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Objectives
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§ To introduce the basic concepts of MPI, and 
give you the minimum knowledge to write 
simple parallel MPI programs

§ To provide the basic knowledge required for 
running your parallel MPI applications efficiently 
on the FAS-RC cluster



Outline
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§ Introduction and MPI Basics

§ MPI Exercises

§ Summary
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Introduction and MPI 
Basics



What is MPI?
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§ M P I = Massage Passing Interface

§ MPI is a specification for the developers and users of 
message passing libraries. By itself, it is NOT a library

§ MPI primarily addresses the message-passing parallel 
programming model: data is moved from the address space 
of one process to that of another process through 
cooperative operations on each process

§ Most recent version is MPI-3.1

§ Actual MPI library implementations differ in which version 
and features of the MPI standard they support



MPI Programming Model
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q Originally MPI was designed for distributed 
memory architectures

q As architectures evolved, MPI implementations 
adapted their libraries to handle shared, 
distributed, and hybrid architectures

q Today, MPI runs on virtually any hardware platform
§ Shared Memory
§ Distributed Memory
§ Hybrid 

q Programing model remains clearly distributed 
memory model, regardless of the underlying 
physical architecture of the machine

q Explicit parallelism – programmer is responsible for 
correct implementation of MPI



Reasons for using MPI

7

q Standardization - MPI is the only message passing specification which 
can be considered a standard. It is supported on virtually all HPC
platforms

q Portability - There is little or no need to modify your source code when 
you port your application to a different platform that supports (and is 
compliant with) the MPI standard

q Performance Opportunities - Vendor implementations should be able 
to exploit native hardware features to optimize performance. Any 
implementation is free to develop optimized algorithms

q Functionality - There are over 430 routines defined in the most recent 
MPI

q Availability - A variety of implementations are available, both vendor 
and public domain



MPI Language Interfaces
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§ C/C++

§ Fortran

§ Java

§ Python (pyMPI, mpi4py, pypar, MYMPI)

§ R (Rmpi)

§ Perl (Parallel::MPI)

§ MATLAB (DCS)

§ Others



Compiling MPI Programs on Odyssey
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MPI Implementation Compiler Flag

OpenMPI
MVAPICH2
Intel MPI

mpicc
mpicxx
mpif90

None

Intel: 
module load  intel/19.0.5-fasrc01
module load  openmpi/4.0.2-fasrc01
mpicxx –o mpi_test.x mpi_test.cpp

GNU:
module load gcc/9.2.0-fasrc01
module load openmpi/4.0.2-fasrc01
mpicxx –o mpi_test.x mpi_test.cpp

https://docs.rc.fas.harvard.edu/kb/mpi-software-on-odyssey/



Running MPI Programs on FAS-RC cluster (1)
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Interactive test jobs:

(1) Start an interactive bash shell
> srun -p test -n 4 --pty -–mem=4G -t 0-06:00 /bin/bash

(2) Load required modules, e.g.,
> module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01

(3) Compile your code (or use a Makefile)
> mpicxx –o hello_mpi.x hello_mpi.cpp

(4) Run the code
> mpirun -np 4 ./hello_mpi.x

Hello world from process 0 out of 4
Hello world from process 1 out of 4
Hello world from process 2 out of 4
Hello world from process 3 out of 4
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Batch jobs:

(1) Compile your code, e.g.,
> module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01
> mpicxx –o mpi_hello.x mpi_hello.cpp

(2) Prepare a batch-job submission script
#!/bin/bash
#SBATCH -J mpi_job # Job name
#SBATCH -o slurm.out # STD output
#SBATCH -e slurm.err # STD error
#SBATCH -p shared           # Queue / partition
#SBATCH -t 0-00:30                               # Time (D-HH:MM)
#SBATCH --mem-per-cpu=4000  # Memory per MPI task
#SBATCH -n 8                # Number of MPI tasks

module load gcc/9.2.0-fasrc01 openmpi/4.0.2-fasrc01 # Load required modules
srun -n $SLURM_NTASKS --mpi=pmix ./hello_mpi.x

(3) Submit the job to the queue
> sbatch mpi_test.run

Running MPI Programs on FAS-RC cluster (2)



§ Sometimes programs can be picky about having MPI available on 
all the nodes it runs on so it could be useful to have MPI module 
loads in your .bashrc file

§ Some codes are topology sensitive thus the following slurm options 
can be helpful
o --contiguous       # Contiguous set of nodes
o --ntasks-per-node  # Number of tasks per node
o --hint             # Bind tasks according to hints
o --distribution, -m # Specify distribution method for tasks 

§ For hybrid mode jobs you would set both -c and -n
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https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/ 

Running MPI Programs on FAS-RC cluster (3)

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
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MPI Exercises



Exercises - Setup
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§ Login to the cluster

§ Make a directory for this session, e.g.,

> mkdir ~/MPI

§ Get a copy of the MPI examples. These are hosted at Github at
https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

> cd ~/MPI
> git clone https://github.com/fasrc/User_Codes.git
> cd User_Codes/Courses/CS205/MPI_2020

§ Load compiler and MPI library software modules

> module load gcc/8.2.0-fasrc01
> module load openmpi/4.0.1-fasrc01

( using gcc-8 instead of gcc-9 for fortran compatibility )

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020


MPI Exercises - Overview
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1. MPI Hello World program

2. Parallel FOR loops in MPI – dot product

3. Scaling – speedup and efficiency

4. Parallel Matrix-Matrix multiplication

5. Parallel Lanczos algorithm

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2020


MPI Program Structure
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MPI Communicators
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§ MPI uses objects named communicators to define which processes 
can communicate with each other

§ Most MPI routines require you to specify a communicator as an 
argument

§ MPI_COMM_WORLD is a predefined communicator including all MPI
processes

§ Within a communicator, each process is identified by its rank – a 
unique integer identifier. Ranks are contiguous and start at 0



MPI Header Files
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§ Required for all MPI programs that make MPI library calls

C/C++ Include File Fortran Include File
#include “mpi.h” include ‘mpif.h’

§ With MPI-3 Fortran, the use mpi_f08 module is preferred over using 

the include file mpif.h



Format of MPI Calls
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C/C++ Bindings
Format rc = MPI_Xxxx(parameter, …) 

Example rc = MPI_Bsend(&buf,count,type,dest,tag,comm)
Error Code Returned as “rc”

Fortran Bindings

Format CALL MPI_XXXX(parameter, …)
call mpi_xxxx(parameter, …)

Example CALL MPI_BSEND(buf,count,type,dest,tag,comm,ierr)
Error Code Returned as “ierr”



Exercise 1: MPI Hello World
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#include <iostream>
#include <mpi.h>
using namespace std;
// Main program.............................................
int main(int argc, char** argv){
int i;
int iproc;
int nproc;

// Initialize MPI...........................................
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&iproc);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

for ( i = 0; i < nproc; i++ ){
MPI_Barrier(MPI_COMM_WORLD);
if ( i == iproc ){
cout << "Hello world from process " << iproc

<< " out of " << nproc << endl;
}

}
// Shut down MPI............................................
MPI_Finalize();
return 0;

}



Exercise 1: MPI Hello World
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(1) Description – a simple parallel “Hello World” program printing out the number 
of MPI parallel processes and process IDs

(2) Compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2019/Example1
> make

(3) Run the program (the default is setup to 4 MPI tasks)
> sbatch sbatch.run

(4) Explore the output (the “omp_hello.dat” file), e.g.,
> cat mpi_hello.dat
Hello world from process 0 out of 4
Hello world from process 1 out of 4
Hello world from process 2 out of 4
Hello world from process 3 out of 4

(5) Run the program with a different MPI process number – e.g., 2, 4, 8



Parallelizing DO / FOR Loops
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In almost all scientific and technical applications, the hot spots are 
likely to be found in DO / FOR loops.

Thus parallelizing DO / FOR loops is one of the most important tasks 
when you parallelize your program. 

The basic technique of parallelizing DO / FOR loops is to distribute 
iterations among MPI processes and to let each process do its 
portion in parallel.

Usually, the computations within a DO / FOR loop involve arrays whose 
indices are associated with the loop variable. Therefore distributing 
iterations can often be regarded as dividing arrays and assigning chunks 
(and computations associated with them) to MPI processes.



Block Distribution
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In block distribution, iterations are divided into p parts, where p is the 
number of MPI processes to be executed in parallel.

DO i = n1, n2
computation

ENDDO

DO i = istart, iend
computation

ENDDO

Example: Distributing 14 iterations over 4 MPI tasks 

istart iend



Shrinking Arrays
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Rank 0

Rank 1

Rank 2

Rank 3

1      2       3      4      5       6       7      8       9     10     11    12    13     14

1      2       3      4

5       6       7      8

9     10     11

12    13     14

Block distribution of 14 iterations over 4 cores. Each MPI process 
needs only part of the array a()

a()

Extremely important for efficient memory management!



Shrinking Arrays, cont’d

25

integer(4), allocatable :: a(:)
…
call para_range(1, n, nproc, iproc, istart, iend)
if ( .not. allocated(a) ) allocate( a(istart:iend) )
sum = 0.0
do i = istart, iend

sum = sum + a(i)
end do
…
if ( allocated(a) ) deallocate(a)

Fortran Example



The para_range subroutine
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subroutine para_range(n1, n2, nprocs, irank, istart, iend)
integer(4) :: n1         !Lower limit of iteration variable
integer(4) :: n2         !Upper limit of iteration variable
integer(4) :: nprocs !Number of MPI ranks
integer(4) :: irank !MPI rank ID
integer(4) :: istart !Start of iterations for rank iproc
integer(4) :: iend !End of iterations for rank iproc
iwork1 = ( n2 - n1 + 1 )  /  nprocs
iwork2 = MOD(n2 - n1 + 1, nprocs)
istart = irank * iwork1 + n1 + MIN(irank, iwork2)
iend = istart + iwork1 - 1
if ( iwork2 > irank ) iend = iend + 1
return

end subroutine para_range

Computes the iteration range for each MPI process

FORTRAN implementation



The para_range subroutine, cont’d
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Computes the iteration range for each MPI process

C / C++ implementation

void para_range(int n1, int n2, int &nprocs, int &irank, int &istart, int &iend){
int iwork1;
int iwork2;
iwork1 = ( n2 - n1 + 1 )  /  nprocs;
iwork2 = ( ( n2 - n1 + 1 ) %  nprocs );
istart = irank * iwork1 + n1 + min(irank, iwork2);
iend = istart + iwork1 - 1;
if ( iwork2 > irank ) iend = iend + 1;

}



Exercise 2: Parallel MPI for / do loops
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(1) Description – Program performs a dot product of 2 vectors in parallel

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2019/Example2
> make

(3) Run the program (the default is setup to 4 MPI tasks)
> sbatch sbatch.run

(4) Explore the output (the “mpi_dot.dat” file), e.g.,
> cat mpi_dot.dat
Global dot product: 676700
Local dot product for MPI process 0: 11050
Local dot product for MPI process 1: 74800
Local dot product for MPI process 2: 201050
Local dot product for MPI process 3: 389800

(5) Run the program with a different MPI process number – e.g., 2, 4, 8



Exercise 2: Parallel MPI for / do loops
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…
// Initialize MPI..............................................................
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&iproc);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

// Call "para_range" to compute lowest and highest iteration ranges for each MPI task
para_range( 0, N-1, nproc, iproc, ista, iend );
…

// Calculate local vector dimension and allocate memory........................
loc_dim = iend - ista + 1; // Local DIM
a = new float[loc_dim];
b = new float[loc_dim];

// Calculate local dot product.................................................
pdot = 0.0;
for ( i = 0; i < loc_dim; i++ ) {

d1 = a[i];
d2 = b[i];
pdot = pdot + ( d1 * d2 );

}

// Get global dot product......................................................
MPI_Reduce(&pdot, &ddot, 1, MPI_REAL, MPI_SUM, 0, MPI_COMM_WORLD);
…



Collective Communication
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Collective communication allows you to exchange data among a group of 
processes. The communicator argument in the collective communication 
subroutine calls specifies which processes are involved in the 
communication.

0
1

2

3n-1…

MPI_COMM_WORLD



MPI_Reduce
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Fortran: CALL MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
C / C++: MPI_Reduce(&sendbuf, &recvbuf, count, datatype, op, root, comm)

Usage:



Cyclic Distribution
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In cyclic distribution, the iterations are assigned to processes in a round-
robin fashion.

DO i = n1, n2
computation

ENDDO

DO i = n1+iproc, n2, nproc
computation

ENDDO

Example: Distributing 14 iterations over 4 cores in 
round-robin fashion



Scaling and Efficiency
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How much faster will the program run?

)(
)1()(
nT

TnS =

Speedup: Time to complete the computation 
on one MPI process

Time to complete the computation 
on n MPI processes

Efficiency:

n
nSnE )()( =

Tells you how efficiently you parallelized 
your code



Example 3: Scaling – Compute PI in Parallel
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Monte-Carlo Approximation of PI:

1. Inscribe a circle in a square

2. Randomly generate points in the square

3. Determine the number of points in the 
square that are also in the circle

4. Let r be the number of points in the 
circle divided by the number of points in 
the square

5. PI ~ 4 r

6. Note that the more points generated, the 
better the approximation



Example 3: Scaling – Compute PI in Parallel
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(1) Description – Program performs parallel Monte-Carlo approximation of PI

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2020/Example3
> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “mpi_dot.dat” file), e.g.,
> cat mpi_pi.dat
…
Elapsed time = 3.429223 seconds
Pi is approximately 3.1416008000000000, Error is 0.0000081464102069
Exact value of PI is 3.1415926535897931
…

(5) Run the program with a different number of MPI processes – 1, 2, 4, 8, 16 –
and record the run times for each case. This will be needed to compute the 
speedup and efficiency (the default is set to run on 1, 2, 4, 8, and 16 MPI tasks)



Example 3: Scaling – Compute PI in Parallel
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You may use the speedup.py Python code to calculate the speedup 
and efficiency. It generates the below table plus a speedup figure

# MPI tasks  Walltime Speedup  Efficiency (%)
1       12.27     1.00      100.00      
2        6.19     1.98       99.11      
4        3.43     3.58       89.43       
8        1.84     6.67       83.36      

16        0.90    13.63       85.21



Example 3: Scaling – Compute PI in Parallel

37



Exercise 4: Matrix Multiplication
§ A standard problem in computing is matrix multiplication:

C = A x B

§ In this example we take a naive approach to parallelizing matrix 
multiplication

§ The matrix A is divided up based on its rows by the number of ranks.  Each 
sub array is sent to its relevant ranks by using the MPI_Scatter command

§ Matrix B is simply sent to all processors using the MPI_Bcast command.

§ Each rank computes its subset of C based on the part of A it received

§ The full solution for C is brought together using MPI_Gather

38



Exercise 4: Matrix Multiplication
(1) Description – A simple algorithm for matrix multiplication demonstrating the 

use of MPI_Bcast, MPI_Scatter, and MPI_Gather

(2) Compile the program
> cd ~/MPI/User_Codes/Courses/CS205/MPI_2020/Example4
> make

(3) Run the program (the default is setup to 4 ranks)
> sbatch sbatch.run

(4) Explore the output (the “mmult.dat” file). 

(5) Run the program with different MPI process number – e.g., 1, 2, 4, 8.  See 
how the run time varies depending on number of ranks (HINT: use sacct, 
time, or MPI_Wtime to get duration).  Try varying the size of the matrix 
allowed to see how long it takes and then do scaling tests to see how well this 
code is parallelized.

39



MPI Collective Communication Subroutines
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* Subroutines printed in boldface are used most frequently



Exercise 5: Parallel Lanczos diagonalization
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(1) Description – Program performs parallel Lanczos diagonalization of a random 
symmetric matrix of dimension 100 x 100

(2) Review the source code and compile the program
> cd ~/MPI/User_Codes/Courses/CS209/MPI_2020/Example5
> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “planczos.dat” file), e.g.,
> cat planczos.dat
…
iteration: 50

1 50.010946087355691 50.010946087355670
2 5.1987505309251540 5.1987505309260547
3 5.1856783411618199 5.1856783411660166
4 5.0014143249256930 5.0014143250821714
5 4.8032829796748748 4.8032831650372225

Lanczos iterations finished...

(5) Run the program with a different number of MPI processes – 1, 2, 4, 8.



Summary and hints for efficient parallelization
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q Is it even worth parallelizing my code?

§ Does your code take an intractably long amount of time to complete?

§ Do you run a single large model or do statistics on multiple small runs?

§ Would the amount of time it take to parallelize your code be worth the gain 
in speed?

q Parallelizing established code vs. starting from scratch

§ Established code: Maybe easier / faster to parallelize, but my not give 
good performance or scaling

§ Start from scratch: Takes longer, but will give better performance, 
accuracy, and gives the opportunity to turn a “black box” into a code you 
understand



Summary and hints for efficient parallelization
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q Increase the fraction of your program that can be parallelized. Identify 
the most time consuming parts of your program and parallelize them. 
This could require modifying your intrinsic algorithm and code’s 
organization

q Balance parallel workload

q Minimize time spent in communication

q Use simple arrays instead of user defined derived types

q Partition data. Distribute arrays and matrices – allocate specific memory 
for each MPI process

q For I/O intensive applications implement parallel I/O in conjunction with 
a high-performance parallel filesystem, e.g., Lustre



44

Extra Slides



Designing parallel programs – partitioning 
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One of the first steps in designing a parallel program is to break the problem into 
discrete “chunks” that can be distributed to multiple parallel tasks.

Domain Decomposition:
Data associate with a problem is 
partitioned – each parallel task 
works on a portion of the data  

There are different 
ways to partition the 
data



Designing parallel programs – partitioning 
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Functional Decomposition:
Problem is decomposed according to the work that must be done. Each 
parallel task performs a fraction of the total computation.   

One of the first steps in designing a parallel program is to break the problem into 
discrete “chunks” that can be distributed to multiple parallel tasks.



Designing parallel programs – communication
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Most parallel applications require tasks to share data with each other. 

Cost of communication: Computational resources are used to package and transmit data. 
Requires frequently synchronization – some tasks will wait instead of doing work. Could 
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two 
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending 
many small messages can cause latency to dominate communication overhead.

Synchronous vs. Asynchronous communication: Synchronous communication is referred 
to as blocking communication – other work stops until the communication is completed. 
Asynchronous communication is referred to as  non-blocking since other work can be done 
while communication is taking place.

Scope of communication: Point-to-point communication – data transmission between tasks. 
Collective communication – involves all tasks (in a communication group) 

This is only partial list of things to consider!



Designing parallel programs – loadbalancing
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Load balancing is the practice of distributing approximately equal amount of work so that all 
tasks are kept busy all the time. 

How to Achieve Load Balance?

Equally partition the work given to each task: For array/matrix operations equally distribute 
the data set among parallel tasks. For loop iterations where the work done for each iteration is 
equal, evenly distribute iterations among tasks.

Use dynamic work assignment: Certain class problems result in load imbalance even if data 
is distributed evenly among tasks (sparse matrices, adaptive grid methods, many body 
simulations, etc.). Use scheduler – task pool approach. As each task finishes, it queues to get 
a new piece of work. Modify your algorithm to handle imbalances dynamically. 



Designing parallel programs – I/O
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The Bad News:
q I/O operations are inhibitors of parallelism

q I/O operations are orders of magnitude slower than memory operations

q Parallel file systems may be immature or not available on all systems

q I/O that must be conducted over network can cause severe bottlenecks

The Good News:
q Parallel file systems are available (e.g., Lustre)

q MPI parallel  I/O interface has been available since 1996 as a part of MPI-2

I/O Tips:
q Reduce overall I/O as much as possible

q If you have access to parallel file system, use it

q Writing large chunks of data rather than small ones is significantly more efficient

q Fewer, larger files perform much better than many small files

q Have a subset of parallel tasks to perform the I/O instead of using all tasks, or

q Confine I/O to a single tasks and then broadcast (gather) data to (from) other 

tasks


