“The Pareto principle (also known as the 80/20
rule, the law of the vital few, or the principle of
factor sparsity) states that, for many events,

roughly 80% of the effects come from 20% of the
causes.”

wikipedia
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Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems
Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing
B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics
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Context
Single-thread / Single-core Optimization

Before using multiple cores or
nodes, let us maximize the
performance of the application on a
single core

g
iz

ALU
(Execute)

‘ ILP/Data ‘
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Context
What is the Goal of Optimization?

* Different kinds of optimization:

v’ Space optimization: Reduce memory use

v Time optimization: Reduce execution time

v' Power optimization: Reduce power usage
Vo
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Roadmap
Performance Optimization

Performance Analysis
Optimization Process
Optimization Techniques
Memory Locality Model
Loop Optimization

Compiler
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Performance Analysis
The Main Questions to Reduce Execution Time

Why the code is inefficient ? Where is the bottleneck? How can it be improved?

4

*Processor
profiler . )
eInput/output eOptimization techniques
eMemory Pareto: 80/20
eAccelerators
eParallel computing
time
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Performance Analysis
WHY? - Execution Time Components

EXECUTION_TIME = CPU_TIME + I/O_TIME + SYSTEM_TIME

I Read/write data I

Virtual memory (page faults)
System calls

Non-exclusive resources

Optimization

Accelerators

PARALLEL PPROCESSING
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Performance Analysis
WHY? - Execution Time Components

time

¢135 page faults and O swapouts
*354 reads and 210 writes
*11 Kbytes shared memory + 21Khytes private memory

demos% time a.out
0.04u 0.06s 0:00.51 19.6% 11+21k 354+21010 135pf+0w

-Percentage of the CPU that this job got
eWall-clock time (real time)

eSystem CPU time

eUser CPU time
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Performance Analysis
WHERE? - Code Profiling

* |dentify the program's hotspots:

v' Know where most of the real work is being done. The majority of scientific and
technical programs usually accomplish most of their work in a few places (Pareto)

v’ Profilers and performance analysis tools can help here

v Focus on optimizing the hotspots and ignore those sections of the program that
account for little CPU usage

 |dentify bottlenecks in the program:

v’ Are there areas that are disproportionately slow, or cause parallelizable work to halt
or be deferred? For example, 1/0 is usually something that slows a program down.

v' May be possible to restructure the program or use a different algorithm to reduce
or eliminate unnecessary slow areas
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Performance Analysis
WHERE? — Tools for Code Profiling

How many times each method in the code is called?

How long does each of those methods take?

* Help identify performance problems, answering questions like:

What uses twenty percent of the total CPU usage of the code?

CLI Tools
gperftools,

valgrind, gprof...

GUI Tools

i b e o ne
M Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

B Collection

M Summary | [ RESuRTY | % Caller/Callee | | o%

Grouping: [Funcﬁon / Call Stack

5

Function / Call Stack

E FireObject::ProcessFireCollisionsRange

[# NtWaitForSingleObject

#func@0x1001d3e0

£ func@0x10006750

[ AlScene:GetPOl

(#func@0x10005050

[ Animal::UpdateFear

[ Ogre::FileSystemArchive::open

Selected 1 row(s):
»

< |

CPU Time by Utilizationw

@ldle @Poor 0Ok @Ideal @ Over 2ndSpinTime

5349s |
3.575< (1)
3.300s [
2181 [

1832 (D

1.375s [

1336s [T

1.247s ()

< n

* B overhead Modul-:‘

0s| SystemProcedur|

3.575s ntdll.dll

0.506s RenderSystem_D
0s RenderSystem_D
0s SystemALDLL
0s RenderSystem_D
0s SystemALDLL
0s OgreMain.dll

5.349s 0s

»

Intel VTune Amplifier XE 2013

Top-down Tree | | B8 Tasks and Frames

CPU Function/CPU Stack - CPU Time
Viewing 4 10f39 P selected stack(s)

[

|| 32.1% (1.716s of 5.349s)

SystemProceduralFire.DLL!FireObject::P

~

SystemProceduralFire.DLL!FireObject:Fi...

Smoke.exe!ParallelForBody::operator()+...

Smoke.exe![TBB parallel_for on class Para...

Smoke.exe!TaskManagerTBB::ParallelFo...

SystemProceduralFire.DLL!FireObject:Em...

SystemProceduralFire.DLL!FireObject:U

SystemProceduralFire.DLL!FireObject:u...

QIQFQ-Qe 23750ms_23800ms _23850ms _23900ms _23950ms _24000ms _24050ms 24100ms _24150ms 24200ms Ruler Area
[WWinMainCRTStartup - 7= Frame
- [func@0x7854345¢e (0x12 | |[¥] Thread
g [Func@0x7854345¢ (0:24 8 Running
[func@0x7854345¢ (0x1a .
v
[Func@0x75528066 (0x22 < CLETs
[V] duk Overhea...
" L o [¥] duk CPU Time

* No filters are applied.

(1S CIIQNIL Y Only user functions n Inline Mode: <]

HARVARD

School of Engineering
and Applied Sciences

INSTITUTE FOR APPLIED
aaAl  COMPUTATIONAL SCIENCE
'%ééy

AT HARVARD UNIVERSITY

Any Process

E|I Any Thread

|z|| Any Module

n‘ [ILTA VLY Functions only

Lecture B.2: Performance Optimization
CS205: Computing Foundations for Computational Science

ﬂ Any Utilization

I

Dr. David Sondak
12



Performance Analysis
WHERE? — Tools for Code Profiling

gprof
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
51.52 2.55 2430 5 510.04 510.04 USURP_Reg poll
29.41 4.01 1.46 34 42.82 42.82 USURP_DMA write
11.97 4.60 0.59 14 42.31 42.31 USURP_DMA read
4.06 4.80 0.20 1 200.80 200.80 USURP_Finalize
223 4.91 0.11 5 22.09 22.09 localp
.0 22 4.97 0.06 5 1:2.09 12.05 USURP_Load
0.00 4.97 0.00 10 0.00 0.00 USURP Reg write
0.00 4.97 0.00 5 0.00 0.00 USURP_Set clk
0.00 4,97 0.00 5 0.00 931.73 <rcwork
0.00 4.97 0.00 1 0.00 0.00 USURP _Init
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Performance Analysis
HOW? - Execution Time Components

Processor
e Optimization

e Accelerators
e Parallel programming

Input/output
e Reorganize I/O to reuse data and have a lower number of larger transactions
Parallelize 1/0O transactions
Functions mmap to map files into memory
Functions madvise to give directions to the OS about the file access pattern

Virtual Memory
e Optimize data structures and memory access patterns to improve data locality
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Optimization Process
Previous Steps

1. Analyze execution time and consider Amdahl law

2. Pick the right algorithms: Consider design for few operations and numerical
complexity

3. Pick the right data structures: Consider design for locality

4. Establish baseline with no optimization (performance / results)

5. Turn on profile to figure out program hot spots

6. Start tuning process with focus on hot spots
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Optimization Process
Continuous Process

Establish
Baseline
/7 Collect Data \
Test and Measure Analyze Results
\ Tune Application /
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Optimization Process
The Optimization Process

Performance

A

Cumulative development effort
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Optimization Techniques
Optimizations Are Code Transformations

* Aimed at achieving assembly-code performance
v’ Clean, modular, high-level source code

v Can’t change meaning of program to behavior not allowed by source

e Who does the work?

v" Transformed by compiler (with our advice)

v’ Transformed explicitly by developer
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Optimization Techniques
Basic Techniques

Inlining
* Replace a function call with the body of the function

Constant Propagation
* If value of variable is known to be a constant, replace use of variable with constant

Dead-Code Elimination
* If side effect of a statement can never be observed, can eliminate the statement
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Optimization Techniques
Single-core Execution Time

. Data cache

(a big one)

ALU
(Execute)
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Optimization Techniques
Single-core Execution Time

CPUs Use Two Main Techniques for Performance

Instruction Level Parallelism (Superscalar and Pipelining)
v’ Superscalar processors have multiple “functional units” that can run in parallel
v' Pipelining is a form of parallelism, like an assembly line in a factory

*Caches (Memory Hierarchy)

v Small amount of fast memory where values are “cached” in hope of reusing recently
used or nearby data
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Optimization Techniques
Single-core Execution Time

CPU Architectures Try to Exploit Instruction Parallelism

IF | ID | EX (MEM| WB IF | ID | EX [MEM| WB
IF | ID | EX (MEM| WB IF | ID | EX (MEM| WB
IF | ID | EX (MEM| WB IF | ID | EX (MEM| WB
IF ID | EX |MEM| WB IF ID | EX |MEM| WB
Superscalar Pipelining

AIM: Improve ILP, for example by avoiding conditional branches

int x;

for (x = 0; x < 100; x += 2 ) {

for (x = 0; x < 100; x++/{
delete (x) ;
delete (x) ;

delete(x + 1);

int x;
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Optimization Techniques
Uniprocessor Cost: Memory Hierarchy

Memory Hierarchy Tries to Exploit Memory Access Locality

processor
control S d S d
fcorl' Main ef oneany Tertiary Speed of cache with
ove memory Storage storage )
datapath cache (Disk) _ the capacity of the
aap . (SRAM) | | (DRAM) (Disk/Tape) disk
registers ||| ©"-CP is
cache
Speed (ns): 1s 10s 100s 10s ms 10s sec
Size (bytes): 100s Ks Ms Gs

AIM: Improve degree of memory access locality
* Spatial locality: Accessing data nearby previous accesses (low strides)

* Temporal locality: Reusing an item that was previously accessed
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Memory Locality Model

Simple Model for Temporal Locality

Simple Model (Temporal Locality)

Consider two types of memory (fast and slow) over which we have complete control:
* m = words read from slow memory

* t,, = slow memory access time

* f = number of flops

t; =time per flop

tm /T b
time = fts + mtm = ft; 4 /b — ftr(1+ -
q q
Relevant Ratios
* Machine balance: b=t /t; (smaller is better)
* Algorithm computational intensity: g=f/m (larger is better) .

Ideal Time =ft; (1 + €), € is zero when all data in fast memory
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Memory Locality Model

Example of Application of Memory Model

Simple Example of Memory Model

* Assume t= 1010 sec (0.1 ns, 10 Gflop/s => 1 Intel iI9-7900X CPU core)
e Assume slow memory speed is t,, = 10 ns

e Assume h takes h flops=>f=hn

e Assume array X is in slow memory =>m =n

s=0;
Time=0.1hn+10n
b (machine balance) = 100
g (computational intensity) =f /m = h

for (int 1 = 0; 1 < n; 1i++) {

s = s + h(X[i]);

}
. g . .
Performance=f/Time= —— , as g increases it reaches peak of 10 Gflop/s
10+0.1 g
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Memory Locality Model
Example of Application of Memory Model

Some Examples of g (Computational Intensity)

* Matrix-vector multiply: m=3n+n? data, f=2n2 flops

Assumption: Fast memory (cache) not big
enough to store matrix A

|

s=0;
for (int 1 = 0; 1 < n; i++) {

for (int j = 0; j < n; i++) {

Y[i] = Y[1] + A[1,]J]1*X[]J];
}

Ali,:)

H - §H "

y(i) y(i) X(:)
L Fi\m INSTITUTE FOR APPLIED Lecture B.Z: Perrormance Uptlmlzatlon
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Memory Locality Model

Example of Application of Memory Model

Some Examples of g (Computational Intensity)
* Matrix-matrix multiply: m= n3 + 3n? data, 2n3 flops

Assumption: Fast memory (cache) not big

Dr. David Sondak

for (1 = 0; 1 < n; ++1i) {
for (3 = 0; J < n; ++3) { enough to store matrices A/B
Cli, ] = 0; )
L] m = n3 (read each column of B n? times)
for (k = 0; k < n; ++k) | + n2 (read each row of A n times)
Cli,j] += A [1,k] *Bl[k,J]; + 2n2 (read /write each element of C once)
} =n3 + 3n?
}
f=2n3
q=f/m=2forlargen
C(i.j) C(ij) Ali:)
O _ O + . B(:.j)
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Memory Locality Model

Matrix Blocking

Some Examples of g (Computational Intensity)

* Matrix-matrix multiply (blocked/tiled): Consider A,B,C to be N by N matrices of b by b
subblocks where b=n/N is called the blocksize

for (1 = 0; 1 < N; ++1i) {
for (3 = 0; 7 < N; ++3) {
{read block C[i,]] into fast memory}

for (k = 0; k < N; ++k) {

{read block A[i, k]
{read block B[k, j]
Cli,J] += A [i,k] *

into fast memory}

into fast memory}

Blk,j]; {do a matrix multiply on blocks}

{write block C[i,]] back to slow memory}

C(i.j) C(i,j) A(i,k)
| _ 0 ]
= ¥ m B(k))

Wy 'NSTITUTE FOR APPLIED
School of Engineering W4y COMPUTATIONAL SCIENCE
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Memory Locality Model

Matrix Blocking

Some Examples of g (Computational Intensity)

* Matrix-matrix multiply (blocked/tiled): Consider A,B,C to be N by N matrices of b by b
subblocks where b=n/N is called the blocksize

m = N n2 (read each block of B N3 times (N3 n/N n/N))
+ N n? (read each block of A N3 times )
+ 2 n? (read and write each block of C once)
= (2N + 2) n?

f=2n3
qg=f/m=n/N=b forlarge n

* So we can improve performance by increasing the blocksize b
* Can be much faster than matrix-vector multiply (g=2)
* Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make
these blocks arbitrarily large: 3 b2 <= M, so q ~= b <= sqrt(M/3)
* M = size of fast memory
* Theorem (Hong, Kung, 1981): Any reorganization of this algorithm (that uses only
associativity) is limited to g =O(sqgrt(M))

EEE=] | HARVARD AC TTTTTTTTTTTTTTTTTTT Lecture B.2: Performance Optimization Dr. David Sondak
School of Engineering §' COMPUTATIONAL SCIENCE

and Applied Sciences ,g @ AT HARVARD UNIVERS CS205: Computing Foundations for Computational Science 29




Loop Optimization
Loop Interchange

Loop Interchange

* Process of exchanging the order of two iteration variables used by a nested loop to
improve spatial locality

for (int J = 0; J < n; J++) | for (int i = 0; i < n; i++) {
for (int 1 = 0; i < n; 1i++) ‘ for (int j = 0; J < n; J++)
alil = ali]l + bli, 3] * c[il; ali] = al[i] + bli,J] * cli];
} }
g & B stride-n stride-1
0 : EEa
L Dot | | v Good data spatial locality!
, [REEEEE But, ruins the reuse of a(i) and c(i) in the inner loop, as it
introduces two extra loads (for a(i) and for c(i)) and one

extra store (for a(i)) during each iteration.
b[1,1], b[1,2], b[1,3]...
row-major order

Dr. David Sondak
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https://en.wikipedia.org/wiki/Row-major_order

Loop Optimization
Loop Reversal

Loop Reversal

* Reverses the order in which values are assigned to the index variable

for (int §j = 0; J < n; Jj++) { for (int jJ = 0; J < n; J++) |
for (int 1 = 0; 1 < n; 1i++) - for (int 1 = 0; 1 < n; 1i++)
ali] = ali1] + b[1i,3] * cl[i]; ali] = ali1] + b[]j,1i] * cl[i];
} }
stride-n stride-1
v No loop interchange!
v" Programmer should change the way to store array data
HARVARD [TX®3SR |NSTITUTE FOR APPLIED Dr. David Sondak
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Loop Optimization
Loop-Invariant Code Motion

Loop-Invariant Code Motion

* If result of a statement or expression does not change during loop, and it has no
externally-visible side effect (!), can hoist its computation before loop

X =y t+ z;
for (int 1 = 0; 1 < n; 1i++)
{ t = x * x;

‘ for (int 1 = 0; 1 < n; 1i++)
{

X =y t+ z;

al[i] = 6 * 1 + x * x;

al[i] = 6 * 1 + t;

HARVARD

School of Engineering
and Applied Sciences
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Loop Optimization
Strength Reduction

Strength Reduction

» Replace expensive operations (*,/) by cheap ones (+,-) via dependent induction
variable

for (i = 0; i < N; i+4+4){

for (i = 0; i < N; i++{
i] = ¢ * 1i; IIIIII'} .
vl yli]l = k;

k =k + ¢c;
(MARVARD LSS INSTITUTE FOR APPLIED Lecture B.2: Performance Optimization Dr. David Sondak
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Loop Optimization
Unrolling

Loop Unrolling
* Branches are expensive — unroll loop to avoid them
int x;
for (x = 0; x < 100; x += 5 ) {
int x; delete (%) ;
for (x = 0; x < 100; X++{ ‘ delete(x + 1);
delete (x) ; delete(x + 2);
} delete(x + 3);
delete(x + 4);
}
e Gets rid of 3/4 of conditional branches!
e Increase instruction parallelism
BB narvaro  EESER isitute For apeLieD Lecture B.2: Performance Optimization Dr. David Sondak
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Loop Optimization
Loop Fission and Fusion

Loop Fission and Fusion

* Break loop into several loops, or merge multiple loops

int i, af[l00], b[100];
for (1 = 0; 1 < 100; 1i++){

int i, af[l100], b[100];
for (1 = 0; 1 < 100; 1i++){

ali] = 1;
o) = 1 -

b = 2; . . .
= for (1 = 0; 1 < 100; 1i++){
} bl[i] = 2;
}
* Reduce control and branches *Can improve instruction temporal locality

* Can improve data temporal locality
*Improve instruction parallelism

Trial and Error!
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Compiler
Generic Optimization Options - gcc

Execution Time Code Size Memory Usage Compile Time

optimization for

-00 compilation time + + = =
(default)

optimization for
-Olor-O code size and - - + +
execution time

optimization more
-02 for code size and == + ++
execution time

optimization more
-03 for code size and -- + t
execution time

optimization for
code size

03 with fast none
-Ofast accurate math - + +++
calculations
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Summary
The Optimization Process

Compile without optimization flags
Baseline execution time
Baseline results

-

Compile with generic optimization flags
Get execution time (speedup)
Compare results (aggressive options)

-

Use specific optimization flags
Get execution time (speedup)
Compare results (aggressive options)

-

Adapt code to improve ILP and data locality
Get execution time (speedup)
Compare results (aggressive options)

1 |

Change algorithm
Get execution time (speedup)
Compare results (aggressive options)
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Next Steps

e Lab session tomorrow (need it for the homework):
14. Performance Optimization on AWS
15. OpenACC on AWS (request access to GPU-
based instances!)

 Getready for next lecture:
B.3. Accelerated computing



Questions
Performance Optimization
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