
ELSJYIER Parallel Computing 22 (1996) I 169- 1195

PARALLEL
COMPUTING

Some aspects about the scalability of scientific
applications on parallel architectures

Ignacio Marth Llorente a’* , Francisco Tirado a, Luis Vkquez b
a Departamento de Informciticu y Automhtica, Universidad Complutense, 28040 Madrid, Spain

b Departamento de Matemdtica Aplicada, Universidad Complutense, 28040 Madrid, Spain

Received 25 October 1995; revised 5 June 19%

Abstract

This paper presents the most significant results of the investigation project aimed to implement
a parallel application for simulating nonlinear optic systems. A new scalability analysis of parallel
algorithm-architecture combinations (parallel systems) is proposed. The execution time and
parallel efficiency are the parameters that the parallel system must preserve as it is scaled. These
parameters are studied considering the physical phenomena that the scientific application is
simulating. The goal in scaling a parallel system is to reduce the overall simulation error in the
scientific application so that the simulation reflects the physical phenomena more accurately.
Consequently, all the error sources, and not only the problem size, should be scaled simultane-
ously. The realistic scaling improves the operation count and scalability of common iterative
methods to solve systems of equations. The execution time, performance and scalability of a
d-dimensional full multigrid algorithm on a d-dimensional mesh of processors are analytically
determined. The analytical results are experimentally verified using the parallel simulator of optic
systems.

Keywords: Parallel processing for scientific computing; Scalability; Performance evaluation; Computational
complexity; Iterative methods

1. Introduction

Numerical simulations are necessary in science when the mathematical model
representing a physical phenomena cannot be solved exactly. Often these mathematical
models are described by means of nonlinear partial differential equations. Numerical

* Corresponding author. Email: Ilorente@eucmax.sim.ucm.es.

0167-8 I91 /%/$15.00 Copyright 0 1996 Elsevier Science B.V. All rights reserved.
/‘If SO167-8191(96)00038-5

1170 I.M. Llorente et al/Parallel Computing 22 (1996) 1169-1195

solutions of these equations are obtained converting the continuous problem into a
discrete problem. The problem becomes one of solving sparse systems of equations via a
discretization of the partial differential equations. Resolution of these systems can
exceed the capabilities of even the most powerful conventional computers, and their
implementation on parallel computers is thus a natural consideration. In fact, solving
these systems of equations is one of the main goals of scientific parallel computing.

When we apply direct methods to these large sparse systems of equations, fill-in
occurs and increases the operation count and memory requirements. Moreover, it
destroys the locality of the communications, given by a discretization method, producing
low parallel efficiencies. The alternative is to use iterative methods. The optimal
complexity of multigrid iterative methods - theoretically they can obtain the solution to
truncation error accuracy in time proportional to the number of unknowns - together
with the fact that their components are highly parallel, makes it natural to study the
numerical and parallel properties of these methods.

Several metrics for evaluating the scalability of an algorithm-architecture combina-
tion (parallel system) have been proposed in the literature [8,10,19], where the scalability
is usually defined as the capability of a parallel algorithm to make effective use of an
increasing number of processors in a parallel architecture. It is our opinion that most of
these performance-based metrics, because of their failure to consider execution time, are
of only theoretical interest.

Execution time and parallel efficiency are the parameters that the parallel system
must preserve as it is scaled. By this we mean that the numerical and parallel properties
of the system must not deteriorate as the number of processors increases [1 I]. The
proposed scalability analysis considers the next three parameters in the system: effi-
ciency, execution time, and memory usage or final accuracy. An algorithm-architecture
combination is perfectly scalable when increasing linearly the problem size with the
number of processors, but we obtain a more accurate solution with the same efficiency
in the same execution time.

On the other hand, most of the metrics proposed in the literature do not consider the
physics problem that the parallel algorithm is solving. The scalability of parallel systems
is studied without considering the applications that use them. Usually, the problem size
grows with the number of processors to obtain a more accurate solution simulating a
physical system. The error due to the spatial discretization is reduced increasing the data
set size. However, the global error is not reduced if it has other error sources. Clearly,
we have to scale simultaneously all the error sources to achieve a more accurate
solution, which is called realistic scaling [17]. It is important to scale the scientific
applications in a realistic way, if not, we are performing a larger simulation to obtain a
solution with the same accuracy.

Little work has been done before on the effect of reducing all parameters governing
error sources, realistic scaling, on the computational complexity of real applications. As
we show in this paper, the realistic scaling modifies the computational complexity of
some iterative algorithms. The number of Jacobi iterations and multigrid cycles, required
for converging to the level of truncation, remains constant in the time dependent case.
They therefore can converge a solution to truncation error accuracy in time proportional
to the grid size, which is optimal complexity.

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1171

This paper is organized as follows. Section 2 describes the process to obtain
numerical solutions of the two-dimensional Nonlinear Schrijdinger (NLS) and
Maxwell-Bloch (MB) partial differential equations using a full multigrid method on a
topological mesh of processors. A new scalability analysis is briefly described in Section
3. Relations of the new scalability metrics with other metrics proposed in the literature
are presented in the same section. The effect of realistic scaling on the computational
complexity of some iterative methods is presented in Section 4. Finally, the scalability
of the d-dimensional full multigrid method on a d-dimensional mesh of processors is
studied in Section 5. First, the execution time, efficiency and scalability are approxi-
mated using a deterministic analytical model and, then, these expressions are experimen-
tally verified in the two-dimensional case with the parallel system described in Section
2.

2. Numerical solution process

In this section we describe briefly a process to obtain numerical solutions of
mathematical models from nonlinear optics using parallel multigrid techniques. Fig. 1
shows the steps of the general process to obtain numerical solutions on parallel
computers. Though it is difficult to delimit and to define exactly each step, we will give
a brief general description and a discussion of the NLS and MB equations.

Msthemsticnl model:
Nonlinear Schrbdinger equation

Maxwell-Bloch equations

t
Numerical scheme:

Zhang-Vbquez scheme

Modification of
the numerical scheme

+
Modification of

the resolution method

Solution on a sequential computer
(small-scale systems):

Workstations

I I I . I

Fig. 1. Solution process of mathematical models on parallel computers.

1172 I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195

The formulation of a mathematical model by way of the balance of forces or other
factors is the first step to simulate a physical system. Usually, these mathematical
models are systems of partial or ordinary differential equations. In our case, these
continuous equations are described in Section 2.1.

The space or space-time continuum is replaced by a space or space-time mesh, and
difference equations involving algebraic relationships between grid points are obtained
via a discretization of the partial differential equations. Finite difference schemes are a
natural technique for partial differential equations because of their ease of use and the
direct physical interpretation they provide (also because of their flexibility when
symmetry or boundary conditions are to be changed). We applied one of these numerical
methods to the NLS and MB equations: the Zhang-V&quez scheme [6]. Some features
of this implicit numerical scheme are explained in Section 2.2. When an implicit
numerical method is applied to a time dependent partial differential equation, the
problem becomes one of solving a sparse system of equations at each temporal step.

If we want to obtain accurate solutions, we must use fine grids. Fine grids produce
very large systems of equations, with the number of equations depending on the number
of points in the grid, and the shape of the system matrix depending on the number of
space dimensions and on the numerical scheme used. In our case, it is tridiagonal for the
one-dimensional problem and pentadiagonal or block-tridiagonal for the two-dimen-
sional version. The choice of fast solvers for these systems in general depends on the
structure of the problem and on the type of computer being used [16]. We have chosen
the multigrid method [2,3,15,21] because its computational complexity approaches the
minimum count of O(Nd) operations, where d is the number of spatial dimensions and
Nd is the number of points in the grid and unknowns in the system. Some features of the
multigrid techniques are explained in Section 2.3.

Once the scientific application produces numerical solutions, it is necessary to
validate the previous steps. For this purpose, we propose the consideration of three
factors:
. Verification: Compare the numerical solutions with an analytical solution for some

initial and boundary values. This can be done if the mathematical model can be
exactly solved for some special cases: one-dimensional case, without special terms,
etc. For example, the one-dimensional NLS equation is tractable analytically, but in
general, the perturbations of this equation as driving forces, coupled NLS systems,
and the multidimensional equation cannot be solved exactly [6]. On the other hand, if
the equation is modeling a physical problem, it is possible to compare the computer
results with whatever experimental or observational data is available. This approach
was used to validate the Maxwell-Bloch system simulator [121.

. Complexity: Achieve the solution with an operation count closer to the optimal one.
This depends on the continuous equation, the numerical scheme and the equation
system solver.

. Numerical errors: Discretization or truncation error (due to the approximation of
continuous problems by discrete ones), rounding errors (computers work with a finite
number of digits) and convergence errors (the iterative methods obtain the solution
when a convergence condition is satisfied).
Now, we have the scientific application ready to be used for prediction. However,

I.M. Liorenle et al./ Parallel Computing 22 (1996) 1169- 1195 1173

resolution of large systems can exceed the capabilities of even the most powerful
conventional computers, and the application has to be implemented on a parallel
computer. The parallel implementation depends on the target parallel architecture
(topology, computation-communication ratio, etc.>. Data parallelism model is often used
to simulate scientific problems. Section 2.4 describes the parallel full multigrid method.

The last step in the process is the parallel validation. There are many parameters to
consider in a parallel system. First, we have to study its numerical and parallel
properties (execution time and efficiency) [lo]. If these properties are not as good as
expected, we have to change the data distribution to avoid processor idleness or to
decrease the number of communications. Second, we have to study the scalability of the
parallel system using realistic scaling. The numerical and parallel properties of the
system must not deteriorate as the system is scaled to obtain more accurate solutions.
The scalability of scientific applications is studied in Section 3 and Section 4, and the
execution time, efficiency and scalability of parallel multigrid methods are studied in
Section 5.

2.1. Mathematical models

2.1.1. The nonlinear Schriidinger equation
The NLS equation arises as an asymptotic limit of a slowly varying dispersive wave

envelope in nonlinear mediums such as nonlinear optics, water waves, plasma physics,
biomolecular dynamics, etc. [6]. The two-dimensional Eq. (1) is not tractable analyti-
cally. Therefore, numerical. simulations are needed, for example, to study the propaga-
tion of optical solitons in optics fibers. Optical solitons are currently under study since
they are expected to provide ultra-high speed telecommunications 191.

aw a2w a2w
i- + -+-

at ax2 ay2
+ alW12W= 0. (1)

The physical field W(t,x, y> is a complex function and a is a real constant. The
problem is to describe the evolution of this field given an initial condition.

2.1.2. The Maxwell-Bloch equations
Laser devices have become so widely used that the understanding of its behaviour is

a question of highly practical interest. However, the conventional theoretical approach is
limited and cannot explain the complex features appearing in some very disordered
dynamic states that appear under the increase of either the excitation of the medium (the
gain) or the transverse dimensions of the laser (aspect ratio). For this purpose, and for
studying the effects of symmetry changes on the dynamics it is necessary to simulate the
complete laser equations.

The simplest laser model that takes the transverse effects into account is a set of
partial differential equations called the Maxwell-Bloch equations:

-i-&A,,+: +a(F-P) =o,

1174 I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195

JP
- = -(l +iA)P+FD,
as (3)

aD
-=-y D-r+;(F’P+FP’) . as [1

Energy enters the system though the pumping terms (r) and dissipates through the
loss terms (g). The physical fields are F(t, X, y) and P(r, x, y) (complex functions), and
D(r,x, y) (real function); A, y and /3 are real constants. The problem is to describe the
evolution of these fields, which are related to the intensity of the laser beam at each
spatial point (X, y), given an initial condition.

2.2. Numerical scheme: The Zhang-Vbzquez scheme

Several numerical schemes have been proposed for the NLS equation [20]. However,
we have developed the first conservative scheme that is globally linearly implicit. This is
the Zhang-Vazquez scheme [6]. Let us define an N + 1 XN + 1 discrete reticulum (N is
the number of spatial steps per side in the grid) with spatial and temporal stepsizes h
and T, and the discrete field: Wiy = W(nT,ih, jh). The discretization of Eq. (1) results in
the following system of equations, for i.j = 1,. . . ,N - 1:

i
w;;+ ’ - q- ’

27
-+w;;:; + w;“_if + wig;;

= - 2h2
+ w;j”-‘; - 4w,;+‘)

l (
--

2h2
wi:;; + w;!!;; + w;;;: + w,;:; - 4w;;-1)

- qlwiJ2(wi;+’ + wi;- 1).

The existence of conserved quantities is a good property that is usually related to long
time accuracy, while the linearity is essential when applying fast solvers like the linear
multigrid algorithm to be presented later. This numerical scheme is second-order
accurate in space and first-order accurate in time. Since it is a three-level scheme, a
Crank-Nicholson-type scheme is used to start the simulation because the initial data
provide only the first temporal step.

Reordering Eq. (5) to get the matrix form, it can be rewritten:
2

Wil:f + Wil:j -
(
4 - ah21Wi,“12 - ik

7 1

w;;+’ + w&’ + w;j”-“’

= -wi:;f-Wi”‘j+

(

2

4-ah21W,112+ih Wi$-‘-Wi~;,l-Wi~~~.
7 1

(6)

As we can see in Eq. (6) we have to solve a pentadiagonal system of equations,
Au = f, at each temporal step to obtain Wiy+ ’ , i,j = 1,. . . , N - 1. The system matrix, A,
and the right-hand side, f, depend on the function values in the two previous steps n and
IZ - 1 (three-level scheme, Fig. 2a). On the other hand, a Crank-Nicholson-type scheme
only needs the function values in the previous temporal step (two-level scheme, Fig. 2b).

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1175

temporal step temporal Ap

a. Zhang- V&quez scheme 6. Crank-Nicholson scheme

Fig. 2. Zhang-Vbquez and Crank-Nicholson numerical schemes.

The experience obtained applying the Zhang-V&quez scheme to the NLS equation
suggests the application of a similar approach to the problem of the numerical
simulation of the MB laser equations. Let us define a N + 1 xN + 1 discrete reticulum
with spatial and temporal stepsizes h and T, and the discrete fields F,.; = F(nr,ih,jh),
P; = P(nT,ih,jh), DG = D(wr,ih,jh). The discretization of Eq. (2), Eq. (3) and Eq. (4)
produces the following systems of equations, for i,j = 1,. . . , N - 1:

1
-i- Fi’jTf + I;;.:_‘; + FL:;

4h’P (
+ F;_+‘; - 4Fi;+ ’ + Fi;; f + Fi’j.: ; + F;+-,;

+F,“=I) - 4F,1-‘) +
I;;;;+ ’ - Fi;- ’

7
+ ofFi;+’ +Fi;-’ -Pi;+’ -Pi;-‘) =o,

(7)
p,:+ ’ - p;- ’

7
= -(l +iA)(Pi;+‘+Piy-‘)+(F,T”+F;-‘)D$, (9

DC+ ’ -DC-’ D?.+ ’ + D?.- ’ ,J lJ
2T =-Y 2

-r+ ;(F,;‘P,; + Fi;Pi’J.*) . 1 (9)
2.3. Numerical problem: Multigrid method

If we want to obtain accurate solutions to the problems presented in Section 2.2, we
must use fine grids. Fine grids produce very large systems of equations. Iterative
methods are often preferable to direct methods for solving sparse systems. The applica-
tion of a direct solver to a very sparse system results in fill-in (the introduction of
non-zero elements in positions of the matrix that were originally zero>. Fill-in increases
the operation count and the memory requirements of the direct methods. Concretely, the
bandwidth of the matrix of the equation system (6) is equal to N, so the number of flops
for a direct method varies as N4 [16]. Moreover, in a parallel setting, fill-in destroys the
inherent locality of the communications given by a finite difference method, resulting in
inefficient parallelism.

The most well known of the iterative methods are the relaxation-type methods, such
as Jacobi or Gauss-Seidel. Some of these methods, although avoided in practice because
they are slow to converge, can be used as part of a more sophisticated multigrid or

1176 I.M. Llorente et al./Parallel Computing 22 11996) 1169-1195

conjugate gradient methods. Multigrid method can be viewed as a technique for
accelerating the convergence of iterative methods. The conjugate gradient method is
used to accelerate any iterative method, including multigrid methods. The computational
complexity of multigrid methods is closer to optimal than that of conjugate gradient
methods. For a comparison of conjugate gradient and multigrid methods see [21].
Specially, only O(N*) operations are required to solve the system of equations defined
in (6).

The problem is that multigrid is a technique, rather than a single method. To apply a
multigrid method correctly, it is necessary to find appropriate parameters for the
algorithm. If these parameters are not chosen appropriately, the final complexity may be
far from optimal. The key idea of the multigrid method can be understood by explaining
first the relatively simple case of a two-grid method. The two-grid method is an iterative
method: We start with an initial guess, and the final solution is reached after a certain
number of two-grid cycles. The next six steps describe a two-grid cycle for the solution
of the system (6), Au* = f, over the grid h at a given temporal step:

srep 1: Iterate n, times using the smoothing iterative method over the original system
of equations, reaching an approximation v”.
step 2: The residual or defect r ” is formed as rh =f- Au h.
srep 3: Prepare to solve the error equation in the coarser grid 2h. In so doing it is
necessary to restrict the residual to that grid r2h = Zihrh, where Iih is the restriction
operator.
step 4: Solve the error equation over the grid 2h, A2*e2* = rZh.
step 5: Apply the prolongation operator to interpolate the correction to the finer grid.
e* = Z.r”h e2*, where I& is the prolongation operator.
step 6: Add this error e,, to the value calculated in step 1, L’~ = uh -t- eh.

In the two-grid correction, we have to solve a system of equations at step 4 on 2h. If
this system is solved on a still coarser grid, 4h, and this process is repeated on
successively coarser grids until a Jacobi solution of the residual equation is possible, the
algorithm assumes a recursive structure. This recursive algorithm is called MVJ-cycle:

vh + MVJh(v”,f”):

step 1: If h is the coarsest grid (Nlower X Nlower ,) solve using y, Jacobi iterations and
return, else continue.
step 2: Relax (smoothing method) n, times on Ahun =fh with initial guess vh.
step 3: f 2h + Z,““(f” - Ahuh),

vZh + 0,
Vet + MVJ2h(u2h,f2h).

step 4: Correct vh * vh + I~hv2h.
step 5: Relax (smoothing method) n2 times on Ahuh = f*.

An MVJ-cycle is a V-type multigrid cycle. We start with an initial solution, v*, and
the final solution is reached after a fixed number of MVJ-cycles. The multigrid cycle
works on a hierarchy of point grids that represents the physical domain to different

I.M. Lloreme et al./Parallel Computing 22 (1996) 1169-1195 1177

9x9 point grid

Fig. 3. Multigrid method.

degrees of granularity (Fig. 3). All of them have a number of spatial steps per side
power of two. The next coarser point grid has half the number of spatial steps per side
that the current grid has.

The smoothing method reduces the high frequency components of the error at each
level, and the low components are reduced on coarser levels where they have higher
frequencies. This can be done in a recursive way until a level where the system can be
solved directly. Restriction and prolongation operators connect the levels. The prolonga-
tion operator maps data from a coarser level to the current level, and the restriction
operator takes values from the finer level to the current one. It has been proved that the
error is reduced by a constant factor at each cycle with an appropriate choice of the
multigrid components and parameters. Smoothing, restriction (I,‘“), and prolongation
(I,“,) operators are chosen to achieve good convergence rates and good parallel
properties. We have used the damped Jacobi method as the smoothing method, bilinear
interpolation as the prolongation operator, and a half-weighting average of neighbouring
fine grid values as the restriction operator.

If the Jacobi method is used to solve the system on the coarsest grid, multigrid can be
faster and more efficient on a parallel computer. It can be faster because, with time
dependent equations, the spectral radius of the Jacobi method matrix depends on N, h
and r parameters (Section 4.2), and then it is possible to get good convergence rates for
some values of these parameters. The parallel efficiency increases because the size of
the coarsest grid is greater than the size of the processor mesh. When the number of grid
points is less than the number of processors, more communication is needed and some
processors are idle, resulting in a significant loss of efficiency.

If we define the problem on grids of various sizes, we can obtain the solution at each
level, from the coarsest to finer grids, with a fixed number, n3, of MVJ-cycles, using as
initial guess the solution interpolated from the coarser grid. This is the full multigrid
algorithm, FMVJ. With this approach, the solution at each level converges to truncation
level. The full multigrid process starts with the solution on the coarsest grid, using y2
Jacobi iterations.

1178 I.M. Llorente et al./ Parallel Computing 22 (1996) 1169-I 195

2.4. Parallel full multigrid method

In this section, we describe how to implement the FMVJ method on a distributed-
memory parallel computer. An overview of parallel multigrid methods on different
architectures, interconnection networks and appropriate smoothing iterations can be
found in [4,5,7,11,14].

We use a domain decomposition in physical space for all grids [14]. Each processor
runs a copy of the same program and works on a local domain. Data is distributed
equally over all the processors at each level. The equations are then distributed over all
the processors at each level. Each node contains all the grid points corresponding to its
domain, as well as those grid points within an artificial boundary that extends into
neighboring domains (Fig. 4). In this way, if the boundary points of a processor are
modified, it is necessary to update the copy in the neighbouring processors (artificial
boundary).

We next consider how to carry out each step of the MVJ-cycle on a parallel
computer. The damped Jacobi iteration is seen to be perfectly parallel (steps 2 and 5 in
an MVJ-cycle). Each processor performs the computation over its subset of data
(geometric or data parallelism). As each point needs its four neighbouring points at
iteration, processors have to communicate their boundary points to the four neighbouring
processors after each iteration (Fig. 4). This communication, which updates the artificial
boundary of each processor, is done at the same time in all processors. An overview of
the implementation of linear-iterative solvers onto a processor array can be found in [11.

Following, we have to calculate the residual (step 3 in an MVJ-cycle). The multipli-
cation Ahuh can be done in parallel over all processors, since each processor has the
updated copy of the artificial boundary points. The edge values of the residual
fh - Ahuh must be transmitted to update the artificial boundary points of the neighbor-
ing processors so that the restriction half-weighting operator can be applied.

16x16 point grid, 4x4 processor mesh
Fig. 4. Artificial boundaries.

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1179

Analogous considerations apply at each level until the coarsest level, where the
system is solved using y, Jacobi iterations (step 1 in an MVJ-cycle). This is done when
the number of grid points is larger than the number of processors.

On the return up (step 4 in an MVJ-cycle) after the correction, the artificial
boundaries are updated. Because multigrid is an iterative method, it could require a
norm evaluation for the computation of convergence criteria after each MVJ iteration.
This is not necessary for some cases because its performance can be predetermined [2].

3. Scalability of parallel systems

Computer scientists are interested in the performance achieved on parallel systems;
their primary goal is to obtain good levels of efficiency on larger machines. Therefore,
they see scalability as a metric to measure the capability of effectively utilizing an
increasing number of processors. They want to design architectures on which algorithms
can be implemented efficiently and for this reason base their scalability metrics on
performance parameters.

Several performance-based scalability definitions have been presented in literature
during recent years. In the same way, some metrics have been proposed to evaluate and
compare the scalability of parallel algorithm-architecture combinations. The isoeffr-
ciency [&IO] and the isospeed [18,19] concepts are samples of this kind of metrics.

The isoefficiency function, fly), measures the way the problem size must grow with
the number of processors to maintain a fixed efficiency. The isoefficiency function is
used to measure the scalability, the more linear j7 p) is, the more scalable the parallel
system is. Constant efficiency means that speedup increases linearly with the problem
size.

The isospeed measures the ability to maintain the average unit speed, where the
average unit speed is the speed of the parallel system divided by the number of
processors. If the sequential speed is independent of the problem size, the isospeed
approach is the same as the isoefficiency approach. The parallel system is scalable if the
average speed can be maintained by increasing the problem size as the number of
processors grows. The variation of this problem size provides the scalability metric. Let
W be the amount of work of an algorithm when p processors are employed, and W’ the
amount of work needed to maintain the average speed when p’ > p processors are
employed. The scalability from system size p to system size p’ is defined as:

P’ W
?q PTP’> = pw” (10)

It is our opinion that performance-based metrics, because of their failure to consider
execution time, are of only theoretical interest. However, some aspects of the relation
between the isospeed scalability and execution time have been recently studied in [181.

Computational scientists, on the other hand, are more interested in increasing the
accuracy of the solutions to their simulation programs than in performance parameters.
Their primary goal is to perform more accurate simulations while maintaining accept-
able execution times.

1180 I.M. Llorente et d/Parallel Computing 22 (1996) 1169-1195

Fig. 5. Time-critical scaling model.

We propose a new scalability analysis in which the numerical and parallel properties
are considered as the system is scaled for obtaining more accurate solutions. In running
scientific applications, we consider only two ways to scale a parallel system: time-criti-
cal and accuracy-critical scaling models.

3.1. Time-critical scaling model

Using the time-critical scaling model (Fig. 51, we are interested in obtaining the same
solution reducing the execution time. Then, the parallel system is scaled maintaining a
fixed problem size. So, scalability is assessed in terms of efficiency, or execution time,
as the number of processors increases.

3.2. Accuracy-critical scaling model

Using the accuracy-critical scaling model (Fig. 6), we are interested in obtaining the
most accurate solution without exceeding the system’s memory limits. In this case, a
scalability analysis must consider the execution time and the efficiency as the parame-
ters that the parallel system must preserve as it is scaled. By this we mean that the
numerical and parallel properties of the system must not deteriorate as the number of
processors increases.

Our scalability analysis predicts the parallel properties of larger systems based on the
properties of smaller systems. We consider that in optimum conditions the parallel
system properties must be preserved as the system is scaled. The scalability analysis
enables us to scale the problem size with the number of processors to keep a parameter
unchanged.

Specifically, the following scaling models correspond to the three parameters for
consideration in a parallel system (efficiency, execution time and memory usage or
simulation accuracy):

I.M. Llorenre ei al./ Parallel Computing 22 (1996) I169-1195 1181

Fig. 6. Accuracy-critical scaling models.

- hotime scaling model: This model is used when we are interested in obtaining the
most accurate solution while maintaining the execution time.

l Isoeficiency scaling model: This model is used when we are interested in obtaining
the most accurate solution while maintaining the parallel efficiency. Consequently,
we do not consider the isoefficiency as a scaling metric, but as a scaling model.

l Zsomemory scaling model: This model is used when we are interested in obtaining the
most accurate solution possible, regardless of the efficiency and the execution time.
An isoparameter function describes how to increase the problem size with the number

of processors to maintain the parameter. The problem size has to grow linearly with the
number of processors to keep the average memory usage unchanged (the isomemory
function is linear). In most cases, the problem size has to be increased in a sublinear way
to maintain a constant execution time (the isotime function is in the sublinear area), and
it has to be increased in a superlinear way to maintain a constant efficiency (the
isoefficiency function is in the superlinear area). In fact, the &efficiency and isotime
functions (Fig. 7) of common parallel algorithms are polynomial functions:
l Zsoeficiency functions f,&p): They are O(pk> for some k 2 1, where p is the

number of processors. The smaller the k parameter the more scalable is the parallel
system with respect to the efficiency.

l Isotimefunctionsf,(p): They are O(p’) for some k 1~ I. The larger the k parameter,
the more scalable is the parallel system with respect to the execution time.

- Zsomemoryfunctionsf,(p): They are O(p).
Using the accuracy-critical scaling model, it is intended to obtain the most accurate

solution without exceeding the system’s memory limits. The optimum case is then to

1182 I.M. Llorente et al./Paraliel Computing 22 (1996) 1169-1195

SUBLINEAR ARE4

ISOTME FUNCTIONS

Number of processors

Fig. 7. Isoefficiency and isotime functions.

scale the problem linearly with the number of processors (isomemory function).
Therefore, the closer an isoparameter function is to the linear function, the more scalable
the parallel system is with respect to the parameter, because the most accurate solution is
obtained without exceeding the system’s memory limits while maintaining the parame-
ter.

Then, if we are interested in preserving the efficiency, the closer the isoefficiency
function is to the isomemory function, the more scalable the parallel system is with
respect to the efficiency. Then, the parallel system is perfectly scalable with respect to
the efficiency if the isoefficiency function grows linearly. In the same way, the closer
the isotime function is to the isomemory function, the more scalable the parallel system
is with respect to the execution time. Therefore, the parallel system is perfectly scalable
with respect to the execution time if the isotime function grows linearly.

One parallel system is perfectly scalable if it is perfectly scalable with respect to all
its parallel parameters; all the isoparameter functions grow linearly. Therefore, they
coincide with the isomemory function: If the parallel system is scaled with the
isomemory scaling model, the execution time and the efficiency remain constant. This
provides a qualitative measurement of the scalability, representing the three isoparameter
functions on a graph.

Let us define a quantitative measurement of the system scalability. Perfectly scalable
means that all parallel parameters remain constant as the number of processors increases.
Consequently, it is possible to define scalability metrics measuring how one parameter
deteriorates when the problem size is increased to maintain the other parameter (Fig. 8).

Isoefficiency and isotime scaling models have their own scalability metric. Let N, be
the problem size when p, processors are employed and N2 the problem size needed to
maintain a constant efficiency when pZ > p, processors are employed. Therefore, one
scalability metric for a parallel system from size p, to system size p2 is to divide the
execution time T(N,,p,) of the system with problem size N, and machine size pi by
the execution time T(N2,p2) of the problem size N2 using pZ processors. In this way, it

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1183

4 a,= wj
Number ofprocessors

Fig. 8. lscefficiency and isotime scalability metrics.

is possible to calculate the impact of maintaining constant efficiency in the execution
time.

Then, we define the isoefficiency scalability metric SE from size (N, ,P, > to size
(N2,P2), where N2 is obtained using the isoefficiency function, N, =&(pZ/pI)N, and
aen E(N,,p,) = E(N,,p,), as the execution time in the first system size divided by the
execution time in the second system size:

T(N,,PJ
',(p,'p2) = T(N2 p2) =

W,J)P~~(N~~P~)

, W~J)P,+‘LP,)

W%J)P, T(N,J)P~

= T(N*,l)p, = q.M P2/P,)NI J)PI
5 1. (‘1)

This definition is the same as the isospeed scalability metric, !P(p,,p,) defined in
(lo), if the sequential execution speed does not vary with the problem size.

In the same way, let us define the isotime scalability metric ST from size (N, , p ,) to
size (N,,p,), where N; is obtained using the isotime function, N; =fT(p2/pI)N1 and
then T(N, ,p,) = T(N; ,p2), as the efficiency in the second system size divided by the
efficiency in the first system size:

54 PI 9P2) =
E(N;,p,) (T(N;,~))/(T(N;~P,>P~)

W%P,) = (T(N,,l))/(T(N,,p,)p,)

T(%J)P,

= T(W) ~2
=

T(fT(h/P,) Nl *‘)p, I 1

W',J)P, *
(12)

Depending on the scaling model used, isotime or isoefficiency, one of both metrics is
used to measure the system scalability. If we are interested in maintaining the efficiency,

1184 .I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195

S, metric gives the increase of execution time, and if we are interested in maintaining
the execution time, ST metric gives the fall in efficiency. It is necessary to consider both
metrics to study the scalability of a parallel system. Multiplication S of both scalability
metrics is given by:

Gw2) =mw2) wbP2) =
WLl) qfAP*/P,)J)
qN,,l) = q&(PJP,)J) s l* (13)

The last expression gives us the relation between the scalability metrics and the
isoefficiency and isotime functions, between the quantitative and the qualitative mea-
surements. It can be proved that if one of both metrics is equal to one, the other is also
equal to one and the isoefficiency and isotime functions coincide with the isomemory
function. Moreover, if the isotime function grows linearly, the isoefficiency function
also grows linearly and then the two metrics are equal to one.

We have presented some ideas about scalability of scientific applications on parallel
computers. Because the main goal of the accuracy-critical scaling model is to obtain
more accurate solutions, the execution time and the efficiency must be studied when the
system is scaled in a realistic way. This is critical for the proper evaluation of a parallel
system. The scalability analysis must consider the scientific application that it is being
scaled.

4. Effect of realistic scaling on the computational complexity of numerical algo-
rithms

The accuracy-critical scaling model is used to scale a scientific application with the
number of processors when more accurate solutions are required. The error due to the
spatial discretization is reduced increasing the data set size. However, if the simulation
global error has other error sources, the global error is not reduced. That is the reason
the scaling of only the problem size is called naive scaling [17]. Clearly, we have to
scale simultaneously all the error sources to achieve a more accurate simulation. As we
show in this section, the realistic scaling modifies the computational cost of some
common iterative algorithms. We must not think about algorithm complexity in terms of
input data set size but in terms of discretization parameters.

The matrix of the system of equations that arises in the finite-difference representa-
tion to a stationary partial differential equation only depends on the spatial stepsize, h.
Therefore, convergence rate and computational cost of iterative methods depend on h or
N (N is inversely proportional to h). For example, the number of Jacobi iterations for
converging the finite-difference representation of the d-dimensional Poisson problem [3]
to the level of truncation is O(N2 log NJ. Since, each iteration costs O(N”) arithmetic
operations, then the computational cost is O(N d+ 2 log N). Here, the truncation error is
only affected by the spatial stepsize, and when increasing the problem size a more
accurate solution is obtained.

However, the matrices of the systems of equations that arise in the finite-difference
representation to a time dependent partial differential equation depend on the spatial and

I.M. Llorente et aL/Parallel Computing 22 (1996) 1169-1195 1185

temporal stepsizes, h and T. Consequently, convergence rate and computational cost of
iterative methods depend on h and T. Both discretization parameters contribute to the
global error. The decrease of these parameters, so that their error contributions are equal,
maintains the number of Jacobi iterations and multigrid cycles required to solve the
problem to the level of truncation. Their computational costs vary as O(Nd), which is
optimal order.

In this section, we illustrate, analytically and numerically, this feature using the
one-dimensional NLS equation. We consider the one-dimensional case because it can be
solved exactly and then it is possible to estimate the truncation error. The ideas and
results extend directly to the higher-dimensional cases. The Zhang-V6zquez discretiza-
tion of the one-dimensional NLS equation produces the following tridiagonal system of
equations at each temporal step, n + 1, for i = 1,. . . , N - 1:

w.“+ ’
i

I - win- ’

27

4.1. Convergence rate of iterative methods

The following equation represents a linear stationary iterative method of the first
degree:

v(k+ 1) = Hv”’ + d_ (19
Its asymptotic rate of convergence is determined by the spectral radius p(H), where

H is the matrix of the iterative method. The spectral radius of a matrix is the largest
eigenvalue in absolute value. The error relation of the iterative method is e(‘+ I) = Heck),
so the error after k iterations is e (k) = Hkeco). This expression is approximately the same
as eck) = p(H)‘e”). Therefore, the number of iterations, k, for converging the solution
is given by:

e(k)

p(H)‘=p*k=
log(eck)/eco))

14 P(W) -
(16)

The number of iterations of the iterative method depends on its convergence rate,
log(p(H)), the error in the initial guess, e(O), and the error in the final solution, eck). If
we want to converge the solution to the level of truncation, the error must be reduced
from e(O) to etk) = O(h’). The initial guess is the solution in the previous temporal step:
e(O) = O(T). Therefore, the number of iterations, k, for converging to the level of
truncation in our case is:

log(h2/T)
k= log(P(W) * (17)

1186 I.M. Llorenre et al./ Purallel Computing 22 (1996) 1169-I 195

4.2. Convergence rate of the Jacobi method

The spectral radius of the matrix of the Jacobi method applied to the system of
equations defined in (14) is given by:

P(H) = mod
2cos(Gr/(N+ 1))

(i(h’/T)) -2 * (18)
The larger the spectral radius is, the slower the convergence rate is. Jacobi method

can be fast with time dependent equations because the spectral radius (18) depends on
N, h and T parameters, and then it is possible to get good convergence rates for some
values of these parameters. This has been shown experimentally in previous papers [13],
where the Jacobi method is compared with other iterative and direct methods. The
number of iterations is obtained from Eq. (17) and Eq. (18):

log@%-)

k== log((2cos(7r/N))/(/m))

log(h2/T >
= log(2cos(r/N)) + log(2/(\/4f))

log(h2/T)
= log(1 - (7*/N*)) + log(2/(/-))

N * log(h*/T)

= ,x2 + N* log(2/(J)) .
(19)

Both error sources (h and T) have to be scaled simultaneously to obtain a more
accurate solution. In our case, the error varies as O(h*) + O(T), so if the spatial stepsize
is divided by 2, the time stepsize must be divided by 4. Consequently, h*/T ratio
remains constant and Eq. (19) can be rewritten as:

N*A
k=

N*B+C’
(20)

Usually, C is lower than N2B and then the number of iterations tends to A/B. This
quotient depends on the h*/T factor. So, if the system is increased using realistic

Table I
Spectral radiuses of matrices of the Jacobi method applied to some time dependent partial differential equation
(PDE) and numerical scheme combinations

PDE (numerical scheme) p(H)

ID NLS equation @hang-Vazquez) = t2cosh/w + l)W(do))

ID NLS equation (Crank-Nicholson) (co&r/W + l)W(@yGy))
ID Heat equation (Full implicit) (2cos(Tf/W+ 1)))/((2+w/T)))
1D Heat equation (Crank-Nicholson) (cos(Tr/(N + 11)/W -tW/T)))

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1187

scaling, the number of Jacobi iterations for converging the solution to the level of
truncation remains constant and depends on the h’/T ratio. Same results are obtained in
the multidimensional case. The dependence of the convergence rate on the h2/r ratio
not only appears with the NLS equation and the Zhang-V6zquez numerical scheme. The
spectral radiuses of other time dependent partial differential equation and numerical
scheme combinations are shown in Table 1.

4.3. Convergence rate of the multigrid method

If the multigrid components are well adjusted, the convergence rate of the multigrid
method is independent of the spatial and temporal stepsizes. Then, its spectral radius can
be considered as constant. For this reason, the number of cycles (17) for converging the
solution to the level of truncation remains constant using realistic scaling:

log(h2/T)
k = log(p(H)) = cot-am. (21)

4.4. Numerical results

The analytical results are experimentally verified using numerical simulations. The
systems of equations defined in (141, one per temporal step, were solved using Jacobi
iterations and multigrid cycles. The one-dimensional NLS equation has an analytical
solution given by:

W(t,x) = 2ve i(2Xx-4(XZ-BZ)r)SeCh(2rIX- 8Xrlt--x,), (22)
where r~, x and x0 are real constants. Consequently, it is possible to calculate the
truncation error of the numerical solution.

The number of iterations and multigrid cycles (n, = n, = 31, for converging the
solution to truncation error accuracy at each temporal step, and the truncation error,
calculated in the final instant t = 0.04, with different spatial and temporal stepsizes are
presented in Table 2.W(O,x) was used as solution in the first temporal step. Because
Zhang-VBzquez scheme is not a self-starting numerical scheme, a Crank-Nicholson-type
scheme was used to perform the second temporal step.

Table 2
Jacobi iterations and multigrid cycles at each temporal step and truncation error in the final temporal step
t=0.04
7 (#I 0.02(2) 0.005(S) 0.00125(32)

N Jacobi Multigrid Truncation Jacobi Multigrid Truncation Jacobi Multigrid Truncation
iterations cycles error iterations cycles error iterations cycles error

128 7 4 1.6.10-2 4 3 1.5.10-2 3 2 1._5~10-*
256 21 5 4.9.10-3 7 4 4.4.10-3 4 3 4.3,10-3
512 191 6 1.9. 1o-3 22 5 1.2.10-3 7 4 1.2+10-3
1024 4300 7 1.18.10-3 184 6 3.4. lo- 4 22 5 2.8. 1O-4

1188 I.M. Llorente et al./ Parallel Computing 22 (1996) 1169-l I95

From Table 2, we conclude the following:
* Both methods, Jacobi and multigrid, have an optimal computational complexity

because the number of Jacobi iterations and multigrid cycles remains constant as the
system is scaled in a realistic way.

l The constant number of Jacobi iterations and multigrid cycles depends on the h*/r
ratio as it is predicted in Eq. (19) and Eq. (21) respectively.

- For some spatial and temporal stepsizes, the Jacobi method is faster than the
multigrid method (a multigrid cycle costs more than a Jacobi iteration). But, in
general, the number of iterations needed by the Jacobi method for converging the
solution to the level of truncation is higher than the number of multigrid cycles. The
number of Jacobi iterations (19) grows with N faster than the number of multigrid
cycles (2 1).

5. Scalability of multigrid methods

In this section we study the scalability of the d-dimensional FMVJ method on a
d-dimensional processor mesh using the scalability analysis proposed in Section 3. In
Section 5.1, we present an analytical study of the parallel system. By means of this study
it is possible to analyze its execution time, efficiency and scalability. The analytical
results are experimentally validated for the two-dimensional case in Section 5.2.

5.1. Analytical study

Performance prediction can provide a good understanding of the algorithm-architec-
ture combination. Many factors determine the behaviour of a parallel system. This
makes a detailed study complicated. However, a deterministic analytical prediction of
the execution time and efficiency of the parallel system is useful for:
a Understanding the interactions between the algorithm and the architecture.
* Comparing two algorithms on the same architegture, or the same algorithm on

different architectures.
l Analyzing the scalability of the parallel system. It is possible to obtain the isoeffi-

ciency and isotime functions with the execution time and the efficiency functions.
l Studying the effects of the architecture parameters on the execution time, efficiency

and scalability.
We consider that a d-dimensional processor mesh is used to implement the d-dimen-

sional FMVJ method. We assume that each processor has 2d bidirectional channels to
connect with its neighbouring processors and these channels communicate in parallel.
The time to send a message of n data to a neighbouring processor varies as &., + n&,,.
where t,,,, is the start time to send the message and &,, is the time per data. The fcpu
parameter denotes the time to perform a floating point arithmetic operation. These
parameters depend on the architecture.

5.1.1. Parallel execution time of an MVJ-cycle
An MV-cycle is a special case of the MVJ-cycle, which descends until a lower level

with two spatial steps per side (Nlower = 3). Let us suppose n, and n2 are smoothing

I.M. Llotente et al./Parallel Computing 22 (1996) 1169-1195 1189

iterations in the ascending and descending parts of the multigrid cycle, ai denotes the
cost of the restriction, prolongation and residual operators divided by the cost of a
smoothing iteration, and YNdtcpu is the cost of a smoothing iteration on a Nd point grid.
Then the sequential computational cost of an MV-cycle [3,15] is given by:

! Nd
TMV(Nd,l)=(n,+n2+a,)s' Nd+~+... fcpu I

N" ,
=(n,+n,+a,)s’

(1 _ 2-d) ‘CPU = (1 z’;-d) Ndtc,“* (23)

The sequential computational cost in an MVJ-cycle is obtained subtracting to the last
expression the cost given by the same expression in the lower level, and adding the
result to the cost of y, Jacobi iterations on the lower level. Since the computational cost
of a Jacobi iteration is sNd fCPU , then the computational cost of an MVJ-cycle is given by
the following expression:

TMV’(Nd,l) = TMV(Nd,l) - TMV(Np,,,,,l) + y, TJaCobi (N&, 1)
,

= t1 c’f-d, (N” -N,iw) + Y,SN&ver (24)

The degree of parallelism is always higher than the number of processors because the
lower grid level is above the critical one (grid level with a number of spatial steps equal
to the number of processors). Thus, the parallel computational time on a pd processor
mesh is the sequential time (24) divided by pd.

Following this, we estimate the communication time. The processors have to commu-
nicate their boundary points to the 2d neighbouring processors after each smoothing
iteration, restriction, prolongation and residual. Then, 2d communications of size
(N/pjd- ’ are performed in parallel (we consider all channels working in parallel). If a2
denotes the number of communications of the restriction, prolongation and residual
operators, the communication time, supposing that the lower level is the critical one, is
given by:

co, +ban +
(N/P)"- ’

2d- I &XII

+4tart +
(N/P)~- ’

22(d-I) tcom + **-

Nd- I

(25)

The communication time in an MVJ-cycle, with a lower level above the critical one,
is obtained subtracting to the last expression the communication time given by the same

1190 I.M. Llorente et d/Parallel Computing 22 (1996) 1169-1195

expression in the lower level, and adding the result to the communication time of y,
Jacobi iterations:

(26)

Adding Eq. (26) to Eq. (24) divided by pd, the global execution time TMVJ(Nd,pd) is
obtained.

5.1.2. Parallel execution time of the FMVJ method
*

The computational cost of the FMVJ method is the cost of n3 MVJ-cycles on each
grid level, from the higher to the lower plus one, plus the cost of y2 Jacobi iterations on
the lower level:

(27)

Since this method is perfectly parallel, the parallel computational time is the
sequential time (27) divided by the number of processors, pd.

The communication time is obtained in an analogous way:

TFMVJ(Nd,pd) = n3Cu=2nr,,,,,,....N~~I,VJ(Md,pd) + ~27%“~~(Nrk,,,,~~~) corn

N
+ n3y,log2~

lower

Adding E~J. (28) to Eq. (27) divided by pd, the global execution time TFMVJ(Nd,pd)
is obtained.

I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195 1191

5.1.3. Isoparameter functions of the FMVJ method on a mesh of processors
The isoefficiency function is the way the problem size Nd needs to grow with pd to

maintain a fixed efficiency. Efficiency is given by the following expression:

EFMVJ Nd

(

7-FMVJ(Nd,l)
.p”) = TFMVJ(Nd,l) + T+!~‘(Nd,pd)pd ’ (29)

The isoefficiency function is obtained equating TMVJ(Nd,l), given in (271, with
q::“‘(Nd,pd)pd, g iven in (28), and then solving this equation to find Nd as a function
of pd. It is difficult to find Nd as a function of pd. However, if we consider that the
number of points in the lower level, Ni,,,, grows linearly with the number of
processors, pd, the isoefficiency function grows linearly. Otherwise, if the lower level
remains constant, the problem size N” needs to grow faster to keep the efficiency
unchanged.

In the same way, the execution time, Eq. (28) plus Eq. (27) divided by pd, remains
constant if the numbers of points in lower and higher levels are increased linearly with
the number of processors. Therefore, isoefficiency and isotime functions are linear
functions. This means that the parallel system is perfectly scalable, its scalability metrics
are equal to one. Using a realistic scaling for obtaining more accurate solutions with all
the memory space available the efficiency and the execution time remain constant.

The residual and initial systems are solved on the lower level using yt and yZ Jacobi
iterations respectively. We have considered these factors as constants because the system
is scaled in a realistic way (Section 4.2). When the system is not scaled in a realistic
way, yI and y2 grow with Niower, and therefore the system is not perfectly scalable.

5.2. Experimental results

The two-dimensional PMVJ method has been implemented on a transputer-based
MIMD architecture (Parsys SupemodelOOO) using the message-passing programming
model. Parallel C (ANSI C with explicit message-passing) was used to write the
application. The Transputer-805 is a 2.2 Mflops microprocessor with four bidirectional
links to connect it to other transputers, all in a single chip. Each interconnection link
supports a rate of 10 Mbits/set. The Supemode allows arbitrary networks of transputers
to be configured, within the limitations of its four links. Larger machines can be
configured with the Supemode as a unit of replication, in regular arrays or in high-level
Supemodes. Our Transputer-805 network was configured as a two-dimensional mesh of
processors.

This parallel application is being used to perform simulations of the NLS and MB
equations. In this section we do not describe physical results but scalability and
performance results. We study the execution time and efficiency when the parallel
system is scaled using the time-critical and accuracy-critical scaling models. Physical
results of the parallel application can be found in [12].

As it is shown in Fig. 9 for two problem sizes, if the parallel system is scaled using
the time-critical scaling model, the problem size remains constant and, so, efficiency

1192 I.M. Llorente et al./Parallel Computing 22 (1996) 1169-1195

Efficiency

01
2~2~wocessor mesh 4~4processor mesh

Fig. 9. Efficiency for two problem sizes.

decreases. This can be verified using Eq. (29): If Nd remains constant with an
increasing number of processors, pd, efficiency function decreases.

Fig. 10 shows the efficiency when the time-critical and isomemory scaling models
are used to increase the parallel system. When the numbers of points in the higher and
lower levels are increased linearly with the number of processors (isomemoty scaling
model), efficiency remains constant. The parallel execution times for both models are
shown in Fig. 11. The execution time also remains constant with the isomemory model.
Therefore, isoefficiency and isotime functions grow linearly. These experimental results
verify the scalability analysis presented in Section 5.1.

The isomemory function maintains a constant efficiency and execution time because
it corresponds to the isoefficiency and isotime functions. The FMVJ algorithm is
therefore perfectly scalable on a processor mesh: If we increase the problem size with
the number of processors, we obtain a more accurate solution with the same efficiency
in the same execution time.

We conclude this section with an important consideration. A simulation consists of
solving one system of equations per temporal step until the final temporal instant is

Time-critical scaling model lsomemory scaling model
_) +

‘I
/ 64x64point grid 128x128 point grid

0’ I
2x2 processor mesh 4x4 processor mesh

Fig. 10. Efficiency using time-critical and isomemory scaling models.

I.M. Llorente et al./ Parallel Computing 22 (1996) 1169-1195 1193

Execution time
Time-critical scaling model lsomemory scaling model

+ -a-

15 64x64 point grid IZ&il28point grid

lo Fgrid

5

Fig. 11. Execution time using time-critical and isomemory scaling models.

reached. We have studied the scalability of the FMVJ method on a mesh of processors
solving one of these systems

Let us study the scalability of the whole simulation. If the spatial stepsize is divided
by 2 the temporal stepsize is divided by 4. Then, the number of temporal steps to reach
the same temporal instant must be multiplied by 4, and, so, 4 times more systems of
equations must be solved. This does not affect the isoefficiency function. However, N
has to grow like p d/d+2 to maintain a constant execution time. In this case, the higher
the dimension is, the more scalable the parallel system is.

6. Conclusions

In this work we have described the use of multigrid methods to obtain numerical
solutions to the nonlinear &h&linger and Maxwell-Bloch equations on a mesh of
processors. A full multigrid method is used to solve the systems of equations that arise
at each temporal step when an implicit numerical scheme is employed to study these
mathematical models from nonlinear optics.

A new scalability analysis of scientific applications on parallel architectures has been
proposed. It considers execution time and efficiency as the parameters that the parallel
system must preserve as it is scaled. In running scientific applications, we consider the
following ways to scale the parallel system: time-critical and accuracy-critical scaling
models. In the first case, scalability is assessed in terms of efficiency, or the execution
time, as the number of processors increases. In the second case, the problem size grows
with the number of processors, and one of the following parameters is held constant:
execution time with the isotime function tisotime scaling model), efficiency with the
isoefficiency function (&efficiency scaling model), or average memory with the
isomemory function (isomemory scaling model).

Using the accuracy-critical model, we are interested in obtaining the most accurate
solution without exceeding the system’s memory limits. That is, the problem size has to
grow linearly with respect to the number of processors (isomemory function). In the best

1194 I.&f. Llorente et ol./Parallel Computing 22 (1996) 1169-1195

case, therefore, the isotime and isoefficiency functions grow linearly. This gives us a
way to study the scalability of the parallel system qualitatively.

Isoefficiency and isotime scaling models have their own scalability metric. These
measure how the scaling model makes the other parameter worse. The scalability of a
parallel system is given by the two metrics. These metrics give us a way to study the
scalability of a parallel system quantitatively. The system is perfectly scalable when both
metrics are equal to one. This means that isoefficiency and isotime functions are linear
functions: Employing a realistic scaling to obtain more accurate solutions with all the
memory space available, the efficiency and the execution time remain unchanged.

In running scientific applications not only the problem size has to be scaled, other
parameters must be scaled simultaneously to obtain more accurate solutions. The
realistic scaling improves the algorithm complexity of some iterative methods, when
they are applied for solving the system of equation that arises at each temporal step
when some time dependent partial differential equations are approximated using an
implicit numerical scheme. Moreover, due to this, Jacobi, multigrid and full multigrid
methods are perfectly scalable on a mesh of processors. Their isoefficiency and isotime
functions grow linearly with the number of processors. This is proved using an
analytical prediction of its efficiency and execution time, and using experimental results
of the parallel application.

Acknowledgements

This work has been supported by the Spanish research grants TAP94-0832-C02-01
and TIC940725-CO3-02 and the Human Capital Mobility Network CHRX-CT-0459.

References

[I] A. Asenov, D. Reid and J.R. Barker, Speed-up of scalable iterative linear solvers implemented on an
array of transputers, Parallel Comput. 20 (1994) 385-397.

[2] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Marh. Comput. 31 (1977)
343-400.

[3] W.L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1988).
[4] T.F. Chan and R. Schreiber, Parallel networks for multigrid algorithms: Architecture and complexity,

SIAM J. Sci. Srat. Compur. 6/3 (1985) 698-71 I.
[5] T.F. Chan and Y. Saad, Multigrid algorithms on the hypercubc multiprocessor, IEEE Trans. Comput.

C-36/ I I (1986) 969-977.
[6] Z. Fei, I M&tin, V.M. Perez, F. Tirado and L. Vbzquez, Numerical simulations and parallel implementa-

tion of some nonlinear Schr&linger systems, Proceedings of Nonlinear Coherent Structure in Physics and
Biology, Bayreuth, Germany, June 1993 (Plenum Press, New York, 1995) 287-298.

[7] D. Gumon and J.V. Rosendale, Highly parallel multigrid solvers for elliptic PDEs: An experimental
analysis, Inr. Rep. 82-37, ICASE, NASA Langley Research Center, Hampton, VA, 1982.

[8] A. Gupta, V. Kumar and A. Sameh, Performance and scalability of preconditioned conjugate gradient
methods on parallel computers, IEEE Trans. Parallel and Distributed Systems 6/5 (1995) 455-469.

[9] A. Hasegawa, Optical Solitons in Fibers (Springer Verlag, Berlin, 1990).
[IO] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, and Programmability (McGraw-

Hill, New York, 1993).

I.M. Lloreme et al./Parallel Computing 22 (1996) 1169-1195 1195

[I I] J. Linden, Cl. Lonsdale, H. Ritzdorf and A. Schliller, Scalability aspects of parallel multigrid, Future
Generation Computer Systems 10 (1994) 429-440.

[121 I. Martin, V.M. P&z, J.M. Guerra, F. Tirado and L. Vazquez, Numerical simulations of the Maxwell-
Bloch laser equations, Proceedings of Fluctuation Phenomena: Disorder and Nonlinearity, El Escorial,
Spain, September 1994 (World Scientific Publishing Co, Singapore, 199.5) 400-406.

[13] I. Martin, F. Tirado, L. V&quez and V.M. Perez, Numerical aspects and solution of some nonlinear
Schriidinger systems on a distributed memory parallel computer, Proceedings of rhe 2nd Euromicro
Workshop on Parallel and Disrributed Processing, Malaga, Spain, January 1994 (IEEE Computer Society
Press, 1994) 245-252.

[I41 O.A. McBryan, P.O. Frederickson, J. Linden, A. Schlller, K. Solchenbach, K. Stilben, C. Thole and U.
Trottenberg, Multigrid methods on parallel computers - A survey of recent developments, Impact of
Compuring in Science and Engineering 3 (1991) l-75.

[151 S. F. McCormick, Muhigrid Methods (SIAM, Philadelphia, 1987).
[16] J.M. Ortega, and R.G. Voigt, Solution of partial differential equations on vector and parallel computers,

SIAM Rev. 27/2 (1985) 149-241.
[171 J.P. Singh, J.L. Hennesy and A. Gupta, Scaling parallel programs for multiprocessors: Methodology and

examples, IEEE Computer 26/7 (1993) 42-50.

[18] X.H. Sun, The relation of scalability and execution time, Inr. Rep. 95-62, ICASE, NASA Langley
Research Center, Hampton, VA, 1995.

[19] X.H. Sun and D.T. Rover, Scalability of parallel algorithm-machine combinations, IEEE Trans. Parallel
and Distributed Systems 5/6 (1994) 599-613.

[201 T.R. Taha and M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations,
Journal of Computational Physics 55 (1984) 203-241.

[21] P. Wesseling, Introduction to multigrid methods. Inr. Rep. 95-l 1, ICASE, NASA Langley Research
Center, Hampton, VA, 1995.

