(&buf,count,type,dest,tag,comm)
Error Code Returned as “rc”

Fortran Bindings

Format CALL MPI_XXXX(parameter, …)
call mpi_xxxx(parameter, …)

Example CALL MPI_BSEND(buf,count,type,dest,tag,comm,ierr)
Error Code Returned as “ierr”

Exercise 1: MPI Hello World

20

#include <iostream>
#include <mpi.h>
using namespace std;
// Main program...
int main(int argc, char** argv){
int i;
int iproc;
int nproc;

// Initialize MPI...
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&iproc);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

for (i = 0; i < nproc; i++){
MPI_Barrier(MPI_COMM_WORLD);
if (i == iproc){
cout << "Hello world from process " << iproc

<< " out of " << nproc << endl;
}

}
// Shut down MPI..
MPI_Finalize();
return 0;

}

Exercise 1: MPI Hello World

21

(1) Description – a simple parallel “Hello World” program printing out the number
of MPI parallel processes and process IDs

(2) Compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2019/Example1
> make

(3) Run the program (the default is setup to 4 MPI tasks)
> sbatch sbatch.run

(4) Explore the output (the “omp_hello.dat” file), e.g.,
> cat mpi_hello.dat
Hello world from process 0 out of 4
Hello world from process 1 out of 4
Hello world from process 2 out of 4
Hello world from process 3 out of 4

(5) Run the program with a different MPI process number – e.g., 2, 4, 8

Parallelizing DO / FOR Loops

22

In almost all scientific and technical applications, the hot spots are
likely to be found in DO / FOR loops.

Thus parallelizing DO / FOR loops is one of the most important tasks
when you parallelize your program.

The basic technique of parallelizing DO / FOR loops is to distribute
iterations among MPI processes and to let each process do its
portion in parallel.

Usually, the computations within a DO / FOR loop involve arrays whose
indices are associated with the loop variable. Therefore distributing
iterations can often be regarded as dividing arrays and assigning chunks
(and computations associated with them) to MPI processes.

Block Distribution

23

In block distribution, iterations are divided into p parts, where p is the
number of MPI processes to be executed in parallel.

DO i = n1, n2
computation

ENDDO

DO i = istart, iend
computation

ENDDO

Example: Distributing 14 iterations over 4 MPI tasks

istart iend

Shrinking Arrays

24

Rank 0

Rank 1

Rank 2

Rank 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4

5 6 7 8

9 10 11

12 13 14

Block distribution of 14 iterations over 4 cores. Each MPI process
needs only part of the array a()

a()

Extremely important for efficient memory management!

Shrinking Arrays, cont’d

25

integer(4), allocatable :: a(:)
…
call para_range(1, n, nproc, iproc, istart, iend)
if (.not. allocated(a)) allocate(a(istart:iend))
sum = 0.0
do i = istart, iend

sum = sum + a(i)
end do
…
if (allocated(a)) deallocate(a)

Fortran Example

The para_range subroutine

26

subroutine para_range(n1, n2, nprocs, irank, istart, iend)
integer(4) :: n1 !Lower limit of iteration variable
integer(4) :: n2 !Upper limit of iteration variable
integer(4) :: nprocs !Number of MPI ranks
integer(4) :: irank !MPI rank ID
integer(4) :: istart !Start of iterations for rank iproc
integer(4) :: iend !End of iterations for rank iproc
iwork1 = (n2 - n1 + 1) / nprocs
iwork2 = MOD(n2 - n1 + 1, nprocs)
istart = irank * iwork1 + n1 + MIN(irank, iwork2)
iend = istart + iwork1 - 1
if (iwork2 > irank) iend = iend + 1
return

end subroutine para_range

Computes the iteration range for each MPI process

FORTRAN implementation

The para_range subroutine, cont’d

27

Computes the iteration range for each MPI process

C / C++ implementation

void para_range(int n1, int n2, int &nprocs, int &irank, int &istart, int &iend){
int iwork1;
int iwork2;
iwork1 = (n2 - n1 + 1) / nprocs;
iwork2 = ((n2 - n1 + 1) % nprocs);
istart = irank * iwork1 + n1 + min(irank, iwork2);
iend = istart + iwork1 - 1;
if (iwork2 > irank) iend = iend + 1;

}

Exercise 2: Parallel MPI for / do loops

28

(1) Description – Program performs a dot product of 2 vectors in parallel

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2019/Example2
> make

(3) Run the program (the default is setup to 4 MPI tasks)
> sbatch sbatch.run

(4) Explore the output (the “mpi_dot.dat” file), e.g.,
> cat mpi_dot.dat
Global dot product: 676700
Local dot product for MPI process 0: 11050
Local dot product for MPI process 1: 74800
Local dot product for MPI process 2: 201050
Local dot product for MPI process 3: 389800

(5) Run the program with a different MPI process number – e.g., 2, 4, 8

Exercise 2: Parallel MPI for / do loops

29

…
// Initialize MPI..
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&iproc);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

// Call "para_range" to compute lowest and highest iteration ranges for each MPI task
para_range(0, N-1, nproc, iproc, ista, iend);
…

// Calculate local vector dimension and allocate memory........................
loc_dim = iend - ista + 1; // Local DIM
a = new float[loc_dim];
b = new float[loc_dim];

// Calculate local dot product...
pdot = 0.0;
for (i = 0; i < loc_dim; i++) {

d1 = a[i];
d2 = b[i];
pdot = pdot + (d1 * d2);

}

// Get global dot product..
MPI_Reduce(&pdot, &ddot, 1, MPI_REAL, MPI_SUM, 0, MPI_COMM_WORLD);
…

Collective Communication

30

Collective communication allows you to exchange data among a group of
processes. The communicator argument in the collective communication
subroutine calls specifies which processes are involved in the
communication.

0
1

2

3n-1…

MPI_COMM_WORLD

MPI_Reduce

31

Fortran: CALL MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
C / C++: MPI_Reduce(&sendbuf, &recvbuf, count, datatype, op, root, comm)

Usage:

Cyclic Distribution

32

In cyclic distribution, the iterations are assigned to processes in a round-
robin fashion.

DO i = n1, n2
computation

ENDDO

DO i = n1+iproc, n2, nproc
computation

ENDDO

Example: Distributing 14 iterations over 4 cores in
round-robin fashion

Scaling and Efficiency

33

How much faster will the program run?

)(
)1()(
nT

TnS =

Speedup: Time to complete the computation
on one MPI process

Time to complete the computation
on n MPI processes

Efficiency:

n
nSnE)()(=

Tells you how efficiently you parallelized
your code

Example 3: Scaling – Compute PI in Parallel

34

Monte-Carlo Approximation of PI:

1. Inscribe a circle in a square

2. Randomly generate points in the square

3. Determine the number of points in the
square that are also in the circle

4. Let r be the number of points in the
circle divided by the number of points in
the square

5. PI ~ 4 r

6. Note that the more points generated, the
better the approximation

Example 3: Scaling – Compute PI in Parallel

35

(1) Description – Program performs parallel Monte-Carlo approximation of PI

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2020/Example3
> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “mpi_dot.dat” file), e.g.,
> cat mpi_pi.dat
…
Elapsed time = 3.429223 seconds
Pi is approximately 3.1416008000000000, Error is 0.0000081464102069
Exact value of PI is 3.1415926535897931
…

(5) Run the program with a different number of MPI processes – 1, 2, 4, 8, 16 –
and record the run times for each case. This will be needed to compute the
speedup and efficiency (the default is set to run on 1, 2, 4, 8, and 16 MPI tasks)

Example 3: Scaling – Compute PI in Parallel

36

You may use the speedup.py Python code to calculate the speedup
and efficiency. It generates the below table plus a speedup figure

MPI tasks Walltime Speedup Efficiency (%)
1 12.27 1.00 100.00
2 6.19 1.98 99.11
4 3.43 3.58 89.43
8 1.84 6.67 83.36

16 0.90 13.63 85.21

Example 3: Scaling – Compute PI in Parallel

37

Exercise 4: Matrix Multiplication
§ A standard problem in computing is matrix multiplication:

C = A x B

§ In this example we take a naive approach to parallelizing matrix
multiplication

§ The matrix A is divided up based on its rows by the number of ranks. Each
sub array is sent to its relevant ranks by using the MPI_Scatter command

§ Matrix B is simply sent to all processors using the MPI_Bcast command.

§ Each rank computes its subset of C based on the part of A it received

§ The full solution for C is brought together using MPI_Gather

38

Exercise 4: Matrix Multiplication
(1) Description – A simple algorithm for matrix multiplication demonstrating the

use of MPI_Bcast, MPI_Scatter, and MPI_Gather

(2) Compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2020/Example4
> make

(3) Run the program (the default is setup to 4 ranks)
> sbatch sbatch.run

(4) Explore the output (the “mmult.dat” file).

(5) Run the program with different MPI process number – e.g., 1, 2, 4, 8. See
how the run time varies depending on number of ranks (HINT: use sacct,
time, or MPI_Wtime to get duration). Try varying the size of the matrix
allowed to see how long it takes and then do scaling tests to see how well this
code is parallelized.

39

MPI Collective Communication Subroutines

40

* Subroutines printed in boldface are used most frequently

Exercise 5: Parallel Lanczos diagonalization

41

(1) Description – Program performs parallel Lanczos diagonalization of a random
symmetric matrix of dimension 100 x 100

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS209/MPI_2020/Example5
> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “planczos.dat” file), e.g.,
> cat planczos.dat
…
iteration: 50

1 50.010946087355691 50.010946087355670
2 5.1987505309251540 5.1987505309260547
3 5.1856783411618199 5.1856783411660166
4 5.0014143249256930 5.0014143250821714
5 4.8032829796748748 4.8032831650372225

Lanczos iterations finished...

(5) Run the program with a different number of MPI processes – 1, 2, 4, 8.

Summary and hints for efficient parallelization

42

q Is it even worth parallelizing my code?

§ Does your code take an intractably long amount of time to complete?

§ Do you run a single large model or do statistics on multiple small runs?

§ Would the amount of time it take to parallelize your code be worth the gain
in speed?

q Parallelizing established code vs. starting from scratch

§ Established code: Maybe easier / faster to parallelize, but my not give
good performance or scaling

§ Start from scratch: Takes longer, but will give better performance,
accuracy, and gives the opportunity to turn a “black box” into a code you
understand

Summary and hints for efficient parallelization

43

q Increase the fraction of your program that can be parallelized. Identify
the most time consuming parts of your program and parallelize them.
This could require modifying your intrinsic algorithm and code’s
organization

q Balance parallel workload

q Minimize time spent in communication

q Use simple arrays instead of user defined derived types

q Partition data. Distribute arrays and matrices – allocate specific memory
for each MPI process

q For I/O intensive applications implement parallel I/O in conjunction with
a high-performance parallel filesystem, e.g., Lustre

44

Extra Slides

Designing parallel programs – partitioning

45

One of the first steps in designing a parallel program is to break the problem into
discrete “chunks” that can be distributed to multiple parallel tasks.

Domain Decomposition:
Data associate with a problem is
partitioned – each parallel task
works on a portion of the data

There are different
ways to partition the
data

Designing parallel programs – partitioning

46

Functional Decomposition:
Problem is decomposed according to the work that must be done. Each
parallel task performs a fraction of the total computation.

One of the first steps in designing a parallel program is to break the problem into
discrete “chunks” that can be distributed to multiple parallel tasks.

Designing parallel programs – communication

47

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending
many small messages can cause latency to dominate communication overhead.

Synchronous vs. Asynchronous communication: Synchronous communication is referred
to as blocking communication – other work stops until the communication is completed.
Asynchronous communication is referred to as non-blocking since other work can be done
while communication is taking place.

Scope of communication: Point-to-point communication – data transmission between tasks.
Collective communication – involves all tasks (in a communication group)

This is only partial list of things to consider!

Designing parallel programs – loadbalancing

48

Load balancing is the practice of distributing approximately equal amount of work so that all
tasks are kept busy all the time.

How to Achieve Load Balance?

Equally partition the work given to each task: For array/matrix operations equally distribute
the data set among parallel tasks. For loop iterations where the work done for each iteration is
equal, evenly distribute iterations among tasks.

Use dynamic work assignment: Certain class problems result in load imbalance even if data
is distributed evenly among tasks (sparse matrices, adaptive grid methods, many body
simulations, etc.). Use scheduler – task pool approach. As each task finishes, it queues to get
a new piece of work. Modify your algorithm to handle imbalances dynamically.

Designing parallel programs – I/O

49

The Bad News:
q I/O operations are inhibitors of parallelism

q I/O operations are orders of magnitude slower than memory operations

q Parallel file systems may be immature or not available on all systems

q I/O that must be conducted over network can cause severe bottlenecks

The Good News:
q Parallel file systems are available (e.g., Lustre)

q MPI parallel I/O interface has been available since 1996 as a part of MPI-2

I/O Tips:
q Reduce overall I/O as much as possible

q If you have access to parallel file system, use it

q Writing large chunks of data rather than small ones is significantly more efficient

q Fewer, larger files perform much better than many small files

q Have a subset of parallel tasks to perform the I/O instead of using all tasks, or

q Confine I/O to a single tasks and then broadcast (gather) data to (from) other

tasks

