
Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
1

“If you fail to plan, you are planning to fail!”

Benjamin Franklin, mid-eighteenth century

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
2

Lecture A.5:
Designing Parallel Programs

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2020

Lectures developed by Dr. Ignacio M. Llorente

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

A.1. Parallel Processing Architectures
A.2. Large-scale Processing on the Cloud
A.3. Practical Aspects of Cloud Computing
A.4. Application Parallelism
A.5. Designing Parallel Programs

B. Parallel Computing

C. Parallel Data Processing

Wrap-Up: Advanced Topics

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
4

CS205: Contents
APPLICATION SOFTWARE

PLATFORM

PROGRAMMING MODEL

OpenACC

OpenMP

MPI

Map-Reduce

Spark

C. BIG DATA B. BIG COMPUTE

Optimization

APPLICATION
PARALLELISM

PARALLEL PROGRAM
DESIGN

CLOUD COMPUTING PARALLEL ARCHITECTURES

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
5

Context
Designing Parallel Programs

First Think then
Code!

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
6

Context
Designing Parallel Programs

1 • Sequential Version

2 • Parallelization Overheads

3 • Numerical Complexity

4 • Efficiency and Scalability

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
7

Code Analysis

Parallelization Overheads

Numerical Complexity

Efficiency and Scalability

Roadmap
Designing Parallel Programs

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
8

Understand the Program and the Problem
Code Analysis

PARALLEL VERSION
• Develop a parallel implementation of

an existing serial code
• Fine grain / compiler or directive-

based parallelization
• Easier approach and faster to

develop

NEW PARALLEL CODE
• Develop a completely new code from

scratch
• Coarse grain / domain

decomposition parallelization
• Takes longer, but better performance

The first step in developing parallel software is to understand the problem that you wish
to solve in parallel. If you are starting with a serial program, this necessitates

understanding the existing code also

CODE ANALYSIS

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

Execution Time Components

EXECUTION_TIME = CPU_TIME + I/O_TIME + SYSTEM_TIME

POTENTIALLY PARALLEL_TIME SECTION

Code Analysis

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
10

Code Analysis
Code Profiling

CLI Tools
gprof, tconv, dtime, etime, ...

GUI Tools

Looptool (solaris) cvd (SGI)

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
11

Parallelization Overheads
Inefficiencies in Parallel Processing

PARALLEL_TIME = COMPUTATION + COORDINATION + IDLE

Communication

Synchronization

Load balancing

Sequential sections

Parallel Computing

Parallel Overheads

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
12

Parallelization Overheads
Communication

Types of Communication
• Memory sharing (implicit): Access to a

shared memory space
• Message passing (explicit): Point-to-point,

vector reductions, broadcasts, global
collective operations (all-to-all operations,
gather, scatter…)…

Scales of Communication
• Internal: Within a core (in-cache), a chip

(between caches) and a machine (across
sockets)

• External: Within a switch, across switches
within a DC, and across internet between
DCs

Source: https://computing.llnl.gov/tutorials/parallel_comp

INTRANET

INTRANET

INTERNET

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
13

Parallelization Overheads
Minimizing Communication Overhead

Overlapping with Computation
• Memory sharing: Overlap memory requests with other instructions if there is enough

work to do
• Message passing: Send a message and do computation while the message is being sent

or initiate a recv, do work and then poll to see if it is done

Latency vs. Bandwidth
• Latency: Time it takes to send a minimal (0 byte) message from point A to point B.

Commonly expressed as microseconds.
• Bandwidth: Amount of data that can be communicated per unit of time. Commonly

expressed as megabytes/sec or gigabytes/sec.

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

Parallelization Overheads
Synchronization

Types of Synchronization

• Memory sharing (explicit): Mutual exclusion (locks, mutexes, monitors, ...), consensus
(barriers...) and conditions (flags, condition variables, signals…)

• Message passing (explicit): Global synchronization (barriers, scalar reductions, ...) and
broadcasts with small signals

Synchronization

• Managing the sequence of work and the tasks performing it

• It is a critical design consideration for most parallel programs

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
15

Parallelization Overheads
Granularity

Computation to Communication Ratio
• Periods of computation are typically separated from periods of communication by

synchronization events.
• Qualitative measure of the computation grain, usually as the ratio of computation to

communication based on data and machine sizes.

Fine-Grained Coarse-Grained

Relatively small amounts of computational
work are done between communication
events

Relatively large amounts of computational
work are done between
communication/synchronization events

Low computation to communication ratio High computation to communication ratio

Source: https://computing.llnl.gov/tutorials/parallel_comp

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
16

Parallelization Overheads
Granularity

1D Parallelization 2D Parallelization

Computation n/p*n2 n3/p

Communication n2 n2/p1/2

Granularity n/p n/p1/2

Example:
• Numerical resolution of PDE using an explicit discretization method

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
17

Parallelization Overheads
Load Balancing

• Load balancing refers to the practice of distributing approximately equal amounts of
work among tasks so that all tasks are kept busy all of the time

• It can be considered a minimization of task idle time

Source: https://computing.llnl.gov/tutorials/parallel_comp

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
18

Parallelization Overheads
Data Dependencies (Sequential)

• A dependence exists between program statements when the order of statement
execution affects the results of the program

• A data dependence results from multiple use of the same location(s) in storage by
different tasks

• Dependencies are important to parallel programming because they are one of the
primary inhibitors to parallelism

DO I = 2,N
A(I) = B(I) - A(I-1)

END DO

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
19

Parallelization Overheads
Interrelation Between the Different Overheads

OVERHEAD = COMM + SYNC + LOAD IMBALANCE

GRANULARITY

TI
M
E

COMM/SYNC
DOMINATES

LOAD IMBALANCE
DOMINATES

FINE COARSE

Graph of execution time using p processors

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
20

Numerical Complexity
Time Complexity

• How fast or slow an algorithm performs
• Numerical function that depends on the data size of the problem

Type Complexity
Constant O(1)

Linear O(n)

Logarithmic O(log(n))

Quadratic O(n2)

Cubic O(n3)

Exponential 2O(n)

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
21

Numerical Complexity
Time Complexity

Example: N-body Problem

P MOLMEC MEGADYN
7,000 550,000

1 8152 sec
2 4481 sec 6305 sec
3 3956 sec
4 2427 sec 3295 sec
6 1769 sec
8 1849 sec

O(N2) O(NlogN)

• Both exhibit similar speed-up
• 550,000 particles would require 18,000 processors with MOLMEC

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
22

Numerical Complexity
Algorithms vs. Computer Improvements

Grand Challenge: High Performance Computing and Communications (NSF) [1992]

Algorithm Complexity

GE O(n2)

GS O(n2log(n))

SOR O(n3/2log(n))

CG O(n3/2log(n))

MG O(nlog(n))

Full MG O(n)

Sp
ee
du
p

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

Efficiency and Scalability
Speed-up

S(n,p) =
T(n,1)

T(n,p)

Parallel execution Speed-up and Efficiency for a given problem size and a number
of processors

Theoretical Speed-up
• ST(n,p) only considers overheads due to sequential parts

INPUT OUTPUTExecution Time

Entire Code
Potentially Parallel Section

ST(n,p) =
T(n,1)

T(n,p)

c=
Tparallel_section

Tentire_code

Parallel Fraction of Code

1

(1-c)+c/p
= If c=1, ST(n,p) = p (linear speed-up)

E(n,p) = S(n,p)
p

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
24

Efficiency and Scalability
Speed-up

Example (fixed n): c=0.95

ST(n,p) =
1

0.05+0.95/p

p LINEAR THEORETICAL
1 1 1,0
2 2 1,9
3 3 2,7
4 4 3,5
5 5 4,2
6 6 4,8
7 7 5,4
8 8 5,9
9 9 6,4
10 10 6,9

SPEEDUP

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Speedups

LINEAR THEORETICAL

Super-lin
ear?

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

Efficiency and Scalability
Amdahl Law (1967)

Amdahl's Law states that potential program speedup is defined by the fraction of
code (c) that can be parallelized

Speedup is limited by sequential code, even a small percentage of sequential code
can greatly limit potential speedup

p 0,5 0,75 0,9 0,95
10 1,8 3,1 5,3 6,9
20 1,9 3,5 6,9 10,3
30 1,9 3,6 7,7 12,2
40 2,0 3,7 8,2 13,6
50 2,0 3,8 8,5 14,5
60 2,0 3,8 8,7 15,2
70 2,0 3,8 8,9 15,7
80 2,0 3,9 9,0 16,2
90 2,0 3,9 9,1 16,5
100 2,0 3,9 9,2 16,8

SPEEDUPS	FOR	DIFFERENT	Cs

0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50 60 70 80 90 100

Speedups

0,5 0,75 0,9 0,95

Asymptotic ST for large p =>
1

1-c

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
26

Efficiency and Scalability
Speed-up

p LINEAR THEORETICAL REAL
1 1 1,0 0,9
2 2 1,9 1,6
3 3 2,7 2,1
4 4 3,5 2,6
5 5 4,2 2,9
6 6 4,8 3,2
7 7 5,4 3,5
8 8 5,9 3,7
9 9 6,4 3,9
10 10 6,9 4,1

SPEEDUP

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Speedups

LINEAR THEORETICAL REAL

SR(n,p) =
1

0.05+0.95/p+0.1
Real Speed-up

OVERHEAD = COMM + SYNC + LOAD IMBALANCE

In reality, the situation is even worse than predicted by Amdahl’s Law due the
parallelization overheads

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
27

Efficiency and Scalability
Gustafson Law (1988)

Amdahl’s law keeps the problem size fixed
Larger systems should be used to solve larger problems, ideally there should be a

fixed amount of parallel work per processor
(SCALED PROBLEM SIZE)

S’T(n,p) = 1 – c + cp

p LINEAR THEORETICAL
1 1 1,0
2 2 2,0
3 3 2,9
4 4 3,9
5 5 4,8
6 6 5,8
7 7 6,7
8 8 7,7
9 9 8,6
10 10 9,6

SPEEDUP

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Speedups

LINEAR THEORETICAL

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
28

Efficiency and Scalability
Scalability

The Program should scale up to use a large number of processors – But what does
that really mean?

FIXED PROBLEM SIZE
(strong scaling)

•Aim is to reduce execution time
•Perfect scaling is S=p with n constant

FIXED SIZE PER PROCESSOR
(weak scaling)

•Aim is to run larger problems in the
same time
•Perfect scaling is S=p with n/p
constant

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
29

Efficiency and Scalability
Strong vs. Weak Scaling

Strong Scaling
• Speed-up on the same size problem
• Perfect strong scaling: Speedup of P on P processors
• Typically, small data but computationally intense
• At some point it breaks down

Weak Scaling
• Problem grows “proportionally” to processors
• What does proportionally mean (for example NxN matrix multiply)?

• 2N x 2N - double N
• 1.4N x 1.4N - double entries
• 1.26N x 1.26N - double operations

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
30

Efficiency and Scalability
Scalability

ISOEFFICIENCY

What is the rate at which the problem size
must increase with p to keep E(n,p) fixed?

A parallel algorithm called scalable if E(n,p)
can be kept constant by increasing the

problem size as n grows

This rate determines the scalability of the
system. The slower this rate, the better

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
31

Efficiency and Scalability
Work Span

COMPUTATIONS REPRESENTED AS A GRAPH OF DEPENDENCIES

Amdahl is too simple, only talks about serial nodes

WORK = All Computations
Proportional to Ts

(time to run on single node)

SPAN= Critical Path Compute
Proportional to T∞

(time to run on infinite nodes)

UPPER BOUNDS ON SPEEDUP
Speedup <= p

Speedup <= Ts/T∞

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
32

Reading Assignments / Open Discussion
Relations between Efficiency and Executing Time at Scaling

I. M. Llorente, F. Tirado, L. Vázquez
“Some aspects about the scalability of scientific applications on parallel

architectures” Parallel Computing, 1996, Vol.22(9), pp.1169-1195

What is isomemory scaling?

What is isotime scaling?

What is isoefficiency scaling?

What is naive scaling?

What is realistic scaling?

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
33

Next Steps

• HWA due on Monday!
Linpack compilation (Performance Competition!)

• Get ready for next lecture (Part B!):
B.1. Foundations of Parallel Computing

• Get ready for first hands-on:
H1. Python Multiprocessing

• Reading assignments:

Gregory M. Kurtzer, Vanessa Sochat, Michael W. Bauer,“Singularity: Scientific
containers for mobility of compute” PLoS One. 2017; 12(5): e0177459

Lecture A.5: Designing Parallel Programs
CS205: Computing Foundations for Computational Science

Dr. David Sondak
34

Questions
Designing Parallel Programs

