
1

“The Pareto principle (also known as the 80/20
rule, the law of the vital few, or the principle of

factor sparsity) states that, for many events,
roughly 80% of the effects come from 20% of the

causes.”

wikipedia

2

Lecture B.2:
Performance Optimization

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2020

Lectures developed by: Dr. Ignacio M. Llorente

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing

B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
4

CS205: Contents
APPLICATION SOFTWARE

PLATFORM

PROGRAMMING MODEL

OpenACC

OpenMP

MPI

Map-Reduce

Spark

C. BIG DATA B. BIG COMPUTE

Optimization

APPLICATION
PARALLELISM

PARALLEL PROGRAM
DESIGN

CLOUD COMPUTING PARALLEL ARCHITECTURES

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
5

Context
Single-thread / Single-core Optimization

ILP/Data

Before using multiple cores or
nodes, let us maximize the

performance of the application on a
single core

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
6

Preguntas Previas a la Optimización de Código
What is the Goal of Optimization?

Context

• Different kinds of optimization:
ü Space optimization: Reduce memory use
ü Time optimization: Reduce execution time
ü Power optimization: Reduce power usage
ü …

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
7

Performance Analysis

Optimization Process

Optimization Techniques

Memory Locality Model

Loop Optimization

Compiler

Roadmap
Performance Optimization

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
8

Preguntas Previas a la Optimización de Código

Why the code is inefficient ? Where is the bottleneck? How can it be improved?

•Processor

•Input/output

•Memory

time

•Optimization techniquesprofiler

The Main Questions to Reduce Execution Time
Performance Analysis

Pareto: 80/20
•Accelerators

•Parallel computing

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

WHY? - Execution Time Components

EXECUTION_TIME = CPU_TIME + I/O_TIME + SYSTEM_TIME

Read/write data

Virtual memory (page faults)
System calls

Non-exclusive resources

Accelerators
PARALLEL PPROCESSING

Performance Analysis

Optimization

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
10

Ejemplos de Herramientas de Ayuda a la Optimización

demos% time a.out
0.04u 0.06s 0:00.51 19.6% 11+21k 354+210io 135pf+0w

•Percentage of the CPU that this job got
•Wall-clock time (real time)
•System CPU time
•User CPU time

•135 page faults and 0 swapouts
•354 reads and 210 writes
•11 Kbytes shared memory + 21Kbytes private memory

time

WHY? - Execution Time Components
Performance Analysis

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
11

WHERE? - Code Profiling
Performance Analysis

• Identify the program's hotspots:
ü Know where most of the real work is being done. The majority of scientific and

technical programs usually accomplish most of their work in a few places (Pareto)
ü Profilers and performance analysis tools can help here
ü Focus on optimizing the hotspots and ignore those sections of the program that

account for little CPU usage

• Identify bottlenecks in the program:
ü Are there areas that are disproportionately slow, or cause parallelizable work to halt

or be deferred? For example, I/O is usually something that slows a program down.
ü May be possible to restructure the program or use a different algorithm to reduce

or eliminate unnecessary slow areas

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
12

WHERE? – Tools for Code Profiling
Performance Analysis

• Help identify performance problems, answering questions like:
How many times each method in the code is called?
How long does each of those methods take?
What uses twenty percent of the total CPU usage of the code?

CLI Tools
gperftools, valgrind, gprof...

GUI Tools

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
13

WHERE? – Tools for Code Profiling
Performance Analysis

gprof

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

HOW? - Execution Time Components
Performance Analysis

Processor
• Optimization
• Accelerators
• Parallel programming

Input/output
• Reorganize I/O to reuse data and have a lower number of larger transactions
• Parallelize I/O transactions
• Functions mmap to map files into memory
• Functions madvise to give directions to the OS about the file access pattern

Virtual Memory
• Optimize data structures and memory access patterns to improve data locality

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
15

Previous Steps
Optimization Process

1. Analyze execution time and consider Amdahl law

2. Pick the right algorithms: Consider design for few operations and numerical
complexity

3. Pick the right data structures: Consider design for locality

4. Establish baseline with no optimization (performance / results)

5. Turn on profile to figure out program hot spots

6. Start tuning process with focus on hot spots

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
16

Continuous Process
Optimization Process

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
17

Pasos en la Optimización SecuencialOptimization Process
The Optimization Process

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
18

Preguntas Previas a la Optimización de Código
Optimizations Are Code Transformations

• Aimed at achieving assembly-code performance
ü Clean, modular, high-level source code
ü Can’t change meaning of program to behavior not allowed by source

Optimization Techniques

• Who does the work?
ü Transformed by compiler (with our advice)
ü Transformed explicitly by developer

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
19

Basic Techniques
Optimization Techniques

Inlining
• Replace a function call with the body of the function

Constant Propagation
• If value of variable is known to be a constant, replace use of variable with constant

Dead-Code Elimination
• If side effect of a statement can never be observed, can eliminate the statement

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
20

Single-core Execution Time
Optimization Techniques

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
21

Single-core Execution Time
Optimization Techniques

CPUs Use Two Main Techniques for Performance

•Instruction Level Parallelism (Superscalar and Pipelining)
ü Superscalar processors have multiple “functional units” that can run in parallel
ü Pipelining is a form of parallelism, like an assembly line in a factory

•Caches (Memory Hierarchy)
ü Small amount of fast memory where values are “cached” in hope of reusing recently

used or nearby data

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
22

Single-core Execution Time
Optimization Techniques

CPU Architectures Try to Exploit Instruction Parallelism

AIM: Improve ILP, for example by avoiding conditional branches

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

int x;
for (x = 0; x < 100; x++{

delete(x);
}

int x;

for (x = 0; x < 100; x += 2) {

delete(x);
delete(x + 1);

}

Superscalar Pipelining

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

Uniprocessor Cost: Memory Hierarchy
Optimization Techniques

Memory Hierarchy Tries to Exploit Memory Access Locality

AIM: Improve degree of memory access locality

• Spatial locality: Accessing data nearby previous accesses (low strides)

• Temporal locality: Reusing an item that was previously accessed

Speed of cache with
the capacity of the

disk

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
24

Memory Locality Model

Simple Model (Temporal Locality)

Consider two types of memory (fast and slow) over which we have complete control:

• m = words read from slow memory

• tm = slow memory access time

• f = number of flops

• tf =time per flop

Relevant Ratios

• Machine balance: b=tm /t f (smaller is better)
• Algorithm computational intensity: q=f/m (larger is better)

Ideal Time = f tf (1 + ε), ε is zero when all data in fast memory

Simple Model for Temporal Locality

time = ftf +mtm = ftf

✓
1 +

tm/tf
q

◆
= ftf

✓
1 +

b

q

◆

<latexit sha1_base64="0sluD3kAWguPXBsMUikpsJRs9Hw=">AAACYHicfVHLTttAFB2bQtPwSIBduxlBkUBIwUY8nAUSopsuqUQAKY6i8eQ6GTFjuzPXQGT5t/gB/oBdF93wD+26Eweh9KFeaaSj89DMPRNlUhj0vG+OO/dmfuFt7V19cWl5pdFcXbs0aa45dHgqU30dMQNSJNBBgRKuMw1MRRKuoptPE/3qFrQRaXKB4wx6ig0TEQvO0FL95l2IcI8FCgUlPaExxX4Rl3SXqglSM1woIcZt30rhINaMF5W+V2ll8bUMtRiOcOc/gWjG1m9uei2vGvo38F/A5unHHw+Pt4s/z/vNp3CQ8lxBglwyY7q+l2GvYBoFl1DWw9xAxvgNG0LXwoQpML2iKqikW5YZ0DjV9iRIK3Y2UTBlzFhF1qkYjsyf2oT8l9bNMQ56hUiyHCHh04viXFJM6aRtOhAaOMqxBYxrYd9K+YjZMtD+Sb0qod0+CA4Du3s7OAr8/dfdX8Hlfss/aB1+sW2ckenUyAeyQbaJT47JKflMzkmHcPLdmXOWnGXn2a25DXd1anWdl8w6+W3c978AtOu51A==</latexit>

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

Memory Locality Model

Simple Example of Memory Model
• Assume tf= 10-10 sec (0.1 ns, 10 Gflop/s => 1 Intel i9-7900X CPU core)
• Assume slow memory speed is tm = 10 ns
• Assume h takes h flops => f = h n
• Assume array X is in slow memory => m = n

s=0;
for (int i = 0; i < n; i++) {

s = s + h(X[i]);
}

Time = 0.1 h n + 10 n
b (machine balance) = 100

q (computational intensity) = f /m = h

Performance=f/Time=
q

10+0.1 q
, as q increases it reaches peak of 10 Gflop/s

Example of Application of Memory Model

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
26

Memory Locality Model

Some Examples of q (Computational Intensity)
• Matrix-vector multiply: m=3n+n2 data, f=2n2 flops

s=0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; i++) {
Y[i] = Y[i] + A[i,j]*X[j];

}

q = f /m ≈ 2 for large n

Example of Application of Memory Model

Assumption: Fast memory (cache) not big
enough to store matrix A

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
27

Memory Locality Model

Some Examples of q (Computational Intensity)

• Matrix-matrix multiply: m= n3 + 3n2 data, 2n3 flops

for (i = 0; i < n; ++i) {

for (j = 0; j < n; ++j) {

C[i,j] = 0;
for (k = 0; k < n; ++k) {
C[i,j] += A [i,k] *B[k,j];

}

}

Example of Application of Memory Model

Assumption: Fast memory (cache) not big
enough to store matrices A/B

m = n3 (read each column of B n2 times)
+ n2 (read each row of A n times)
+ 2n2 (read /write each element of C once)
= n3 + 3n2

f = 2n3

q = f /m ≈ 2 for large n

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
28

Memory Locality Model

Some Examples of q (Computational Intensity)
• Matrix-matrix multiply (blocked/tiled): Consider A,B,C to be N by N matrices of b by b

subblocks where b=n/N is called the blocksize

for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {

{read block C[i,j] into fast memory}

for (k = 0; k < N; ++k) {

{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}

C[i,j] += A [i,k] * B[k,j]; {do a matrix multiply on blocks}

{write block C[i,j] back to slow memory}

Matrix Blocking

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
29

Memory Locality Model

Some Examples of q (Computational Intensity)

• Matrix-matrix multiply (blocked/tiled): Consider A,B,C to be N by N matrices of b by b
subblocks where b=n/N is called the blocksize

m = N n2 (read each block of B N3 times (N3 n/N n/N))
+ N n2 (read each block of A N3 times)
+ 2 n2 (read and write each block of C once)
= (2N + 2) n2

f = 2n3

q = f /m ≈ n/N = b for large n

• So we can improve performance by increasing the blocksize b
• Can be much faster than matrix-vector multiply (q=2)
• Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make

these blocks arbitrarily large: 3 b2 <= M, so q ~= b <= sqrt(M/3)
• M = size of fast memory

• Theorem (Hong, Kung, 1981): Any reorganization of this algorithm (that uses only
associativity) is limited to q =O(sqrt(M))

Matrix Blocking

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
30

Loop Interchange
Loop Optimization

Loop Interchange

• Process of exchanging the order of two iteration variables used by a nested loop to
improve spatial locality

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++)

a[i] = a[i] + b[i,j] * c[i];
}

b[1,1], b[1,2], b[1,3]...
row-major order

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)

a[i] = a[i] + b[i,j] * c[i];
}

stride-n stride-1

ü Good data spatial locality!
But, ruins the reuse of a(i) and c(i) in the inner loop, as it
introduces two extra loads (for a(i) and for c(i)) and one
extra store (for a(i)) during each iteration.

https://en.wikipedia.org/wiki/Row-major_order

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
31

Loop Reversal
Loop Optimization

Loop Reversal

• Reverses the order in which values are assigned to the index variable

stride-n stride-1

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++)

a[i] = a[i] + b[i,j] * c[i];
}

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++)

a[i] = a[i] + b[j,i] * c[i];
}

ü No loop interchange!
ü Programmer should change the way to store array data

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
32

Loop-Invariant Code Motion
Loop Optimization

for (int i = 0; i < n; i++)
{

x = y + z;

a[i] = 6 * i + x * x;
}

Loop-Invariant Code Motion

• If result of a statement or expression does not change during loop, and it has no
externally-visible side effect (!), can hoist its computation before loop

x = y + z;
t = x * x;

for (int i = 0; i < n; i++)
{

a[i] = 6 * i + t;
}

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
33

Strength Reduction
Loop Optimization

c = 7;
for (i = 0; i < N; i++){

y[i] = c * i;

}

Strength Reduction

• Replace expensive operations (*,/) by cheap ones (+,−) via dependent induction
variable

c = 7;
k = 0;

for (i = 0; i < N; i++{
y[i] = k;
k = k + c;

}

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
34

Unrolling
Loop Optimization

int x;
for (x = 0; x < 100; x++{

delete(x);
}

Loop Unrolling

• Branches are expensive – unroll loop to avoid them

int x;

for (x = 0; x < 100; x += 5) {

delete(x);
delete(x + 1);
delete(x + 2);
delete(x + 3);

delete(x + 4);

}

• Gets rid of 3⁄4 of conditional branches!
• Increase instruction parallelism

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
35

Loop Fission and Fusion
Loop Optimization

int i, a[100], b[100];
for (i = 0; i < 100; i++){

a[i] = 1;
b[i] = 2;

}

Loop Fission and Fusion

• Break loop into several loops, or merge multiple loops

int i, a[100], b[100];

for (i = 0; i < 100; i++){

a[i] = 1;
}
for (i = 0; i < 100; i++){

b[i] = 2;

}

•Can improve instruction temporal locality•Reduce control and branches
•Can improve data temporal locality
• Improve instruction parallelism

Trial and Error!

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
36

Generic Optimization Options - gcc

Option Level Execution Time Code Size Memory Usage Compile Time

-O0
optimization for
compilation time
(default)

+ + - -

-O1 or -O
optimization for
code size and
execution time

- - + +

-O2
optimization more
for code size and
execution time

-- + ++

-O3
optimization more
for code size and
execution time

--- + +++

-Os
optimization for
code size

-- ++

-Ofast
O3 with fast none
accurate math
calculations

--- + +++

Compiler

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

Dr. David Sondak
37

The Optimization Process
Summary

Compile without optimization flags
Baseline execution time

Baseline results

Compile with generic optimization flags
Get execution time (speedup)

Compare results (aggressive options)

Use specific optimization flags
Get execution time (speedup)

Compare results (aggressive options)

Adapt code to improve ILP and data locality
Get execution time (speedup)

Compare results (aggressive options)

Change algorithm
Get execution time (speedup)

Compare results (aggressive options)

Next Steps

• Lab session tomorrow (need it for the homework):
I4. Performance Optimization on AWS
I5. OpenACC on AWS (request access to GPU-

based instances!)

• Get ready for next lecture:
B.3. Accelerated computing

39

Questions
Performance Optimization

