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Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing

B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics
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CS205: Contents
APPLICATION SOFTWARE

PLATFORM

PROGRAMMING MODEL

OpenACC

OpenMP

MPI

Map-Reduce

Spark

C. BIG DATA B. BIG COMPUTE

Optimization

APPLICATION 
PARALLELISM

PARALLEL PROGRAM 
DESIGN

CLOUD COMPUTING PARALLEL ARCHITECTURES
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Context
Accelerated Computing

GPU-Accelerated Computing 

• Enable high degree of parallelism –
each GPU has thousands of cores

• Consistent, well documented APIs 
(OpenACC, CUDA and OpenCL) and 
tools

• Widely supported by vendors and OSS 
project

FPGA-Accelerated Computing 

• Massive parallel – each FPGA includes 
millions of parallel logic cells

• Flexible – lower level, hardware, no 
fixed instruction set

• Programmable using FPGA 
development tools
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Context
Really New?: Thinking Machines CM-2 (1990)

Vector SIMD
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Context
Really New?: Thinking Machines CM-2 (1990)
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Context
Top Hollywood Computer: Thinking Machines CM-2 (1990)
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Context
Really New? – NVIDIA Tesla M60 (2017)
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Context
SIMD Converted into a Commodity

2-4 Millions of Dollars (2018)  
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Heterogeneous Computing

GPU Computing

GPU Programming

OpenACC Fundamentals

Roadmap
Performance Optimization and Accelerators
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• Heterogeneous computing refers to systems that use more than one kind of processor
• Multi-core systems gain performance not just by adding cores, but also by 

incorporating specialized processing capabilities to handle particular task

• Heterogeneous System Architecture (HSA) systems utilize multiple processor types 
(typically CPUs and GPUs), usually on the same silicon die, to give you the best of both 
worlds: 

ü While CPUs can run the operating system and perform traditional serial or multi-
threading tasks

ü GPUs have vector processing capabilities that enable them to perform parallel 
operations on very large sets of data – and to do it at much lower power 
consumption relative to the serial processing of similar data sets on CPUs 

Heterogeneous Computing
Intersection of CPU and GPU Computing
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Heterogeneous Computing
Intersection of CPU and GPU Computing



Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

Heterogeneous Computing
Intersection of CPU and GPU Computing

CPUs
Thread-parallel 
computing on 
multiple cores

GPUs
Data-parallel

computing on 
multiple ALUs

Graphics, matrices
and vector 

parallel processing,
OpenACC

Shared-memory 
multi-processor 
programming,

OpenMP
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsHeterogeneous Computing

Execution Model

1.Copy input data from CPU memory to GPU 
memory

Source: NVIDIA
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsHeterogeneous Computing

Execution Model

1.Copy input data from CPU memory to GPU 
memory 

2.Load GPU program and execute, caching data 
on chip for performance 

Source: NVIDIA
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsHeterogeneous Computing

Execution Model

1.Copy input data from CPU memory to GPU 
memory 

2.Load GPU program and execute, caching data 
on chip for performance

3.Copy results from GPU memory to CPU 
memory 

Source: NVIDIA
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GPU Computing
What is it?

• The Graphic Processing Unit (GPU) is a processor that was specialized for processing 

graphics

• The GPU has evolved towards a more flexible architecture.

ü Opportunity: We can implement *any algorithm*, not only graphics

ü Challenge: obtain efficiency and high performance 

• The idea is to obtain performance through SIMD

ü Same operations (kernel) on multiple data

• GPU-accelerated computing is the use of a graphics processing unit (GPU) together with 

a CPU to accelerate deep learning, analytics, and engineering applications (data parallel 

applications)

• GPU-accelerated computing offloads compute-intensive portions of the application to 

the GPU, while the remainder of the code still runs on the CPU. From a user's 

perspective, applications simply run much faster
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Main Downside

Only for GPU-friendly (Data Parallel) Applications
• Computer graphics
• Texture, rendering, image processing…
• Matrix operations
• Structured simulations (finite differences)

Downsides
• Not-general purpose CPUs
• Difficult to program
• Difficult to tune: Bandwidth vs. Compute vs. Context
• CPU-GPU link has been slow, historically (system bus)

GPU Computing
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Intel i7 980x (Extreme)
6 cores

1.2B transistors

NVIDIA GTX 580 SC
512 cores

3B transistors

Cache and memory hierarchy vs more cores and ALUs 

Optimized for low-latency access to cache
Complex control logic for ILP

Optimized for data-parallel, throughput 
computation

More transistors for computation

GPU Computing
An Alternative Way to Use the Transistors
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GPU Computing
Better Performance/Cost for Regular Data Processing
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GPU Computing
Better Performance/Cost for Regular Data Processing

Add SIMD Processing on Many Cores
• Amortize cost/complexity of managing an instruction stream across many ALUs

16 cores x 8 ALUs/core = 128 ALUs (mul-add) => 256 GFLOPs @1GHz
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Examples

Example: NVIDIA GTX 280

30 cores x 8 ALUs/core = 240 ALUs (3 FLOPS) => 933 GFLOPs @1.3GHz

GPU Computing
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Examples

Example: NVIDIA GTX 480

15 cores x 32 ALUs/core = 480 ALUs (4 FLOPS) => 1.3 TFLOPs @0.7GHz

GPU Computing



Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

GPU Computing
Examples

Powered by NVIDIA Tesla M60 GPUs
• Each GPU supports 8 GiB of GPU memory, 2048 parallel processing cores
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GPU Programming
Main Ideas

• Massively parallel with hundreds of cores and thousands of threads

• Loops are best for parallelization

• Large loop counts needed to offset GPU/memcpy overhead

• Iterations of loops must be independent of each other

• Help Compiler:
ü It must be able to figure out sizes of data regions
ü Pointer arithmetic should be avoided if possible
ü Function calls within accelerated region must be in-lineable.
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsGPU Programming

Different Libraries and Approaches 

CUDA
Vendor/device dependent, 

use of explicit shared 
memory

OpenCL
Device independent, but still requires data decomposition, transfer 

and synchronization 

OpenACC
High level of abstraction

SIMPLICITY
PORTABILITY

PERFORMANCE
FUNCTIONALITY
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Anatomy of an Application

Source: NVIDIA

GPU Programming
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6. Paradigma de Memoria Compartida
• Programación por Medio de Threads

Anatomy of an Application

…
#include <stdio.h>

__global__
void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)
{
int N = 1<<20;
float *x, *y, *d_x, *d_y;
x = (float*)malloc(N*sizeof(float));
y = (float*)malloc(N*sizeof(float));

cudaMalloc(&d_x, N*sizeof(float)); 
cudaMalloc(&d_y, N*sizeof(float));

for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;

}

cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);

cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);
…
}

An Example: SAXPY with CUDA
CUDA

blockDim.x

GPU Programming
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsAccelerated Computing

Anatomy of an Application

#include <stdio.h>
#define vl 256
int main(void)
{

int N = 1<<20;
float *x, *y, *d_x, *d_y;
x = (float*)malloc(N*sizeof(float));
y = (float*)malloc(N*sizeof(float));

for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;

}

#pragma acc parallel vector_length(vl)   
for (int i = 0; i < N; i++) {

y[i] = a*x[i] + y[i];  
}

…
}

OpenACC
An Example: SAXPY with CUDA
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6. Paradigma de Memoria Compartida
• Programación por Medio de ThreadsAccelerated Computing

Anatomy of an Application
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An Open Specification
OpenACC Fundamentals
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Why OpenAcc versus CUDA or OpenCL?

• High-level. No involvement of OpenCL, CUDA, etc.

• Single source. No forking off a separate GPU code. Compile the same program for 
accelerators or serial, non-GPU programmers can play along. 

• Incremental. Developers can port and tune parts of their application as resources and 
profiling dictates. No wholesale rewrite required. Which can be quick. 

• Efficient. Experience shows very favorable comparison to low-level implementations of 
same algorithms. 

• Performance portable. Supports GPU accelerators and co-processors from multiple 
vendors, current and future versions. 

OpenACC Fundamentals
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Execution Model
OpenACC Fundamentals

• The execution model has three parallelism levels: gang, worker, and vector 
• A gang is comprised of one or multiple workers. All workers within a gang can share 

resources, such as memory or processor. Multiple gangs run completely independently.
• A worker computes one vector.
• Vector threads perform a single operation on multiple data (SIMD) in a single step.
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Execution Model
OpenACC Fundamentals

• How these constructs map to the underlying hardware depends on the device 
capabilities and what the compiler thinks is the best mapping for the problem (tuning!)

• Mapping to NVIDIA GPUs
• gang==block, worker==warp, and vector==threads of a warp
• Usually omit “worker” and just have gang==block, vector==threads of 

a block 

vector_length (number of threads in each gang/block)

num_gangs (number of blocks in the grid) 

Tuning
worker is architecture-specific (32), related 
to thread scheduling group
vector should be multiple of 32 (usually 
256/512) 
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OpenACC
Programming Model

• Compiler directives specify parallel regions (similar to OpenMP!)

• OpenACC compilers handle data between host and accelerators 

• Intent is to be Portable (Independent of OS, CPU/accelerator vendor…) 

• High-level programming: accelerator and data transfer abstraction 

#pragma acc directive [clause [[,] clause]...]
{ structured block }

Parallel Construct => Generate one/several parallel gangs with same code 

#pragma acc parallel [clause [[,] clause]...] 

Loop Constructs => Generate parallel version of the loop

#pragma acc loop [clause [[,] clause]...] 
Data Constructs => Defines explicit data transferring

#pragma acc data [clause [[,] clause]...] 



Lecture B.3: Accelerated Computing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
37

A Simple Example: Pi

#include <stdio.h>

#define N 2000000000

#define vl 1024
int main(void) {  

double pi = 0.0f;  
long long i;  

#pragma acc parallel vector_length(vl)   

#pragma acc loop reduction(+:pi)  
for (i=0; i<N; i++) {    

double t= (double)((i+0.5)/N);    
pi +=4.0/(1.0+t*t);  

}  

printf("pi=%11.10f\n",pi/N);  
return 0;

}  

OpenACC Fundamentals
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A Simple Example: Pi

#include <stdio.h>

#define N 2000000000

#define vl 1024
int main(void) {  

double pi = 0.0f;  
long long i;  

#pragma acc parallel loop reduction(+:pi) vector_length(vl)   

for (i=0; i<N; i++) {    
double t= (double)((i+0.5)/N);    
pi +=4.0/(1.0+t*t);  

}  

printf("pi=%11.10f\n",pi/N);  

return 0;
}  

OpenACC Fundamentals
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Kernel Directive
• Identifies a region of code that may contain parallelism, but relies on the automatic 

parallelization capabilities of the compiler to analyze the region 
• Developers with little or no parallel programming experience, or those working on 

functions containing many loop nests that might be parallelized will find the kernels 
directive a good starting place for OpenACC acceleration

// Compute matrix multiplication
#pragma acc kernels copyin(a,b) copy(c)
for (i = 0; i < SIZE; ++i) 
for (j = 0; j < SIZE; ++j) 
for (k = 0; k < SIZE; ++k) 

c[i][j] += a[i][k] * b[k][j];

#pragma acc kernels [clause …]
{ structured block }

Clauses
if( condition )

async( expression )

any data clause

OpenACC Fundamentals
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Example: Jacobi Iteration

• Iteratively converges to correct value (e.g. Temperature), by computing new values at 
each point from the average of neighboring points.  
ü Common, useful algorithm 
ü Example: Solve Laplace equation in 2D:

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

!"#$ %, ' = !"(% − 1, ') + !" % + 1, ' + !" %, ' − 1 + !" %, ' + 1
4

OpenACC Fundamentals

r2f (x, y) = 0

<latexit sha1_base64="NZ1+xlmSl5ymV2vpOGkXmL4g7Ok="></latexit>
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Example: Jacobi Iteration

while ( error > tol && iter < iter_max ) 
{
error=0.0;

for( int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {
A[j][i] = Anew[j][i];      

}
}

iter++;
}
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OpenACC Fundamentals
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Example: First Try - Jacobi Iteration

while ( error > tol && iter < iter_max ) {
error=0.0;

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {
A[j][i] = Anew[j][i];      

}
}

iter++;
}

Ite
ra

te
 A

cr
os

s 
El

em
en

ts
Sw

ap
 In

pu
t/

Ou
tp

ut
Ar

ra
ys

OpenACC Fundamentals
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Basic Concepts

Excessive Data Transfers

while ( error > tol && iter < iter_max ) 
{
error=0.0;

...
}

#pragma acc kernels

for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++) {     
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
error = max(error, abs(Anew[j][i] - A[j][i]);

}
}

A, Anew resident on host

A, Anew resident on host

A, Anew resident on accelerator

A, Anew resident on accelerator

These copies 
happen every 

iteration of the 
outer while loop!*

Copy

Copy

OpenACC Fundamentals
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Basic Concepts

PCI Bus

Transfer data

Offload computation

For efficiency, decouple data movement and compute off-load

GPU

GPU Memory

CPU

CPU Memory

OpenACC Fundamentals
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Data Construct

• Manage data movement. Data regions may be nested.

#pragma acc data[clause …]
{ structured block }

Clauses
if( condition )

async( expression )

Data Clauses Comment

copy ( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region and copies data to the host when exiting region.

copyin ( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region.

copyout ( list ) Allocates memory on GPU and copies data to the host when exiting 
region.

create ( list ) Allocates memory on GPU but does not copy

present ( list ) Data is already present on GPU from another containing data region

OpenACC Fundamentals
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Example: Second Try - Jacobi Iteration

#pragma acc data copy(A), create(Anew)
while ( error > tol && iter < iter_max ) {
error=0.0;

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {
A[j][i] = Anew[j][i];      

}
}

iter++;
}

Copy A in at 
beginning of loop, 

out at end.  Allocate 
Anew on accelerator

OpenACC Fundamentals
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Update Construct

• Used to update existing data after it has changed in its corresponding copy (e.g. update 
device copy after host copy changes)
ü Move data from GPU to host, or host to GPU.
ü Data movement can be conditional, and asynchronous.

#pragma update data[clause …]
{ structured block }

Clauses
if(condition) host(list)

async(expression) device(list)

OpenACC Fundamentals
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Parallel Construct

#pragma acc parallel[clause …]
{ structured block }

Parallel Clauses Comment
num_gangs ( expression ) Controls how many parallel gangs are created

num_workers ( expression ) Controls how many workers are created in each gang 

vector_length ( list ) Controls vector length of each worker (SIMD execution)

private( list ) A copy of each variable in list is allocated to each gang

firstprivate ( list ) private variables initialized from host

reduction( operator:list ) private variables combined across gangs

Clauses
if( condition )

async( expression )

any data clause

OpenACC Fundamentals
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Loop Construct

#pragma acc loop[clause …]
{ loop }

Loop Clauses Comment
collapse( n ) Applies directive to the following n nested loops

seq Executes the loop sequentially on the GPU

private( list ) A copy of each variable in list is allocated to each gang

reduction( operator:list ) private variables combined across gangs

• Detailed control of the parallel execution of the following loop.

OpenACC Fundamentals
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Loop Construct

Loop Clauses inside Parallel Region Comment
gang Shares iterations across the gangs of the parallel 

region
worker Shares iterations across the workers of the gang

vector Execute the iterations in SIMD mode

Loop Clauses inside Kernel Region Comment
gang [( num_gangs )] Shares iterations across across at most num_gangs

gangs
worker [( num_workers )] Shares iterations across at most num_workers of a 

single gang
vector [( vector_length )] Execute the iterations in SIMD mode with maximum 

vector_length

independent Specify that the loop iterations are independent

OpenACC Fundamentals



53

Next Steps

• Get ready for next lecture: 
B.4. Shared-memory Parallel Processing

• Get ready for second hands-on:
H2. OpenMP Programming (on Cannon)

Check your Cannon account
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Questions
Accelerated Computing


