“The manufacturers quote a peak
performance of 28 GFLOPS for the
largest CM-2 (65,536 PEs) with floating

point accelerators”

CM-2 evaluation, 1987

Lecture B.3:
Accelerated Computing

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2020

J00 100 Y8

" INSTITUTE FOR APPLIED
School of Engineering ,‘uv‘ 4l COMPUTATIONAL SCIENCE

and Applied Sciences "él*fé" AT HARVARD UNIVERSITY

Lectures developed by Dr. Ignacio M. Llorente

Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems
Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing
B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics

HARVARD XS (NsTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering WRSEA COMPUTATIONAL SCIENCE A . . .
and Applied Sciences vggﬁw AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 3
-«

CS205: Contents

APPLICATION SOFTWARE

APPLICATION
PARALLELISM

Optimization PROGRAMMING MODEL

o]

I Map-Reduce I

PARALLEL PROGRAM
DESIGN

C. BIG DATA

B. BIG COMPUTE

PLATFORM

\C
N

0

LI .
" angson) #£0pen Ao
. - HARVARD FAS
Frﬁ-l'l n / NebUIq : RESEARCH COMPUTING
=] - .
o i o " 20
CLOUD COI\/I'PUTlNG " PARALLEL ARCHITECTURES
% mstiruteFor appLIED - Lecture B.3: Accelerated Computing Dr. David Sondak
aﬁ d°:p3“e:gs"c‘ie:n’l';§ "éﬁé" AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 4

Context
Accelerated Computing

GPU-Accelerated Computing FPGA-Accelerated Computing

* Enable high degree of parallelism — * Massive parallel — each FPGA includes
each GPU has thousands of cores millions of parallel logic cells

e Consistent, well documented APIs * Flexible —lower level, hardware, no
(OpenACC, CUDA and OpencCL) and fixed instruction set
tools * Programmable using FPGA

* Widely supported by vendors and OSS development tools
project

HARVARD LXOISH |NSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

| school of Engineering COMPUTATIONAL SCIENCE - . .)
aﬁdozp:lie:gsl:ieeer::;i '%?g AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 5

Context
Really New?: Thinking Machines CM-2 (1990)

___The CRAY-2 Computer System

) ITT0

Vector SIMD

(aRvarD IEXSEN \\smituTe For APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri [/ COMPUTATIONAL SCIENCE i . X .
School of Engineering AT HARVARD UNIVERSITY €S205: Computing Foundations for Computational Science 6

and Applied Sciences

Context
Really New?: Thinking Machines CM-2 (1990)

Typical Application Performance* General Specifications
(fixed point) Processors 65,536
General Computing 2500 Mips Memory 512 Mbytes
Terrain Mapping 1000 Mips S—— Sasy
Document Search 6000 Mips per second
Interprocessor Communication Input/Output Channels
(32-bit messages) Number of Channels 8
Regular Pattern 250 million per second Capacity per Channel 40 Mbytes
Random Pattern 80 million per second per second
Sort 65,536 32-bit keys 30 milliseconds Maximum Transfer Rate 320 Mbytes
S per second
Variable Precision Fixed Point —
64-bit integer add 1500 Mips Physical Dimensions
32-bit integer add 2500 Mips Size 56" x 56" x 62"
16-bit integer add 3300 Mips Weight 2,600 Ibs.
8-bit integer add 4000 Mips]
g;g::r:’n%‘ig g% Mlgz Environlt}ental Requirements
Y biftie 3800 Mips (does nqt {nclpde host)
8-bit move 4500 Mips Power Dissipation 28 KW
Power Input Four 30-amp 3-phase
110/208v
Double Precision Floating Point Operating
Average (4K x 4K matrix Temperature 70°F = 5°F
multiply) 2500 MFlops Operating Relative
Dot product 5000 MFlops Humidity 50% + 10%
Single Precision Floating Point o i i o
Average (4K x 4K matrix Corporap(ioré cannot, I);)weyer, be res;l))f_)nstible f}?r inadv_(;;']tent
mu]tiply) 3500 MF]O])S errors. Product specifications are subject to change without
Dot product 10,000MFlops [l e - Vilons ot ssocions e second: MFlops =
Millions of floating point operations per second.
:(‘:‘:‘:’0“[2‘; e mstirute FoR APPLIED Lecture B.3: Acrtelerated Co-mputing . . Dr. David Sondak
and Applied Sciences '@;éw AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 7

Context
Top Hollywood Computer: Thinking Machines CM-2 (1990)

inla nublar

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering a’#‘i@ COMPUTATIONAL SCIENCE
and Applied Sciences G AT HARvAD universiTY CS205: Computing Foundations for Computational Science 8

Context
Really New? — NVIDIA Tesla M60 (2017)

SPECIFICATIONS

Virtualization Use Case Performance-Optimized
Graphics Virtualization

GPU Architecture NVIDIA Maxwell™

GPUs per Board 2

Max User per Board
NVIDIA CUDA® Cores

GPU Memory

H.264 1080p30 streams 36

Max Power Consumption 300 W

Thermal Solution ACtiVE/PaSSive TESLA M60 WITH NVIDIA GRID DELIVERS UP TO 2X USER DENSITY
W NVIDIA® Tesla® Mé60 NVIDIA® GRID® K2

Form Factor PCle 3.0 Dual Slot

(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

. : vy,
h f E WAV COMPUTATIONAL SCIENCE . . A .
:ﬁdoz:,;lie:gsl:ie:,::z %ﬁ@' AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 9

Context
SIMD Converted into a Commodity

2-4 Millions of Dollars (2018)

NVIDIA Tesla M60 16GB Server GPU Accelerator Processing Card HP
813433-001 (Renewed)

by Amazon Renewed

Price: $1,900.00 & FREE Shipping

Get a $100 Amazon Gift Card instantly upon approval for the Amazon Prime Rewards Visa Card. No annual
fee.

Note: Not eligible for Amazon Prime.

Service: Get professional installation Details

Include installation
+$80.43 per unit

‘ Without expert installation

v See more

Product works and looks like new. Backed by the 90-day Amazon Renewed Guarantee.

Renewed products work and look like new. These pre-owned products have been inspected and tested by
Amazon-qualified suppliers. Box and accessories may be generic. All Renewed products come with the 90-day
Amazon Renewed Guarantee. Learn more

* 16GB

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering ;}‘vﬂ;‘g COMPUTATIONAL SCIENCE R . . .
and Applied Sciences G AT HARvAD universiTY CS205: Computing Foundations for Computational Science 10

Roadmap
Performance Optimization and Accelerators

Heterogeneous Computing
GPU Computing
GPU Programming
OpenACC Fundamentals

HARVARD ‘ ||||||||||||||||||| Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineerin mv*" CCCCCCCCCCCCCCCCCCCC

chool of Engineering L0 .

and Applied Sciences W4 T HARVARD univeRsITY CS205: Computing Foundations for Computational Science 11

Heterogeneous Computing
Intersection of CPU and GPU Computing

* Heterogeneous computing refers to systems that use more than one kind of processor

* Multi-core systems gain performance not just by adding cores, but also by
incorporating specialized processing capabilities to handle particular task

* Heterogeneous System Architecture (HSA) systems utilize multiple processor types
(typically CPUs and GPUs), usually on the same silicon die, to give you the best of both

worlds:

v" While CPUs can run the operating system and perform traditional serial or multi-
threading tasks

v" GPUs have vector processing capabilities that enable them to perform parallel

operations on very large sets of data — and to do it at much lower power
consumption relative to the serial processing of similar data sets on CPUs

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
h f E A%
:ﬁd"::,;“e:gs':ie:;lg G nrvsno sy €S205: Computing Foundations for Computational Science 12

Heterogeneous Computing
Intersection of CPU and GPU Computing

CPU Multicore GPU

f..
&..

.\

PCI express
>

le

EEEEENEN
EEEEEENEN
EEEEEENEN
EEEEEENEN
EEEEENENEN
Dooooooo
&II]II]II]II]J

Cramvemery) (cromemors)

e

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 13

and Applied Sciences

Heterogeneous Computing
Intersection of CPU and GPU Computing

CPUs

Thread-parallel
computing on
multiple cores

GPUs

Data-parallel
computing on
multiple ALUs

Graphics, matrices
and vector
parallel processing,
OpenACC

Shared-memory
multi-processor
programming,

OpenMP

HARVARD LXSE |NSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

; : NS COMPUTATIONAL SCIENCE
School of E B
Chob’ Of ENEINSeNiNg s eRsITY €S205: Computing Foundations for Computational Science 14

. . Vf"v,v‘w AT HARVARD UNIVER
and Applied Sciences >

Heterogeneous Computing
Execution Model

PCle Bus _

CPU Memory

InRRRRNaREnN

1.Copy input data from CPU memory to GPU
memory

Source: NVIDIA

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering '4;7&'455 COMPUTATIONAL SCIENCE

and Applied Sciences ,%,:véw AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 15

Heterogeneous Computing
Execution Model

CPU

|

PCle Bus

CPU Memory

Ty

LT ET
[IRRRRRRRRRRANN
IRIRNRRERERENN

1.Copy input data from CPU memory to GPU
memory

2.Load GPU program and execute, caching data
on chip for performance

RAM
Source: NVIDIA
HARVARD ‘ INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering (‘qﬁi\é COMPUTATIONAL SCIENCE
and Applied Sciences G AT HARvAD universiTY CS205: Computing Foundations for Computational Science 16

Heterogeneous Computing
Execution Model

CPU
PCle Bus = . —]
CPU Me : :
\ [— -
‘\ [-
s \ - .
- \‘ [-
1.Copy input data from CPU memory to GPU
memory
2.Load GPU program and execute, caching data L
on chip for performance
3.Copy results from GPU memory to CPU
memory DEAN
Source: NVIDIA
HARVARD IXSY INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
:ﬁg":{t;{é:i‘:ﬁ:&gi ";‘:ﬁ{; oA e €S205: Computing Foundations for Computational Science 17

GPU Computing

What is it?

* GPU-accelerated computing is the use of a graphics processing unit (GPU) together with
a CPU to accelerate deep learning, analytics, and engineering applications (data parallel
applications)

* GPU-accelerated computing offloads compute-intensive portions of the application to
the GPU, while the remainder of the code still runs on the CPU. From a user's
perspective, applications simply run much faster

* The Graphic Processing Unit (GPU) is a processor that was specialized for processing
graphics

* The GPU has evolved towards a more flexible architecture.
v" Opportunity: We can implement *any algorithm*, not only graphics

v' Challenge: obtain efficiency and high performance

The idea is to obtain performance through SIMD

v" Same operations (kernel) on multiple data

HARVARD IXSEY |\ s1iTuTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE

School of E B - . . .

aﬁd":p;“e;gs'zieee;;:i G iveRsITY €S205: Computing Foundations for Computational Science 18
<«

GPU Computing

Main Downside

Only for GPU-friendly (Data Parallel) Applications
 Computer graphics

* Texture, rendering, image processing...

* Matrix operations

e Structured simulations (finite differences)

Downsides

* Not-general purpose CPUs

e Difficult to program

e Difficult to tune: Bandwidth vs. Compute vs. Context

* CPU-GPU link has been slow, historically (system bus)

HARVARD Y \nstiruTe For AppLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri WSS COMPUTATIONAL SCIENCE
§§Z°:,‘,;{i§;gs'2ie:,{;';§ %"f f‘?' AT HA NIVERSITY CS205: Computing Foundations for Computational Science 19

GPU Computing

An Alternative Way to Use the Transistors

Memory Controller

—_—RuEmEx, nr = D D o o BB R EIT7 DIER IIID EIEX
| Shared L3 Cache : « $°'% shared L3 Cache

B R e o s = mon oo e o AR e e wil oo AN KNG EIEA BIST 2133 1333 33 mu

Intel i7 980x (Extreme)
6 cores
1.2B transistors

NVIDIA GTX 580 SC
512 cores
3B transistors

Cache and memory hierarchy vs more cores and ALUs

Optimized for low-latency access to cache

_ Optimized for data-parallel, throughput
Complex control logic for ILP

computation
More transistors for computation

warvaro EEXSER nstiuTe FoR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering COMPUTATIONAL SCIENCE

and Applied Sciences AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 20

GPU Computing

Better Performance/Cost for Regular Data Processing

Theoretical Peak Performance, Double Precision

104 [T T T T — S]

i : : l ; 'Q\Q !

| : | : L4

I ; : AR\ KO "

I ; : S

' ' ' \t. 1

103_' """"""""""""""""""" . Yean Bhi 7150 IKNGY -~~~ "~~~ 1

8 3 ' E

£ &
o
S
L
O]
\3\0

102 }- - - R T meeeeeeeesecesentecececseneaennten .-

[: INTEL Xeon CPUs =—glle=—

: . (O@Q +<3@q0 NVIDIA Tesla GPUs —Jil— |

"'. ; : AMD Radeon GPUs —{@)— 1

bg’rb ¢9{L 9.90 X ' ;

+° + W : i INTEL Xeon Phis —p—
2008 2010 2012 2014 2016
End of Year
darvaro - WEXSRN wstruteroraeued - Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering AT HARVARD UNIVERSITY C€S205: Computing Foundations for Computational Science 21

and Applied Sciences

GPU Computing

Better Performance/Cost for Regular Data Processing

Add SIMD Processing on Many Cores
* Amortize cost/complexity of managing an instruction stream across many ALUs

16 cores x 8 ALUs/core = 128 ALUs (mul-add) => 256 GFLOPs @1GHz

E33°1 | HARVARD IACS
School of Engineering
and Applied Sciences

3 INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
A' COMPUTATIONAL SCIENCE
T HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 22

23

Dr. David Sondak

Examples

GPU Computing

NVIDIA GTX 280

Example

T
O
™
—
®
BEQ) (BB [-EE (B [<BE a
mmm mmm Bl || |FEIE] ||| [{EIE] Q
Be \em jee | [jse | jee 5
EEL) T EEL || T EE ElE ElE o .
-m -m ElE) ElE] ElE) o)
-q -M EIEIR - EE R EER A 3
m -m ElE] Elg ElE = 5
BL || TBEL | T ElE ElE ElE & m
Bl ElE EEH | =EE = ;
BlEl BIEl || (FEIE{ || FElE] o 25
BlEl ElE) BlEl-| ||ElE - ¥
g8l BBl ~'BEL] 8B 3| 52
o 5
N g £
N gs
- = = o i
-m 8] -m EEl S | =8
-M -M -M (Bl = g3
ElE] -u BIE| FEE >)
BB "eBL BBL) "e8 2| 4
ElE|] R EE| | ~EE %
HER mm”. BlE] {(|| e s
ElEISH (EEE (S EEE g
BEL|| | “EEL EEEmEE 9
BE || EE EEEHEE w
Sl e B EEE
BE BE || EE
BlEl | e g6l "8

3284 | HARVARD

GPU Computing

Examples

Example: NVIDIA GTX 480

Qv

=

(=]

w

)

— == — QD

]]] o,

_— — — wvi
_ — — 2w
: : v o W

. . a
e L
= 5 || E=&
— — — o v ..-ﬂ
— — — wm ™~ .
— _— _— - M -
]] oo | oo] oooo —]
] — 00| 0o —— oo Do -—
_— — ogoQ || ogoQ ||
] — og|oo - o og |—
- T OO |og [og|og

. Oo|Dm | -] | 1)

’ ogoD | © oo oo
— — ogoo ogiog |—|
]] oo | oo oo|oo —]
-] o)) oo Do -—
_— — 0oooD | ogoQ ||
— — ogooD |- oo|og
-] 0o oD [| od|og |~

: 0od | oo | : o))

’ ogoQm| ° oo oo
— — ogoo — ogoioo —|
] 0o D@] 0o |DE] 0o |Da]
——] [] 0o o —— oo oo —
— O|0E || oooD [og oo |
— 0o (DD | 00 (DD — 0o (0o —
- 0o o [0o o [ogoo ||

00| oD))) o))

0og oo og|om og|oo

))) oo iom) i)))))

LT -

LT -

480 ALUs (4 FLOPS) => 1.3 TFLOPs @0.7GHz

15 cores x 32 ALUs/core

24

Dr. David Sondak

C€S205: Computing Foundations for Computational Science

Lecture B.3: Accelerated Computing

]
WS Al COMPUTATIONAL SCIENCE
IARVARD UNIVERSITY

I2X®S3 |NSTITUTE FOR APPLIED

oo v
=]
c e
o .2
mc
5o N
c T
w o
fragt
ca
- a
]
S <
= T
O
n©

3284 | HARVARD

GPU Computing

Examples

Powered by NVIDIA Tesla M60 GPUs
* Each GPU supports 8 GiB of GPU memory, 2048 parallel processing cores

Tesla Mé&0 Tesla Mé

Number of GPUs 2 NVIDIA Maxwell™ GPUs 1 NVIDIA Maxwell™ GPU
Total NVIDIA CUDA®
Cores 4,096 (2048 per GPU] 1,936
Total Memory Size 166B GDg§3][8 GB per 8 GB GDDRS
Max Power 300 W 100 W
Form Factor PCIE 3.0 Dual Slot MXM
Board Dimensions 10.5" x 4.4 3.2"x4.1"
Cooling Solution Passive/Active Bare Board
222824 | HARVARD V2SN |NSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

School of Engineering

DSR4 COMPUTATIONAL SCIENCE
and Applied Sciences Y20y AT HARVARD UNIVERSITY

C€S205: Computing Foundations for Computational Science 25

GPU Programming

Main Ideas

* Massively parallel with hundreds of cores and thousands of threads
* Loops are best for parallelization
* Large loop counts needed to offset GPU/memcpy overhead
* lterations of loops must be independent of each other
* Help Compiler:
v" It must be able to figure out sizes of data regions

v’ Pointer arithmetic should be avoided if possible
v" Function calls within accelerated region must be in-lineable.

HARVARD XS] |\s7iTuTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
hool of E B - . . .
gﬁd":'l);“e;gs'zie:;:z %’f&&" AT HARVARD UNIVERSITY €S205: Computing Foundations for Computational Science 26

GPU Programming

Different Libraries and Approaches

High level of abstraction PORTABILITY

OpenCL

Device independent, but still requires data decomposition, transfer
and synchronization

CUDA

Vendor/device dependent,
use of explicit shared
memory

PERFORMANCE
FUNCTIONALITY

@2 NVIDIA. |- (intel >

HARVARD EXSEM \nsTiTuTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri WISHEA COMPUTATIONAL SCIENCE
School of E Y% : : : :
aﬁd":pglie;g;:ieee,ﬂ';i %’f,&féy AT A NIVERSITY CS205: Computing Foundations for Computational Science 27

GPU Programming

Anatomy of an Application

—

Serial code =)

S :

Serial code =)

B

Source: NVIDIA

| Sy

|HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering 9»'}'42@ COMPUTATIONAL SCIENCE

and Applied Sciences GG AT HARVARD UNIveERSITY C€S205: Computing Foundations for Computational Science 28
-«

GPU Programming

Anatomy of an Application

CUDA

#include <stdio.h> An Examp|6‘ SAXPY W|th CU DA

__global

void saxpy(int n, float a, float *x, float *vy)

t . . . blockDim.x
int 1 = blockIdx.x*blockDim.x + threadIdx.x; < >
if (i < n) y[i] = a*x[i] + y[i];

}

int main (void)
{
int N = 1<<20;
float *x, *y, *d x, *d y;
x = (float*)malloc (N*sizeof (float));
y = (float*)malloc (N*sizeof (float));

cudaMalloc(&d_x, N*sizeof(float));
cudaMalloc(&d_y, N*sizeof(float));

for (int i = 0; i < N; i++) {
x[1] = 1.0f;
y[i] = 2.0f;

}

cudaMemcpy (d_x, x, N*sizeof(float), cudaMemcpyHostToDevice)
cudaMemcpy (d_y, y, N*sizeof(float), cudaMemcpyHostToDevice) ;

// Perform SAXPY on 1M elements
saxpy<<<(N+255) /256, 256>>>(N, 2.0f, d x, d_y);

cudaMemcpy (y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost)

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing

School of Engi i [COMPUTATIONAL SCIENCE
a,‘,d°§,,,‘,’.,-e{,‘g;2?:,,’;';§ AT HARVARD UNIVERSITY C€S205: Computing Foundations for Computational Science

Dr. David Sondak
29

Accelerated Computing
Anatomy of an Application

OpenACC

#include <stdio.h>
#define vl 256
int main (void)
{
int N = 1<<20;
float *x, *y, *d x, *d y;
X = (float*)malloc (N*sizeof (float));
y = (float*)malloc (N*sizeof (float)):;

An Example: SAXPY with CUDA

for (int 1 = 0; i < N; i++) {
x[1] = 1.0f;
y[ii] = 2.0f;

#pragma acc parallel vector length(vl)
for (int 1 = 0; 1 < N; i++) {
yli] = a*x[1] + y[i];

warvaro EEXSER nstiuTe FoR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering gﬁ COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 30

and Applied Sciences

Accelerated Computing

Anatomy of an Application

3

OpenACC is not
GPU Programming.

OpenACC is
Expressing Parallelism
In your code.

Lecture B.3: Accelerated Computing Dr. David Sondak
CS205: Computing Foundations for Computational Science 31

OpenACC Fundamentals

An Open Specification

OpenACC EXN -

MOr9SCIgpsarLpes Frogyesming About Tools News Stories Events Resources Spec Community

What is OpenACC? #pragma acc data copy(A) create(Anew)

while (error > tol && iter < iter_max) {

error = 9.0;
OpenACC is a user-driven directive-based performance-portable parallel #pragma acc kernels {

programming model designed for scientists and engineers interested in *D;agm? acctlo?p L;‘de?e”de”; Couapi‘efi)
or in =1; < n-1; ++
porting their codes to a wide-variety of heterogeneous HPC hardware for (J_ntJ i= 1: i< m-l;Ji++) |
Anew [j] [i] = @.25 * (A [j] [i+1] + A [j] [i-1] +
A [j-1]1 [i] + A [j+1] [il);
than requiredwithalow-level model. error = max (error, fabs (Anew [j] [i] - A [j] [il));

Get Started or take the next steps

platforms and architectures with significantly less programming effort

HARVARD ‘ INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering ~ BR@AsA COMPUTATIONAL SCIENCE

v

and Applied Sciences UG AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 32

OpenACC Fundamentals
Why OpenAcc versus CUDA or OpenCL?

* High-level. No involvement of OpenCL, CUDA, etc.

* Single source. No forking off a separate GPU code. Compile the same program for
accelerators or serial, non-GPU programmers can play along.

* Incremental. Developers can port and tune parts of their application as resources and
profiling dictates. No wholesale rewrite required. Which can be quick.

* Efficient. Experience shows very favorable comparison to low-level implementations of
same algorithms.

* Performance portable. Supports GPU accelerators and co-processors from multiple
vendors, current and future versions.

HARVARD [EX&SE | NSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri WISHEA COMPUTATIONAL SCIENCE
School of Engineering /0
and Applied Sciences 'e;'z,‘éé"' AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 33

OpenACC Fundamentals

Execution Model

* The execution model has three parallelism levels: gang, worker, and vector
* A gang is comprised of one or multiple workers. All workers within a gang can share
resources, such as memory or processor. Multiple gangs run completely independently.
* A worker computes one vector.
* Vector threads perform a single operation on multiple data (SIMD) in a single step.

vector

oo | D) D — D

Grid S il
block(0,0)| [block(0,1) block(0,k)

L 4

gang

Dr. David Sondak

HARVARD XS |\sTiTuTE FOR APPLIED Lecture B.3: Accelerated Computing
34

P T —re—— AV,
h f E WAV COMPUTATIONAL SCIENCE . . A .
fﬁd":,',,‘,’ueﬂgs':f:n'f;i %ﬁégg AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

OpenACC Fundamentals

Execution Model

* How these constructs map to the underlying hardware depends on the device
capabilities and what the compiler thinks is the best mapping for the problem (tuning!)

* Mapping to NVIDIA GPUs
* gang==block, worker==warp, and vector==threads ofawarp

e Usually omit “worker” and just have gang==block, vector==threads of
a block

vector_length (number of threads in each gang/block)

< o

« >

Tuning

worker is architecture-specific (32), related
to thread scheduling group

vector should be multiple of 32 (usually

256/512)
num_gangs (number of blocks in the grid)
g ZAW=N INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering &l COMPUTATIONAL SCIENCE . . X .
and Applied Sciences AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 35

OpenACC

Programming Model

Compiler directives specify parallel regions (similar to OpenMP!)

OpenACC compilers handle data between host and accelerators

Intent is to be Portable (Independent of OS, CPU/accelerator vendor...)

High-level programming: accelerator and data transfer abstraction

fpragma acc directive [clause [[,] clause]...]

{ structured block }

Parallel Construct => Generate one/several parallel gangs with same code
fpragma acc parallel [clause [[,] clause]...]

Loop Constructs => Generate parallel version of the loop

#fpragma acc loop [clause [[,] clause]...]

Data Constructs => Defines explicit data transferring

#fpragma acc data [clause [[,] clause]...]
(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

. R Ay,
School of Engineering 'ﬁ";ﬁngzw COMPUTATIONAL SCIENCE
¥ AT HARVARD UNIVERSITY

and Applied Sciences i C€S205: Computing Foundations for Computational Science 36

OpenACC Fundamentals
A Simple Example: Pi

#include <stdio.h>
#tdefine N 2000000000
#define v1 1024
int main(void) {
double pi = 0.0f;
long long 1i;
#pragma acc parallel vector length(vl)
#pragma acc loop reduction (+:pi)
for (i=0; i<N; i++) {
double t= (double) ((i+0.5)/N);
pi +=4.0/(1.0+t*t);
}
printf ("pi=%11.10f\n",pi/N);

return 0;

(aRvarD IEXSEN \\smituTe For APPLIED Lecture B.3: Accelerated Computing

P 7
h fE COMPUTATIONAL SCIENCE
fﬁd°§,‘,,‘,’“e,“,gs'2ie:,,’1';§ % AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

Dr. David Sondak
37

OpenACC Fundamentals

A Simple Example: Pi

#include <stdio.h>
#define N 2000000000
#define vl 1024
int main(void) {
double pi = 0.0f;
long long 1i;
#pragma acc parallel loop reduction(+:pi) vector length(vl)
for (i=0; i<N; i++) {
double t= (double) ((i4+0.5)/N);
pi +=4.0/(1.0+t*t);
}
printf ("pi=%11.10f\n",pi/N);

return 0;

(aRvarD IEXSEN \\smituTe For APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

et
hool of E COMPUTATIONAL SCIENCE i . X .
gﬁd(’::):“e:gs':ie:;lg Y comruTaTionL s €S205: Computing Foundations for Computational Science 38

OpenACC Fundamentals

Kernel Directive

* |dentifies a region of code that may contain parallelism, but relies on the automatic
parallelization capabilities of the compiler to analyze the region

* Developers with little or no parallel programming experience, or those working on
functions containing many loop nests that might be parallelized will find the kernels
directive a good starting place for OpenACC acceleration

Clauses
fpragma acc kernels [clause ..] if(condition)
{ structured block } async (expression)
any data clause

// Compute matrix multiplication
fpragma acc kernels copyin(a,b) copy(c)
for (i = 0; 1 < SIZE; ++1)
for (3 = 0; 7 < SIZE; ++73)
for (k = 0; k < SIZE; ++k)
cli][j] += alil[k] * blk][]];

HARVARD XS |\sTiTuTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

T —— vy,
School of E WAV COMPUTATIONAL SCIENCE . . A .
aﬁdonglie:gsl:ie:,:lg %ﬁ@' AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 39

OpenACC Fundamentals

Example: Jacobi Iteration

* Iteratively converges to correct value (e.g. Temperature), by computing new values at
each point from the average of neighboring points.

v' Common, useful algorithm

v’ Example: Solve Laplace equation in 2D: VZf (z,y) =0

A(i,j+1)
o
v, v @)

A(i-1,]) AGLJ) | Adi+1,))

J
Ai,j-1)

Ak +1 (l; J)) -)
arvaro EEXOEE wstirute For apeLiED Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering Y%y COMPUTATIONAL SCIENCE A . . .
and Applied Sciences TGO AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 40

Iterate Across
Elements

Swap Input/Output
Arrays

HARVARD
School of Engineering
and Applied Sciences

[/

IACS

OpenACC Fundamentals

Example: Jacobi Iteration

while (error > tol && iter < iter max)
{
error=0.0;
for(int J = 1; J < n-1; Jj++) {
for(int 1 = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[3j][i+1] + A[j][i-1] +
A[j-1]1[1] + A[J+11([1]);

error = max(error, abs(Anew[Jj][1] - A[J][i]):

for(int 7 = 1; J < n-1;

for(int 1 = 1; i1 < m-1; i++) {
A[J]1[1] = Anew[]][i];
}
}
iter++;

INSTITUTE FOR APPLIED
COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY

Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
41

OpenACC Fundamentals

Example: First Try - Jacobi Iteration

while (error > tol && iter < iter max) {
error=0.0;
#pragma acc kernels
for(int j = 1; J < n-1; J++) {
for(int 1 = 1; i < m-1; i++) {
a .,
5% Anew[j][i] = 0.25 * (A[3][i+1] + A[3][i-1] +
o £ A[jJ-1][1] + A[J+1][1])~;
=
g v,
= error = max(error, abs(Anew[Jj][1] - A[J][i]):
}
}
#pragma acc kernels
- for(int j = 1; J < n-1; J++) {
> . \ . .
I for(int 1i = 1; 1 < m-1; 1i++) {
S . A[3][1] = Anew[3][i];
= 7 }
=
€< J
o)
m 1
S iter++;
(V]
}
darvaro - WEXSRN wstruteroraeued - Lecture B.3: Accelerated Computing
gﬁg":;:{i::gs':ie:;l'g 45 ot ARVARD UNIVERSITY €S205: Computing Foundations for Computational Science

Dr. David Sondak
42

OpenACC Fundamentals

Basic Concepts

Excessive Data Transfers

while (error > tol && iter < iter max)

{

error=0.0;

A, Anew resident on host

#pragma acc kernels

Copy
A, Anew resident on accelerator

. for(int j = 1; < n-1; J++) {
These copies for (imj: i= 13 i< m—13 it4) |
happen every Anew[3][1] = 0.25 * (A[3][i+1] + A[J][i-1] +
iteration of the A[FJ-11[1] + A[J+1]1[1]);
outervvhHeIoop!* error = max(error, abs(Anew[Jj][1] - A[Jj][i])
}

Copy A, Anew resident on accelerator

A, Anew resident on host

ISR INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak
A% s COMPUTATIONAL SCIENCE o . H H
YURAY AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 43

S 37] | HARVARD
School of Engineering
and Applied Sciences

OpenACC Fundamentals

Basic Concepts

For efficiency, decouple data movement and compute off-load

Transfer data GPU Memory

miaded HARVARD gean NSTTUTEFORAPPUED - Lecture B.3: Accelerated Computing Dr. David Sondak
School of Engineering gy 0 evard cnivers ™ €S205: Computing Foundations for Computational Science 44

and Applied Sciences

OpenACC Fundamentals

Data Construct

* Manage data movement. Data regions may be nested.

Clauses
fpragma acc data[clause ..]

{ structured block }

if(condition)

async (expression)

copy (list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

copyin (1list) Allocates memory on GPU and copies data from host to GPU when
entering region.
copyout (1ist) Allocates memory on GPU and copies data to the host when exiting
region.
create (l1ist) Allocates memory on GPU but does not copy
present (1list) Data is already present on GPU from another containing data region
HARVARD Y \nstiruTe For AppLIED Lecture B.3: Accelerated Computing Dr. David Sondak

ineeri WISHEA COMPUTATIONAL SCIENCE
:ﬁzozéglfizzgslzieee;:;i %’:,fé%" AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 45

Copy Ainat
beginning of loop,
out at end. Allocate
Anew on accelerator

HARVARD IACS
PeRX

School of Engineering
and Applied Sciences

OpenACC Fundamentals

Example: Second Try - Jacobi Iteration

#pragma acc data copy(A), create (Anew)
while (error > tol && iter < iter max) {
error=0.0;

#pragma acc kernels
for(int § = 1; j < n-1; J++) {

for(int 1 = 1; i < m-1; i++) {

Anew([j][1i] = 0.25 * (A[F][i+1]

}

#pragma acc kernels
for(int 7 = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[§1[i] = Anew[j][i];

iter++;

error = max(error, abs(Anew[Jj][1] - A[J][i])

COMPUTATIONAL SCIENCE
¥ AT HARVARD UNIVERSITY

INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
46

OpenACC Fundamentals

Update Construct

* Used to update existing data after it has changed in its corresponding copy (e.g. update
device copy after host copy changes)

v" Move data from GPU to host, or host to GPU.

v Data movement can be conditional, and asynchronous.

Clauses
#fpragma update data[clause ..] L (condition) host (1ist)
{ structured block }

async (expression) device (list)

Dr. David Sondak

HARVARD XS |\sTiTuTE FOR APPLIED Lecture B.3: Accelerated Computing
47

W COMPUTATIONAL SCIENCE . . H H
:ﬁdozll):lie:gsl:ie:l::;§ AT HARVARD UNIVERSITY CS205: Computlng Foundations for Computatlonal Science

OpenACC Fundamentals

Parallel Construct

Clauses
#fpragma acc parallel[clause ..] if (condition)
{ structured block } async (expression)

any data clause

Parallel Clauses Comment

num gangs (expression) Controls how many parallel gangs are created

num workers (expression) Controls how many workers are created in each gang

vector length (list) Controls vector length of each worker (SIMD execution)
private(list) A copy of each variable in list is allocated to each gang
firstprivate (list) private variables initialized from host

reduction(operator:1list) private variables combined across gangs

HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

School of Engineering WRSEA COMPUTATIONAL SCIENCE A . . .

and Applied Sciences G AT HARvAD universiTY CS205: Computing Foundations for Computational Science 49
-«

OpenACC Fundamentals

Loop Construct

* Detailed control of the parallel execution of the following loop.

fpragma acc loop[clause
{ loop }

e]

Loop Clauses

collapse(n)
seq
private(list)

reduction (operator:list)

HARVARD XS |\sTiTuTE FOR APPLIED Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

School of Engineering "g‘%‘%‘v

A COMPUTATIONAL SCIENCE
. . r
and Applied Sciences wy T MVERSITY

Applies directive to the following n nested loops
Executes the loop sequentially on the GPU
A copy of each variable in list is allocated to each gang

private variables combined across gangs

Dr. David Sondak

50

OpenACC Fundamentals

Loop Construct

gang Shares iterations across the gangs of the parallel
region

worker Shares iterations across the workers of the gang

vector Execute the iterations in SIMD mode

Loop Clauses inside Kernel Region

gang [(num gangs)] Shares iterations across across at most num gangs
gangs

worker [(num workers)] Shares iterations across at most num workers of a
single gang

vector [(vector length)] Execute the iterations in SIMD mode with maximum

vector length

independent Specify that the loop iterations are independent
HARVARD INSTITUTE FOR APPLIED Lecture B.3: Accelerated Computing Dr. David Sondak

; : NS COMPUTATIONAL SCIENCE
h f E A%
::d°:;;lieggs':ieee;l:§ %’ﬁ&' AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 51

Next Steps

Get ready for next lecture:
B.4. Shared-memory Parallel Processing

Get ready for second hands-on:
H2. OpenMP Programming (on Cannon)
Check your Cannon account

53

Questions
Accelerated Computing

54

