
1

“If you torture the data long enough, it will
confess”

Ronald Coase, Professor at UChicago, 1981

2

Lecture C1
Batch Data Processing

CS205: Computing Foundations for Computational Science
Dr. Ignacio M. Llorente

Spring Term 2020

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
4

CS205: Contents
APPLICATION SOFTWARE

Application Software

Platform

Architecture

Programming Model
Map-Reduce

Spark

Slurm Yarn

Cloud Computing Computing Cluster

B
IG

 D
A

TA

B
IG

 C
O

M
P

U
TE

Application Parallelism Program Design

OpenACC

OpenMP MPI

Optimization

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
5

Before We Start
Where We Are

Week 9: Batch Data Processing => MapReduce
3/23 3/24

Lecture C1
Batch Data
Processing

(Quiz & Reading)

3/25
Lab I8

MapReduce
Hadoop Cluster

3/26
Hands-on H4
MapReduce

3/27

Concepts Platform Programming

Week 10: Dataflow Processing => Spark
3/30 3/31

Lecture C2
Dataflow

Processing
(Quiz & Reading)

4/1
Lab I9

Spark Single
Node

4/2
Hands-on H5

Spark

4/3

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
6

Context
Foundations of Data Processing

Compute-intensive
Bringing data to compute

Data-intensive
Bringing compute to data

T0

T1 T2

T3

T5 T4

T0

T1 T2

T3

T4T5

“Big” Compute Big Data

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
7

Context
Foundations of Data Processing

INPUT DATA

T0 T1 T2 T3

OUTPUT DATA

HPC

T0 T1 T2 T3

HTC

Paradigm Independent parallel tasks that are performed
simultaneously to address a particular part of the problem

Challenge Decompose the application into tasks and define their
communication and synchronization

Bottleneck CPU

Input data Gigabyte-scale to describe initial conditions

Programming OpenMP, OpenACC and MPI

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
8

Context
Foundations of Data Processing

INPUT DATA

M0 M1 M2 M3

OUTPUT DATA

R1 R2

Paradigm Same task is applied to large volumes of data

Challenge Partition the data into multiple segments and the
subsequent combination of the intermediate results in
multiple stages

Bottleneck Storage

Input data Far beyond gigabyte-scale: datasets are commonly on the
order of tens, hundreds, or thousands of terabytes

Programming MapReduce, Spark

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
9

1. Unix-like shell (Linux, Mac OS or Windows/Cygwin)

2. Python installed

3. Download example python codes

https://harvard-iacs.github.io/2020-CS205/pages/materials.html

Hands-on Examples
Requirements

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
10

Why Is Big Data Processing Different?

The MapReduce Programming Model

The Hadoop Processing Framework

Roadmap
Batch Data Processing

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
11

Why Is Big Data Processing Different?
The WordCount HelloWorld Example

WORD
FREQUENCY

LARGE DOC
COLLECTION

all 5790
also 3789
…

Sequential Execution

counter.py
Implementation
• Centralized key-value data structure,

hash table (dictionary sums) to keep
track of counts

Scalability Limitations
• Compute-bound: Limited by the

speed of the system
• Memory-bound: Limited by the

memory size of the system

$ counter.py < input.txt

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
12

Why Is Big Data Processing Different?
The WordCount Example

WORD
FREQUENCY

LARGE DOC
COLLECTION

all 5790
also 3789
…

Parallel Execution

How would you develop a parallel version of the
counter application?

Is the counter application limited by the CPU?

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
13

Why Is Big Data Processing Different?
The WordCount Example

Shared Memory (OpenMP)

P1

M1

Implementation
• Each thread processes a part of each doc
• Single parallel instance of the counter

code and shared data structure between
threads

Scalability Limitations
• Shared memory architecture (bus

bottleneck)
• Memory access synchronization to

shared data structure

Shared Bus

Pn

Mn

OMP Parallel

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
14

Why Is Big Data Processing Different?
The WordCount Example

Distributed Memory (MPI)

P1

M1

1 1 1

Implementation
• Each node processes a subset in parallel
• Each node executes a sequential

instance of the counter code and keeps
its own local data structure

• Big final reduction operation for the
complete data structure

Scalability Limitations
• Memory-bound: Limited by the

memory size of each node
• Communication-bound: Cost of final

aggregation with reduction of all the
data structure

Interconnection Network

Pn

Mn

MPI_Reduce

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
15

Why Is Big Data Processing Different?
Data-Intensive Applications: Bring Compute to the Data

We want to avoid
• Centralized resources that are likely bottlenecks
• Replication of data structures across nodes
• Communication of too much intermediate data

We need a programming model with data locality
• Same computation to be applied to large volumes of data
• Assign tasks to machines that already have the input data
• Efficient combination of intermediate results from multiple processors
• Highly distributed and scale-out

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
16

The MapReduce Programming Model
Core Idea and Benefits

MapReduce is a programming model for processing big data sets with a
parallel, distributed algorithm on a cluster

The core idea behind MapReduce is mapping your data set into a
collection of <key, value> pairs, and then reducing over all pairs with the

same key

The concept is quite powerful because almost all data can be mapped
into <key, value> pairs somehow, and keys and values can be of any type

(strings, integers, user-defined…)

The concept is very simple because developers are required to only
write simple map and reduce functions, while distribution and

parallelism are handled by the MapReduce framework

The concept is very efficient because computation operations are
performed on data local to the computing node, data transfer over the

network is reduced to a minimum

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
17

The MapReduce Programming Model
Not So New

OSDI'04, San Francisco, CA, December, 2004
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.p

df

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
18

The MapReduce Programming Model
Assign Compute to Machines that already Have the Data

The programmer essentially only specifies two (sequential) functions

STEP 1. MAP: map(k1,v1) → list(k2,v2)

• Inputs each record consisting of key of type k1 and value of type v1
• Outputs a set of intermediate key-value pairs, each of type k2 and v2
• Types can be simple or complex user-defined objects
• Each map call is independent

STEP 2. SUFFLING: Internal grouping of all intermediate pairs with same key
together and passes them to the workers executing reduce

STEP 3. REDUCE: reduce(k2,list(v2)) → list(k3,v3)

• Combines information across records that share this same intermediate key

This is too abstract!

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
19

The MapReduce Programming Model
WordCount Example on a Single System

mapper.py

• Parse input text lines
• Extract words
• For each word writes the “word” as

output key and “1” as value

$ mapper.py < input.txt
…
email 1
newsletter 1
to 1
hear 1
about 1
new 1

STEP 1. MAP: map(k1,v1) → list(k2,v2)

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
20

The MapReduce Programming Model
WordCount Example on a Single System

$ mapper.py < input.txt | sort
…
zodiac 1
zodiac 1
zogranda 1
zone 1
zone 1
zone 1
zone 1
zone 1
zoned 1
zoned 1
zones 1
zones 1
zones 1
zoology 1
zoology 1
zoroaster 1

STEP 2. SUFFLING

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
21

The MapReduce Programming Model
WordCount Example on a Single System

reducer.py
• Count the number of times each key

occurs by summing values as long as
they have the same key

• Publish the result once the key changes

$ mapper.py < input.txt | sort | reducer.py
…
3 zones
2 zoology
1 zoroaster

STEP 3. REDUCE: reduce(k2,list(v2)) → list(k3,v3)

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
22

The MapReduce Programming Model
Prototyping and Debugging – Hadoop Streaming

$ cat files | mapper.py| sort | reducer.py

Both the mapper and the reducer should be python executable scripts that
read the input from stdin (line by line) and emit the output to stdout

$ bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar \ -file
/home/hduser/mapper.py -mapper /home/hduser/mapper.py \ -file
/home/hduser/reducer.py -reducer /home/hduser/reducer.py \ -input
/user/hduser/input/* -output /user/hduser/g-output

1. Copy files to HDFS

2. Execute Hadoop command

3. Read all output files (one per reducer)

bin/hadoop dfs -copyFromLocal /tmp/gutenberg /user/hduser/gutenberg

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
23

The MapReduce Programming Model
It Is All about the Framework for Parallel Processing

Programmer focus on the algorithm while the framework takes care of:
• Parallelizing program execution
• Partitioning input data
• Delivering data chunks to the different worker machines
• Scheduling the map/reduce tasks for execution on the worker machines
• Handling machine failures and slow responses

MapReduce Framework

JOB DESCRIPTION

OUTPUT
DATA

INPUT
DATA

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
24

WordCount Example on a Parallel System
The MapReduce Programming Model

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
25

The Hadoop Processing Framework
Apache Hadoop and Alternatives

B
IG

 D
A

TA

O
PE

R
A

TI
N

G

SY
ST

EM

B
IG

 C
O

M
PU

TE
O

PE
R

A
TI

N
G

SY

ST
EM

Cloud Management Platform

COMPUTE NETWORK STORAGE CLOUD

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
26

The Hadoop Processing Framework
Bare-metal Deployment

Hadoop

A
cc

es
s

P
ro

vi
si

on

Map-ReduceSpark BIG DATA

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
27

Virtual Worker Nodes

Hadoop

A
cc

es
s

P
ro

vi
si

on
Se

rv
ic

e

• Common interfaces

• Custom environments
• Dynamic elasticity

• Consolidation of WNs
• Simplified management
• Physical – Virtual WNs
• Dynamic capacity partitioning
• Faster upgrades

Service/Provisioning Decoupling

The Hadoop Processing Framework
Cloud Deployment

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
28

Elastic Map Reduce - AWS
The Hadoop Processing Framework

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
29

The Hadoop Processing Framework
Scale Horizontally!

Scale out
More, smaller servers

Scale up
fewer, larger servers

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
30

Elastic Map Reduce - AWS
The Hadoop Processing Framework

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
31

The Hadoop Processing Framework
Clustered Architectures

LUSTRE

SLURM

MPI

YARN

MapReduce

HDFS

Compute-centric

Data-centric

32

Next Steps

• Get ready for next lab:
I8. Hadoop Cluster on AWS (Wednesday 3/25)

• Get ready for next hands-on:
H4. MapReduce Design Patterns (Thursday 3/26)

33

Questions
Batch Data Processing

http://piazza.com/harvard/spring2020/cs205/home

34

Backup

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
35

The Hadoop Processing Framework
Ecosystem: Pig Latin and HiveQL

PIG HIVE

Procedural Data Flow Language Declarative SQLish Language

For programming For creating reports

Used by Researchers and Programmers Used by Data Analysts

Operates on the client side of a cluster Operates on the server side of a cluster.

Pig is SQL like but varies to a great extent. Directly leverages SQL and is easy to learn for
database experts.

Key Components in the Hadoop Ecosystem
• Both ease the complexity of writing complex java MapReduce

programs

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
36

The Hadoop Processing Framework
Clustered Architecture

HDFS HDFS HDFSYARN YARN

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
37

The Hadoop Processing Framework
Clustered Architecture

HDFS
YARN

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
38

The Hadoop Processing Framework
Storage Architecture - HDFS

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
39

The Hadoop Processing Framework
Storage Architecture - HDFS

Scalable Fault-Tolerant Storage of Distributed Commodity Hardware
•Designed with hardware failure in mind
•Built for large datasets, with a default block size of 128 MB
•Optimized for sequential operations
•Rack-aware
•Cross-platform and supports heterogeneous clusters

Block-oriented Storage
•Data in a Hadoop cluster is broken down into smaller units (called blocks) and
distributed throughout the cluster
•Each block is duplicated twice (for a total of three copies), with the two
replicas stored on two nodes in a rack somewhere else in the cluster
• If a copy is lost (because of machine failure, for example), HDFS will
automatically re-replicate it elsewhere in the cluster, ensuring that the
threefold replication factor is maintained

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
40

The Hadoop Processing Framework
File Access - HDFS

NameNode
•Manages the file system namespace and associated metadata (file-to-block maps), and
acts as the master and brokers access to files by clients (though once brokered, clients
communicate directly with DataNodes).
•Operates entirely in memory, persisting its state to disk. It represents a single point of
failure for a Hadoop cluster that is not running in high-availability mode.
• To mitigate against this, production clusters typically persist state to two local disks or
install in high-availability mode with a standby NameNode to guard against failures

Sources: https://www.datadoghq.com/blog/hadoop-architecture-overview/

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
41

The Hadoop Processing Framework
Storage Architecture - HDFS

http://ec2-54-175-139-110.compute-1.amazonaws.com:50070

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
42

The Hadoop Processing Framework
Job Scheduling and Resource Manager - YARN

•ResourceManager (one per cluster):
Takes inventory of available resources
and runs the Scheduler which allocates
resource containers to running
applications

•NodeManager (one per node):
Oversees resource containers and
monitors their resource usage,
periodically communicating with
ResourceManager
•ApplicationMaster (one per app/job):
Framework specific, runs in one of the
containers, oversees application
execution, monitors their resource
usage periodically, and potentially
communicates with ResourceManager
to request additional containers Sources: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
43

The Hadoop Processing Framework
Application Execution - YARN

1. Client program submits the MapReduce application to the
ResourceManager, along with information to launch the application-
specific ApplicationMaster.

2. ResourceManager negotiates a container for the ApplicationMaster and
launches the ApplicationMaster.

3. ApplicationMaster boots and registers with the ResourceManager,
allowing the original calling client to interface directly with the
ApplicationMaster.

4. ApplicationMaster negotiates resources (resource containers) for client
application.

5. ApplicationMaster gives the container launch specification to the
NodeManager, which launches a container for the application.

6. During execution, client polls ApplicationMaster for application status
and progress.

7. Upon completion, ApplicationMaster deregisters with the
ResourceManager and shuts down, returning its containers to the
resource pool.

Sources: https://www.datadoghq.com/blog/hadoop-architecture-overview/

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
44

The Hadoop Processing Framework
Application Execution - YARN

http://ec2-54-175-139-110.compute-1.amazonaws.com:8088

