
USING OPENMP @ FASRC

1

March 2020
CS205

Francesco Pontiggia
Sr. Research Consultant

Objectives
§ To give you the basic knowledge and

experience to write simple parallel OpenMP
programs

§ To provide the information required for running
your OpenMP applications efficiently on the
FASRC cluster

2

3

Introduction

Research Computing Resources

4

Compute:
100,000 compute cores
Cores/node: 8 to 64
Memory/node: 12GB to 512GB (4GB/core)
2,500,000 NVIDIA GPU cores
Software:
Operating System CentOS 7
Slurm job manager
1,000+ scientific tools and programs
https://portal.rc.fas.harvard.edu/apps/modules

Interconnect:
2 underlying networks connecting 3 data
centers
TCP/IP network
Low-latency 200 GB/s HDR InfiniBand
(IB) and 56 GB/s FDR IB network:

inter-node parallel computing
fast access to Lustre mounted storage

https://portal.rc.fas.harvard.edu/apps/modules

Cluster Basics

5

Home
Folders

Local Scratch Global Scratch

mount point $HOME /scratch $SCRATCH/cs205/

size limit 100G ~ 270G/node quota 50T/group

backup /
retention

Hourly
snapshots

only available
during job

90days retention
no backup

performance Not suitable
for intense
I/O

Suited for small file
I/O intensive jobs

Suited for large file
I/O intensive jobs

Login Nodes:

§ prepare input and stage your
calculations

§ interact with the scheduler
§ no computationally expensive processes

allowed

https://docs.rc.fas.harvard.edu/kb/access-and-login/

Compute nodes:

§ computational resource monitored and
managed by the SLURM scheduler.

§ resources are organized in partitions
§ access only via scheduler
§ servers are interconnected by Infiniband fabric

(high throughput , low latency)

Storage:

Job Scheduler - SLURM
§ SLURM = Simple Linux Utility for Resource Management

User tasks (jobs) on the cluster are controlled by SLURM and isolated in
cgroups so that users cannot interfere with other jobs or exceed their resource
request (cores, memory, time)

§ Basic SLURM commands:
– sbatch: submit a batch job script

> sbatch [options for resource request] myscript
– srun: submit an interactive test job

> srun --pty [options for resource request] /bin/bash
– squeue: contact slurmctld for currently running jobs

> squeue
– sacct: contact slurmdb for accounting stats after job ends

> sacct
– scancel: cancel a job(s)

> scancel some_job_ID

https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/
https://docs.rc.fas.harvard.edu/kb/running-jobs/ 6

SLURM Partitions
https://docs.rc.fas.harvard.edu/kb/running-jobs/#Slurm_partitions

7

Software on Odyssey
• CentOS 7
• Hundreds of software packages – compilers, numeric libraries,

development packages, visualization tools, and much more
o https://portal.rc.fas.harvard.edu/apps/modules

• Harvard modified environment module system LMOD
o https://docs.rc.fas.harvard.edu/kb/software/
o Dynamically change user environment
o Software is loaded incrementally

8

module load gcc/8.2.0-fasrc01 # Loads GCC compiler module
module avail # Lists available modules
module list # Lists loaded modules
module purge # Unloads ALL modules
module-query gcc # Finds modules
module-query gcc/8.2.0-fasrc01 # Gives more information

https://portal.rc.fas.harvard.edu/apps/modules

XSEDE

9

§ XSEDE = Extreme Science and Engineering Development Environment
§ A single virtual system that scientists can use to interactively share

computing resources, data and expertise
§ https://www.xsede.org

Harvard University XSEDE campus champions:

§ Plamen Krastev - plamenkrastev@fas.harvard.edu
§ Francesco Pontiggia - pontiggia@g.harvard.edu

https://www.xsede.org/
mailto:plamenkrastev@fas.harvard.edu
mailto:pontiggia@g.harvard.edu

10

Using the world’s fastest and largest computers to solve large and
complex problems.

Summit: ORNL Sierra: LLNL Odyssey: Harvard

What is High Performance Computing?

Serial Computation

11

Traditionally software has been written for serial computations:

§ To be run on a single computer having a single Central Processing Unit
(CPU)

§ A problem is broken into a discrete set of instructions
§ Instructions are executed one after another
§ Only one instruction can be executed at any moment in time

Parallel Computation

12

In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem:

§ To be run using multiple CPUs
§ A problem is broken into discrete parts that can be solved concurrently
§ Each part is further broken down to a series of instructions
§ Instructions from each part execute simultaneously on different CPUs

Why Use HPC?

13

Save time and/or money: In theory, throwing more resources at a task
will shorten its time to completion, with potential cost savings. Parallel
clusters can be built from cheap, commodity components.

Major reasons:

Solve larger / more complex problems: Many problems are so large
and/or complex that it is impractical or impossible to solve them on a
single computer, especially given limited computer memory.

Provide concurrency: A single compute resource can only do one
thing at a time. Multiple computing resources can be doing many
things simultaneously.

Use of non-local resources: Using compute resources on a
wide area network, or even the Internet when local compute
resources are scarce.

Applications of HPC (not a complete list)

14

§ Atmosphere, Earth, Environment, Space Weather
§ Physics / Astrophysics – applied, nuclear, particle, condensed matter, high

pressure, fusion, photonics
§ Bioscience, Biotechnology, Genetics
§ Chemistry, Molecular Sciences
§ Geology, Seismology
§ Mechanical and Aerospace Engineering
§ Electrical Engineering, Circuit Design, Microelectronics
§ Computer Science, Mathematics

Image credit: LLNL

15

OpenMP Basics

What is OpenMP ?
§ OpenMP = Open Multi-Processing

§ An Application Program Interface (API) that may
be used to explicitly direct multi-threaded,
shared memory parallelism

§ Comprised of three primary API components:
• Compiler Directives
• Runtime Library Routines
• Environment Variables

16

OpenMP Programming Model

17

§ Shared Memory

§ Single Node

§ One thread per core

§ Explicit Parallelism

§ Not designed to handle
parallel I/O

Compiling OpenMP Programs

18

Intel:
module load intel/19.0.5-fasrc01
icc -o omp_test.x omp_test.c -qopenmp

GNU:
module load gcc/8.2.0-fasrc01
gcc –o omp_test.x omp_test.c –fopenmp

Compiler/Platform Compiler Flag

Intel
icc
icpc
ifort

-openmp

GNU

gcc
g++
g77

gfortran

-fopenmp

Running OpenMP Programs

19

Interactive test jobs:

(1) Start an interactive bash shell
> srun -p test -c 4 --pty -–mem=4G -t 0-06:00 /bin/bash

(2) Load required modules, e.g.,
> module load gcc/8.2.0-fasrc01

(3) Compile your code (or use a Makefile)
> gcc -o omp_hello.x omp_hello.c –fopenmp

(4) Run the code
> export OMP_NUM_THREADS=4
> ./omp_hello.x

Hello World from thread = 0
Number of threads = 4
Hello World from thread = 3
Hello World from thread = 2
Hello World from thread = 1

Running OpenMP Programs

20

Batch Jobs:

(1) Compile your code (or use a Makefile)
> gcc -o omp_hello.x omp_hello.c –fopenmp

(2) Prepare a batch-job submission script, e.g.,
#!/bin/bash
#SBATCH -J omp_job # Job name
#SBATCH -o slurm.out # STD output
#SBATCH -e slurm.err # STD error
#SBATCH -p shared # Queue name
#SBATCH -t 0-00:30 # Time (D-HH:MM)

#SBATCH --mem=4G # Memory in GB
#SBATCH -c 8
#SBATCH -N 1
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun -c $SLURM_CPUS_PER_TASK ./omp_hello.x

(3) Submit the job to the queue
> sbatch omp_test.run

21

OpenMP Exercises

Exercises - Overview

22

1. Parallel region construct

2. Parallel FOR loops in OpenMP

3. Parallel sections in OpenMP

4. Reduction – parallel dot product

5. Orphaned directives

6. Scaling – speedup and efficiency

7. Matrix-Matrix multiplication

8. Helmholtz Equation

9. Poisson Equation

10.Molecular Dynamics (MD)

Exercises - Setup

23

§ Login to the cluster

§ Make directory for this session, e.g.,

> mkdir ~/OpenMP

§ Get copy of the OpenMP exercises. These are hosted at Github at
https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/OpenMP

> cd ~/OpenMP
> git clone https://github.com/fasrc/User_Codes.git
> cd User_Codes/Courses/CS205/OpenMP

§ Load compiler software module (here the default compiler is GNU
gcc)

> module load gcc/8.2.0-fasrc01

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/OpenMP

Exercise 1: Parallel Regions

24

A parallel region is a block of code that will be executed by multiple threads.
This is the fundamental OpenMP parallel construct

#pragma omp parallel [clause ...]
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured_block

Exercise 1: Parallel Regions

25

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {
int nthreads;
int tid;
// Parallel region starts here............................

#pragma omp parallel private(nthreads,tid)
{
// Get thread ID..
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
if (tid == 0){
// Get total number of threads........................
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
}
// End of parallel region.................................

}

Exercise 1: Parallel Regions

26

(1) Description – a simple parallel “Hello World” program printing out the
number of OpenMP threads and thread IDs

(2) Compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example1
> make

(3) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(4) Explore the output (the “omp_hello.dat” file), e.g.,
> cat omp_hello.dat
Hello World from thread = 0
Hello World from thread = 1
Hello World from thread = 2
Number of threads = 4
Hello World from thread = 3

(5) Run the program with different thread number – e.g., 1, 2, 4, 8

Exercise 2: Parallel FOR Loops

27

The FOR directive specifies that the iterations of the loop immediately following it
must be executed in parallel by the team. This assumes a parallel region has
already been initiated, otherwise it executes in serial on a single processor.

This is the easiest, fastest, and usually most efficient way to parallelize your code.

FOR - shares iterations of a
loop across the team.
Represents a type of "data
parallelism"

#pragma omp for [clause ...]
schedule (type [,chunk])
ordered
private (list)
firstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
collapse (n)
nowait

for_loop

Exercise 2: Parallel FOR Loops

28

(1) Description – Vector addition. This example demonstrates use of the OpenMP
loop work-sharing construct. Notice that it specifies dynamic scheduling of
threads and assigns a specific number of iterations to be done by each thread.

(2) Review the source code

(3) Compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example2
> make

(4) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(5) Explore the output (the “omp_loop.dat” file). Note that it is piped through the
sort utility. This will make it easier to view how loop iterations were actually
scheduled across the team of threads.

Exercise 2: Parallel FOR Loops

29

(6) Run the program a couple more times and review the output.

Typically, dynamic scheduling is not deterministic. Every time you run the program,
different threads can run different chunks of work. It is even possible that a thread
might not do any work because another thread is quicker and takes more work. In
fact, it might be possible for one thread to do all of the work.

(7) Edit the “omp_loop.c” source file and change the dynamic
scheduling to static scheduling.

(8) Recompile
> make clean
> make

Notice the difference in output compared to dynamic scheduling. Specifically,
notice that thread 0 gets the first chunk, thread 1 the second chunk, and so on.

(9) Run the program a couple more times. Does the output change? With static
scheduling, the allocation of work is deterministic and should not change between
runs, and every thread gets work to do.

Exercise 3: Parallel Sections

30

§ The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the
enclosed section(s) of code are to be divided among the threads in the team

§ Independent SECTION directives are nested within a SECTIONS directive. Each SECTION
is executed once by a thread in the team. Different sections may be executed by different
threads

#pragma omp sections [clause ...]
private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{
#pragma omp section newline

structured_block

#pragma omp section newline

structured_block

}

SECTIONS - breaks work into separate,
discrete sections. Each section is executed by
a thread. Can be used to implement a type of
"functional parallelism"

Exercise 3: Parallel Sections

31

(1) Description – This example demonstrates use of the OpenMP SECTIONS work-sharing
construct. Note how the PARALLEL region is divided into separate sections, each of
which will be executed by one thread.

(2) Review the source code

(3) Compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example3
> make

(4) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(5) Explore the output (the “omp_sections.dat” file). Note that it is piped through the sort
utility.

(6) Run the program several times and observe any differences in output.

Because there are only two sections, you should notice that some threads do not do any
work. It is even possible for one thread to do all of the work. Which thread does work is
non-deterministic in this case.

Exercise 4: Reduction – Dot Product

32

§ The REDUCTION clause performs a reduction on the variables that
appear in its list

§ A private copy for each list variable is created for each thread. At the
end of the reduction, the reduction variable is applied to all private
copies of the shared variable, and the final result is written to the global
shared variable

C: reduction (operator: list)

Exercise 4: Reduction – Dot Product

33

(1) Description – Program performs dot product of 2 vectors in parallel

(2) Review the source code and compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example4
> make

(3) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(4) Explore the output (the “omp_dot.dat” file), e.g.,
> cat omp_dot.dat
Global dot product = 656700.000000
Running on 4 threads.
Thread 0: partial dot product = 128300.000000
Thread 1: partial dot product = 150550.000000
Thread 2: partial dot product = 175300.000000
Thread 3: partial dot product = 202550.000000

(5) Run the program with different thread number – e.g., 1, 2, 4, 8

Exercise 5: Orphaned Directives

34

§ OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives.

§ Orphaning is a situation when directives related to a parallel region are not
required to occur lexically within a single program unit.

§ Directives such as critical, barrier, sections, single, master, and do, can occur by
themselves in a program unit, dynamically “binding” to the enclosing parallel
region at run time.

§ Orphaned directives enable parallelism to be inserted into existing code with a
minimum of code restructuring.

§ Orphaning can also improve performance by enabling a single parallel region to
bind with multiple do directives located within called subroutines.

Exercise 5: Orphaned Directives – Dot Product Revised

35

(1) Description – Program performs dot product of 2 vectors in parallel.
However it differs from previous Example4 because the parallel loop
construct is orphaned - it is contained in a subroutine outside the lexical
extent of the main program's parallel region.

(2) Review the source code and compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example5
> make

(3) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(4) Explore the output (the “omp_dot.dat” file)

(5) Run the program with different thread number – e.g., 1, 2, 4, 8

Example 6: Scaling – Compute PI in Parallel

36

Monte-Carlo Approximation of PI:

1. Inscribe a circle in a square

2. Randomly generate points in the square

3. Determine the number of points in the
square that are also in the circle

4. Let r be the number of points in the
circle divided by the number of points in
the square

5. PI ~ 4 r

6. Note that the more points generated, the
better the approximation

Example 6: Scaling – Compute PI in Parallel

37

(1) Description – Program performs parallel Monte-Carlo approximation of PI

(2) Review the source code and compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example6
> make

(3) Run the program
> sbatch sbatch.run

(4) Explore the output (the “omp_dot.dat” file), e.g.,
> cat omp_pi.dat
Exact value of PI: 3.14159
Estimate of PI: 3.14165
Time: 5.56 sec.

(5) Run the program with different thread number – 1, 2, 4, 8 – and record the
run times for each case. This will be needed to compute the speedup and
efficiency

Example 6: Scaling – Compute PI in Parallel

38

How much faster will the program run?

)(
)1()(
nT

TnS =

Speedup: Time to complete the job
on one thread

Time to complete the job
on n threads

Efficiency:

n
nSnE)()(=

Tells you how efficiently you parallelize your
code

Example 6: Scaling – Compute PI in Parallel

39

Nthreads Walltime Speedup Efficiency (%)
1 22.51 1.00 100.00
2 11.46 1.96 98.21
4 5.70 3.95 98.73
8 2.87 7.84 98.04

You may use the speedup.py Python code to generate to calculate the
speedup and efficiency. It generates the below table plus a speedup
figure

Example 6: Scaling – Compute PI in Parallel

40

Exercise 7: Matrix-Matrix Multiplication

41

(1) Description – Program performs Matrix-Matrix multiplication in parallel.
Matrix dimension = 1000

(2) Review the source code and compile the program
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example7
> make

(3) Run the program (the default is setup to 4 threads)
> sbatch sbatch.run

(4) Explore the output (the “omp_mm.dat” file), e.g.,
> cat omp_mm.dat

(5) Run the program with different thread number – e.g., 1, 2, 4, 8 – and
observe the FLOPS rate (FLOPS / elapsed time) with increasing thread count

Exercise 7: Matrix-Matrix Multiplication

42

Example output:

Matrix multiplication tests.

Number of processors available = 4
Number of threads = 4

Matrix multiplication timing.
A(LxN) = B(LxM) * C(MxN).
L = 1000
M = 1000
N = 1000
Floating point OPS roughly 2000000000
Elapsed time dT = 0.152197
Rate = MegaOPS/dT = 13140.852903

omp_mm:
Normal end of execution.

Exercise 8: Helmholtz Equation

43

§ Wave equation in frequency domain
– Acoustics
– Electromagnetics (Maxwell equations)
– Diffusion/heat transfer/boundary layers
– Telegraph, and related equations
– k can be complex

§ Quantum mechanics
– Klein-Gordon equation
– Schrödinger equation

§ Relativistic gravity
§ Molecular dynamics
§ Appears in many other models

Exercise 8: Helmholtz Equation

44

(1) Description - solves a discretized 2D Helmholtz equation

The two dimensional region given is:

-1 <= X <= +1

-1 <= Y <= +1

The region is discretized by a set of M by N nodes:

P(I,J) = (X(I), Y(J))

where, for 0 <= I <= M-1, 0 <= J <= N - 1, (C/C++ convention)

X(I) = (2 * I - M + 1) / (M - 1)

Y(J) = (2 * J - N + 1) / (N - 1)

The Helmholtz equation for the scalar function U(X,Y) is

-Uxx(X,Y) - Uyy(X,Y) + ALPHA * U(X,Y) = F(X,Y)

where ALPHA is a positive constant. We suppose that Dirichlet boundary conditions are

specified, that is, that the value of U(X,Y) is given for all points along the boundary.

Exercise 8: Helmholtz Equation

45

We suppose that the right hand side function F(X,Y) is specified in such a way that the
exact solution is

U(X,Y) = (1 - X^2) * (1 - Y^2)

Using standard finite difference techniques, the second derivatives of U can be
approximated by linear combinations of the values of U at neighboring points. Using this
fact, the discretized differential equation becomes a set of linear equations of the form:

A * U = F

These linear equations are then solved using a form of the Jacobi iterative method with a
relaxation factor.

Directives are used in this code to achieve parallelism.

All do loops are parallized with default 'static' scheduling.

Exercise 8: Helmholtz Equation

46

(2) Compile the code
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example8
> make

(3) Run the program with different thread counts, e.g., 1, 2, 4, and 8
> sbatch sbatch.run

(4) Explore the output, e.g.,
> cat omp_helmholtz.dat

Exercise 9: Poisson Equation

47

2D discretization

Iterative update of Jacobi
iterations

2D finite difference grid

Exercise 9: Poisson Equation

48

(1) Description – This example computes an approximate solution to the Poisson equation in
a rectangular region, using OpenMP to carry out the Jacobi iteration in parallel.

The version of Poisson's equation being solved here is

- (d/dx d/dx + d/dy d/dy) U(x,y) = F(x,y)

over the rectangle 0 <= X <= 1, 0 <= Y <= 1, with exact solution

U(x,y) = sin (pi * x * y)

so that

F(x,y) = pi^2 * (x^2 + y^2) * sin (pi * x * y)

and with Dirichlet boundary conditions along the lines x = 0, x = 1, y = 0 and y = 1.

Approximate solution is computed by discretizing the geometry, assuming that DX = DY.

Along with the boundary conditions at the boundary nodes, we have a linear system for U.
We can apply the Jacobi iteration to estimate the solution to the linear system.

Exercise 9: Poisson Equation

49

OpenMP is used in this example to carry out the Jacobi iteration in parallel.

For larger matrices the Jacobi iterations can converge very slowly.

In addition, different linear solvers can be used to improve performance.

(2) Compile the code
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example9
> make

(3) Run the program with different thread counts, e.g., 1, 2, 4, and 8
> sbatch sbatch.run

(4) Explore the output, e.g.,
> cat omp_poisson.dat

Exercise 10: Molecular Dynamics Simulations

50

Molecular Dynamics is a N-body simulation for studying the physical movements of

atoms and molecules

The particles are allowed to interact for a fixed period of time

In most cases, particle trajectories are determined by solving numerically Newton’s

equations of motion for a system of interacting particles.

The forces between the particles and their potential energies are calculated using inter-

particle potentials – empirical, semi-empirical, ab initio

Exercise 10: Molecular Dynamics Simulations

51

(1) Description – Program carries out a molecular dynamics simulation, using
OpenMP for parallel execution. The specific example simulates the dynamics
of 1000 particles performing 400 time steps.

(2) Compile the code
> cd ~/OpenMP/User_Codes/Courses/CS205/OpenMP/Example10
> make

(3) Run the program with different thread counts, e.g., 1, 2, 4, and 8
> sbatch sbatch.run

(4) Explore the output, e.g.,
> cat omp_md.dat

Good Practices and Summary

52

§ Use “top” to check if your code is using the number of threads
you set
– The process should be using number of threads x 100% of load
– Underloaded applications are caused by thread contention or

thread starvation

§ Run a scaling test
– Take the same amount of work and divide it between 1, 2, 4, 8,

etc., threads
– Ideal scaling would be that the amount of time it takes to do work

will half every time you double the number of threads

§ After you complete your scaling test look at results and set
thread count at the point where you still get appreciable
performance gains due to parallelization

