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Abstract—Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require
significant resources, however not all scientists have access to sufficient high-end computing systems. Cloud computing has gained
the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure,
it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work
provides a comprehensive evaluation of EC2 cloud in different aspects. We first analyze the potentials of the cloud by evaluating the
raw performance of different services of AWS such as compute, memory, network and I/O. Based on the findings on the raw
performance, we then evaluate the performance of the scientific applications running in the cloud. Finally, we compare the performance
of AWS with a private cloud, in order to find the root cause of its limitations while running scientific applications. This paper aims to
assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud in terms of both raw performance and
scientific applications performance. Furthermore, we evaluate other services including S3, EBS and DynamoDB among many AWS
services in order to assess the abilities of those to be used by scientific applications and frameworks. We also evaluate a real scientific
computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected
performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide
where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.
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1 INTRODUCTION

THE idea of using clouds for scientific applications has
been around for several years, but it has not gained trac-

tion primarily due to many issues such as lower network
bandwidth or poor and unstable performance. Scientific
applications often rely on access to large legacy data sets
and pre-tuned application software libraries. These applica-
tions today run in HPC environments with low latency
interconnect and rely on parallel file systems. They often
require high performance systems that have high I/O and
network bandwidth. Using commercial clouds gives scien-
tists opportunity to use the larger resources on-demand.
However, there is an uncertainty about the capability and
performance of clouds to run scientific applications because
of their different nature. Clouds have a heterogeneous infra-
structure compared with homogenous high-end computing

systems (e.g. supercomputers). The design goal of the
clouds was to provide shared resources to multi-tenants
and optimize the cost and efficiency. On the other hand,
supercomputers are designed to optimize the performance
and minimize latency.

However, clouds have some benefits over supercom-
puters. They offer more flexibility in their environment. Sci-
entific applications often have dependencies on unique
libraries and platforms. It is difficult to run these applications
on supercomputers that have shared resources with pre-
determined software stack and platform, while cloud envi-
ronments also have the ability to set up a customized virtual
machine imagewith specific platform and user libraries. This
makes it very easy for legacy applications that require certain
specifications to be able to run. Setting up cloud environ-
ments is significantly easier compared to supercomputers, as
users often only need to set up a virtual machine once and
deploy it on multiple instances. Furthermore, with virtual
machines, users have no issues with custom kernels and root
permissions (within the virtual machine), both significant
issues in non-virtualized high-end computing systems.

There are some other issues with clouds that make them
challenging to be used for scientific computing. The net-
work bandwidth in commercial clouds is significantly lower
(and less predictable) than what is available in supercom-
puters. Network bandwidth and latency are two of the
major issues that cloud environments have for high-perfor-
mance computing. Most of the cloud resources use com-
modity network with significantly lower bandwidth than
supercomputers [13].
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The virtualization overhead is also another issue that
leads to variable compute and memory performance. I/O is
yet another factor that has been one of the main issues on
application performance. Over the last decade the compute
performance of cutting edge systems has improved in much
faster speed than their storage and I/O performance. I/O
on parallel computers has always been slow compared with
computation and communication. This remains to be an
issue for the cloud environment as well.

Finally, the performance of parallel systems including
networked storage systems such as Amazon S3 needs to be
evaluated in order to verify if they are capable of running
scientific applications [3]. All of the above mentioned issues
raise uncertainty for the ability of clouds to effectively sup-
port HPC applications. Thus it is important to study the
capability and performance of clouds in support of scientific
applications. Although there have been early endeavors in
this aspect [10], [14], [16], [20], [23], we develop a more com-
prehensive set of evaluation. In some of these works, the
experiments were mostly run on limited types and number
of instances [14], [16], [17]. Only a few of the researches
have used the new Amazon EC2 cluster instances that we
have tested [10], [20], [24]. However the performance met-
rics in those papers are very limited. This paper covers a
thorough evaluation covering major performance metrics
and compares a much larger set of EC2 instance types and
the commonly used Amazon Cloud Services. Most of the
aforementioned above mentioned works lack the cost evalu-
ation and analysis of the cloud. Our work analyses the cost
of the cloud on different instance types.

The main goal of this research is to evaluate the performance of
the Amazon public cloud as the most popular commercial
cloud available, as well as to offer some context for comparison
against a private cloud solution. We run micro benchmarks
and real applications on Amazon AWS to evaluate its per-
formance on critical metrics including throughput, band-
width and latency of processor, network, memory and
storage [2]. Then, we evaluate the performance of HPC
applications on EC2 and compare it with a private cloud
solution [27]. This way we will be able to better identify the
advantages and limitations of AWS on the scientific com-
puting area.

Over the past few years, some of the scientific frame-
works and applications have approached using cloud serv-
ices as their building blocks to alleviate their computation
processes [12], [31]. We evaluate the performance of some
of the AWS services such as S3 and DynamoDB to investi-
gate their abilities on scientific computing area.

Finally, this work performs a detailed price/cost analysis
of cloud instances to better understand the upper and lower
bounds of cloud costs. Armed with both detailed bench-
marks to gauge expected performance and a detailed mone-
tary cost analysis, we expect this paper will be a recipe
cookbook for scientists to help them decide where to deploy and
run their scientific applications between public clouds, private
clouds, or hybrid clouds.

This paper is organized as follows: Section 2 provides the
evaluation of the EC2, S3 and DynamoDB performance on
different service alternatives of Amazon AWS. We provide
an evaluation methodology. Then we present the bench-
marking tools and the environment settings of the testbed

in this project. Section 2.4 presents the benchmarking results
and analyzes the performance. On 2.5 we compare the per-
formance of EC2 with FermiCloud on HPL application.
Section 3 analyzes the cost of the EC2 cloud based on its per-
formance on different aspects. In Section 4, we review the
related work in this area. Section 5 draws conclusion and
discusses future work.

2 PERFORMANCE EVALUATION

In this section we provide a comprehensive evaluation of
the Amazon AWS technologies. We evaluate the perfor-
mance of Amazon EC2 and storage services such as S3 and
EBS. We also compare the Amazon AWS public cloud to the
FermiCloud private cloud.

2.1 Methodology
We design a performance evaluation method to measure the
capability of different instance types of Amazon EC2 cloud
and to evaluate the cost of cloud computing for scientific
computing. As mentioned, the goal is to evaluate the perfor-
mance of the EC2 on scientific applications. To achieve this
goal, we first measure the raw performance of EC2. We run
micro benchmarks to measure the raw performance of dif-
ferent instance types, compared with the theoretical perfor-
mance peak claimed by the resource provider. We also
compare the actual performance with a typical non-virtual-
ized system to better understand the effect of virtualization.
Having the raw performance we will be able to predict
the performance of different applications based on their
requirements on different metrics. Then we compare the
performance of a virtual cluster of multiple instances run-
ning HPL application on both Amazon EC2 and the Fermi-
Cloud. Comparing the performance of EC2, which we do
not have much information about its underlying resources
with the FermiCloud, which we know the details about, we
will be able to come up with a better conclusion about the
weaknesses of the EC2. On the following sections we try to
evaluate the performance of the other popular services
of Amazon AWS by comparing them to the similar open
source services.

Finally, we analyze the cost of the cloud computing
based on different performance metrics from the previous
part. Using the actual performance results provides more
accurate analysis of the cost of cloud computing while being
used in different scenarios and for different purposes.

The performance metrics for the experiments are based
on the critical requirements of scientific applications. Differ-
ent scientific applications have different priorities. We need
to know about the compute performance of the instances in
case of running compute intensive applications. We also
need to measure the memory performance, as memory is
usually being heavily used by scientific applications. We
also measure the network performance which is an impor-
tant factor on the performance of scientific applications.

2.2 Benchmarking Tools and Applications
It is important for us to use wide-spread benchmarking
tools that are used by the scientific community. Specifically
in Cloud Computing area, the benchmarks should have the
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ability to run over multiple machines and provide accurate
aggregate results.

For memory we use CacheBench. We perform read and
write benchmarks on single instances. For network band-
width, we use Iperf [4]. For network latency and hop dis-
tance between the instances, we use ping and traceroute.
For CPU benchmarking we have chosen HPL benchmark
[5]. It provides the results in floating-point operations per
second (FLOPS).

In order to benchmark S3, we had to develop our own
benchmark suite, since none of the widespread benchmark-
ing tools can be used to test storage like this. We have also
developed a tool for configuring a fully working virtual
cluster with support for some specific file systems.

2.3 Parameter Space and Testbed
In order to better show the capability of Amazon EC2 on
running scientific applications we have used two different
cloud infrastructures: (1) Amazon AWS Cloud, and (2) Fer-
miCloud. Amazon AWS is a public cloud with many data-
centers all around the world. FermiCloud is a private Cloud
which is used for internal use in Fermi National Laboratory.

In order to compare the virtualization effect on the per-
formance we have also included two local systems on our
tests: (1) A 6-core CPU and 16 Gigabytes of memory system
(DataSys), and (2) a 48-cores and 256 Gigabytes memory
system (Fusion).

2.3.1 Amazon EC2

The experiments were executed on three Amazon cloud
data centers: US East (Northern Virginia), US West (Oregon)
and US West (Northern California). We cover all of the dif-
ferent instance types in our evaluations.

The operating system on all of the US West instances and
the local systems is a 64 bits distribution of Ubuntu. The US
East instances use 64 bits CentOS operating system. The US
West instances use Para-virtualization technique on their
hypervisor. But the HPC instances on the US East cloud cen-
ter use Hardware-Assisted Virtualization (HVM) [7]. HVM
techniques use the features of the new hardware to avoid
handling all of the virtualization tasks like context switch-
ing or providing direct access to different devices at the soft-
ware level. Using HVM, Virtual Machines can have direct
access to hardware with the minimal overhead.

We have included different instances as well as a non-
virtualized machine. The m1.small instance is a single core
instance with low compute and network performance. M1.
medium is a single core system with 3.75 GB of memory.
C1.xlarge instance is a compute optimized with 8 cores and
7 GB of memory. M2.4xlarge is a memory optimized instan-
ces and is supposed to have high memory performance.
Hi1.4xlarge is a storage optimized instace with two SSD
drives. Finally cc1.4xlarge and cc2.8xlarge as cluster com-
pute instances, and c3.8xlarge as the new generation of
HPC instances have 16 and 32 cores and more than 40 GB
memory. These instances are optimized for HPC workloads.

2.3.2 FermiCloud

FermiCloud is a private cloud providing Infrastructure-as-a-
Service services internal use. It manages dynamically

allocated services for both interactive and batch processing.
As part of a national laboratory, one of the main goals Fermi-
Cloud is being able to run scientific applications andmodels.
FermiCloud uses OpenNebula Cloud Manager for the pur-
pose of managing and launching the Virtual Machines [27].
It uses KVM hypervisor that uses both para-virtualization
and full virtualization techniques [33]. The FermiCloud
Infrastructure is enabled with 4X DDR Infiniband network
adapters. Themain challenge to overcome in the deployment
of the network is introducedwhen virtualizing the hardware
of a machine to be used (and shared) by the VMs. This over-
head slows drastically the data rate reducing the efficiency
of using a faster technology like Infiniband. To overcome
the virtualization overhead they use a technique called
Single Root Input/output Virtualization (SRIOV) that
achieves device virtualization without using device emula-
tion by enabling a device to be shared by multiple virtual
machines. The technique involves with modifications to the
Linux’sHypervisor aswell as the OpenNebulamanager [32].

Each server is enabled with a 4x (four links) Infiniband
card with a DDR data rate for a total theoretical speed of
up to 20 Gb/s and after the 8b/10b codification 16 Gb/s.
Network latency is 1 ms when used with MPI [6]. Each card
has eight virtual lanes that can create one physical function
and seven virtual functions via SR-IOV. The servers are
enabled with 2 quad core 2.66 GHz Intel processors, 48 Gb
of RAM and 600 Gb of SAS Disk, 12 TB of SATA, and eight
port RAID Controller [32].

2.4 Performance Evaluation of AWS

2.4.1 Memory Hierarchy Performance

This section presents the memory benchmark results. We
sufficed to run read and write benchmarks. The experi-
ments for each instance were repeated three times.

Memory bandwidth is a critical factor in scientific appli-
cations performance. Many Scientific applications like
GAMESS, IMPACT-T and MILC are very sensitive to mem-
ory bandwidth [8]. Amazon has not included the memory
bandwidth of the instances. It has only listed their memory
size. We also measure the memory bandwidth of each
instance.

Fig. 1 shows the system memory read bandwidth in dif-
ferent memory hierarchy levels. The horizontal axis shows

Fig. 1. CacheBench Read benchmark results, one benchmark process
per instance.

360 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017



the cache size. The bandwidth is very stable up to a certain
cache size. The bandwidth starts to drop after a certain size.
The reason for the drop off is surpassing the memory cache
size at a certain hierarchy level.

Memory performance of the m1.small instance is signifi-
cantly lower than other instances. The low memory band-
width cannot be only attributed to the virtualization
overhead. We believe the main reason is memory throttling
imposed based on the SLA of those instances.

Another noticeable point is the low bandwidth of the
cc2.8xlarge and c3.8xlarge. These instances have similar per-
formance that is much lower than other instances. A reason
for that can be the result of the different virtual memory
allocation on the VMs by HVM virtualization on these
instances. We have however observed an effect in large
hardware-assisted virtual machines such as those on Fermi-
Cloud. In such machines, it will take a while for the system
to balance the memory out to its full size at the first launch
of the VM.

After all, the results show that the memory bandwidth
for read operation in the larger instances is close to the local
non-virtualized system.We can conclude that the virtualization
effect on the memory is low, which is a good sign for scientific
applications that are mostly sensitive to the memory performance.

Fig. 2 shows the write performance of different cloud
instances and the local system. The write performance
shows different results from the read benchmark. As in
write, the c3.8xlarge instance has the best performance next
to the non-virtualized local system.

For each instance we can notice two or three major drop-
offs in bandwidth. These drop-offs show different memory
hierarchies. For example on the c3.8xlarge instance we can
notice that the memory bandwidth drops at 24 Kbytes. We
can also observe that the write throughputs for different
memory hierarchies are different. These data points likely
represent the different caches on the processor (e.g. L1, L2,
L3 caches).

Comparing the cluster instance with the local system,
we observe that on smaller buffer sizes, the local system
performs better. But cloud instance outperforms the local
system on larger cache sizes. The reason for that could be
the cloud instances residing on more powerful physical
nodes with higher bandwidths. We can observe that the
write bandwidth on the cloud instances drops off at certain

buffer sizes. That shows the memory hierarchy effects on
the write operation.

Users can choose the best transfer size for write operation
based on the performance peaks of each instance type to get
the best performance. This would optimize a scientific
application write bandwidth.

2.4.2 Network Performance

We have run many experiments on network performance of
Amazon cloud. The experiments test the network perfor-
mance including bandwidth and latency.

We first test the local network bandwidth between
the same types of instances. Fig. 3 shows the network per-
formance of different types of nodes. In each case both of
the instances were inside the same datacenter. The network
bandwidth for most of the instances were as expected
except for two instances.

The lowest performance belongs to the t1.micro and m1.
small instances. These two instances use the same 1 Gb/s
network cards used by other instances. But they have much
lower bandwidth. We believe that the reason is sharing the
CPU cores and not having a dedicated core. This can affect
network performance significantly as the CPU is shared
and many network requests cannot be handled while
the instance is on its idle time. During the idle time of
the instance, the virtual system calls to the VMM will not be
processed and will be saved in the queue until the idle time
is over. The network performance is highly affected by pro-
cessor sharing techniques. Other works had the same obser-
vations and conclusions about the network performance in
these two instance types [9]. Another reason for the low per-
formance of the m1.small and t1.micro instances could be
throttling the network bandwidth by EC2. The Xen hypervi-
sor has the ability of network throttling if needed.

Among the instances that use the slower network cards
the m1.medium instance has the best performance. We did
not find a technical reason for that. The m1.medium instan-
ces use the same network card as other instances and does
not have any advantage on system configuration over other
instance types. We assume the reason for that is the admin-
istrative decision on hypervisor level due to their popularity
among different instance types.

Another odd result is for m1.medium instance. The
bandwidth in medium instance exceeds 1 Gb/Sec, which is
the specified network bandwidth of these. m1.medium
instance bandwidth achieves up to 1.09 Gb/sec. That is
theoretically not possible for a connection between two

Fig. 2. CacheBench write benchmark results, one benchmark process
per instance.

Fig. 3. iPerf benchmark results. Network bandwidth in a single client and
server connection, internal network.
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physical nodes with 1 Gb/s network cards. We believe the
reason is that both of the VMs reside in the same physical
node or the same cluster. In case of residing on the same
node, the packets stay in the memory. Therefore the connec-
tion bandwidth is not limited to the network bandwidth.
We can also assume that not necessarily the instances have
1 Gb/s network cards. In fact the nodes that run medium
instances may have more powerful network cards in order
to provide better network performance for these popular
instances.

The HPC instances have the best network bandwidth among
the instances. They use 10 Gb/sec network switches. The results
show that the network virtualization overhead in these instances
is very low. The performance gets as high as 97 percent of ideal
performance.

We also measure the network connection latency and
the hop distance between instances inside the Oregon
datacenter of Amazon EC2. We run this experiment to
find out about the correlation of connection latency and
the hop distance. We also want to find the connection
latency range inside a datacenter. We measure the latency
and the hop distance on 1,225 combinations of m1.small
instances. Fig. 4 shows the network latency distribution
of EC2 m1.small instances. It also plots the hop distance
of two instances. The network latency in this experiment
varies between 0.006 ms and 394 ms, an arguably very
large variation.

We can observe from the results that: (1) 99 percent of the
instances which have the transmission latency of 0.24 to
0.99 ms are 4 or 6 hops far from each other. So we can claim
that if the latency is between 0.24 to 0.99 ms the distance
between the instances is 4 to 6 hops with the probability of
99 percent. (2) More than 94 percent of the allocated instan-
ces to a user are 4-6 percent far from each other. In other
words the hop distance is 4-6 instances with the probability
of more than 94 percent.

We can predict the connection latency based on the hop
distance of instances. We have run the latency test for other
instance types. The results do not seem to be dependent on
instance type for the instances with the same network inter-
connect. The latency variance of Amazon instances is much
higher than the variance in a HPC system. The high latency vari-
ance is not desirable for scientific applications. In case of HPC
instances which have the 10 Gigabit Ethernet cards, the latency
ranges from 0.19 to 0.255 ms which shows a smaller variance and
more stable network performance.

Other researches have compared the latency of EC2
HPC instances with HPC systems. The latency of the HPC
instance on EC2 is reported to be 3 to 40 times higher than a
HPCmachine with a 23 Gb/s network card [10]. The latency
variance is also much higher.

2.4.3 Compute Performance

In this section we evaluate the compute performance of EC2
instances. Fig. 5 shows the compute performance of each
instance using HPL as well as the ideal performance
claimed by Amazon. It also shows the performance variance
of instances.

Among the Amazon instances, the c3.8xlarge has the best
compute performance. The t1.micro instance shows the low-
est performance. The figure also shows the performance var-
iance for each instance. The performance variance of the
instances is low in most of the instance types. Providing a
consistent performance is an advantage for cloud instances.

Among all of the instances, the c3.8xlarge and the non-vir-
tualized node achieve the best efficiency. Overall we can
observe that the efficiency of non-HPC instances is relatively
low. Other papers have suggested the low performance of
HPL application while running on virtualized environments
[11], [14]. However, noticing the fact that the HPC instances
were as efficient as the non-virtualized node, and the fact
that there is no other factor (e.g. network latency) affecting
the benchmark, can imply that the virtualization overhead
has nomajor effect on this program on a single node scale.

2.4.4 I/O Performance

In this section we evaluate the I/O performance of the EBS
volume and local storage of each instance. The following
charts show the results obtained after running IOR on the
local storage and EBS volume storage of each of the instan-
ces with different transfer sizes and storage devices. Fig. 6
shows the performance of POSIX read operation on differ-
ent instances. Except for the hi1.4xlarge, which is equipped
with SSDs, the throughput among other instances does not
vary greatly from one another. For most of the instances the
throughput is close to a non-virtualized system with a nor-
mal spinning HDD.

Fig. 7 shows the maximum write and read throughput
on each instance on both EBS volumes and local storage

Fig. 4. Cumulative Distribution Function and Hop distance of connection
latency between instances inside a datacenter.

Fig. 5. HPL benchmark results: compute performance of single instan-
ces comparing with their ideal performance.
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devices. Comparing with local storage, EBS volumes show a
very poor performance, which is the result of the remote
access delay over the network.

Finally, to complete these micro-benchmarks, we set up
a software RAID-0 with EBS volumes, varying the number
of volumes from 1 to 8. We ran the same benchmark on a
c1.medium instance. Fig. 8 shows the write performance
on RAID-0 on different number of EBS volumes. Looking
at the write throughput, we can observe that the through-
put does not vary a lot and is almost constant as the trans-
fer size increases. That shows a stable write throughput
on EBS drives. The write throughput on the RAID-0
increases with the number of drives. The reason for that is
that the data will be spread among the drives and is writ-
ten in parallel to all of the drives. That increases the write
throughput because of having parallel write instead of
serial write. Oddly, the performance does not improve as
the number of drives increases from one to two drives.
The reason for that is moving from the local writes to net-
work. Therefore the throughput stays the same. For 4 EBS
volumes, we can observe a 4x increase on the throughput.
In case of 8 EBS volumes we expect a 2x speed up com-
paring with the 4 EBS experiment. However the write
throughput can not scale better because of the limitation
of the network bandwith. The maximum achievable
throughput is around 120 MB/s, which is bound to the
network bandwidth of the instances that is 1 Gb/s. so we
can conclude that the RAID throughput will not exceed
120 MB/s if we add more EBS volumes.

2.4.5 S3 and PVFS Performance

In this section we evaluate and compare the performance
of S3 and PVFS. S3 is a highly scalable storage service from
Amazon that could be used onmultinode applications. Also,
a very important requirement for most of the scientific

applications is a parallel file system shared among all of
the computing nodes. We have also included the NFS as a
centralized file system to show how it performs on smaller
scales.

First we evaluate the S3 performance on read and write
operations. Fig. 9 shows the maximum read and write
throughput on S3 accessed by different instance types.
Leaving aside the small instances, there is not much differ-
ence between the maximum read/write throughput across
instances. The reason is that these values are implictily lim-
ited by either the network capabilities or S3 itself.

Next, We compare the performance of the S3 and PVFS
as two possible options to use for scientific applications.
PVFS is commonly used in scientific applications on HPC
environments. On the other hand, S3 is commonly used on
the multinode applications that run on cloud environment.
We have only included the read performance in this paper.
The experiment runs on m1.medium instances. Fig. 10
shows that the read throughput of the S3 is much lower
compared to PVFS on small scales. This results from the fact
that the S3 is a remote network storage while PVFS is

Fig. 7. Maximum write/read throughput on different instances.

Fig. 8. RAID0 Setup benchmark for different transfer sizes—write
Fig. 6. Local POSIX read benchmark results on all instances.

Fig. 9. S3 performance, maximum read and write throughput.

Fig. 10. Comparing the read throughput of S3 and PVFS on different
scales.
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installed and is spread over each instance. As The number
of the instances increase, PVFS cannot scale as well as the S3
and the performance of the two systems get closer to each
other up to a scale that S3 slightly performs better than the
PVFS. Therefore it is better to choose S3 if we are using
more than 96 instances for the application.

Next, we evaluate the performance of PVFS2 for the
scales of 1 to 64 as we found out that it performs better than
S3 in smaller scales. To benchmark PVFS2 for the following
experiments we use the MPIIO interface instead of POSIX.
In the configuration that we used, every node in the cluster
serves both as an I/O and metadata server. Fig. 11 shows
the read operation throughput of PVFS2 on local storage
with different number of instances and variable transfer
size. The effect of having a small transfer size is significant,
where we see that the throughput inceases as we make the
transfer size bigger. Again, this fact is due to the overhead
added by the I/O transaction.

Finally, Fig. 12, shows the performance of PVFS2 and
NFS on memory through the POSIX interface. The results
show that the NFS cluster does not scale very well and the
throughput does not increase as we increase the number of
nodes. It basically bottlenecks at the 1Gb/s which is the net-
work bandwidth of a single instance. PVFS2 performs better
as it can scale very well on 64 nodes on memory. But as we
have shown above, it will not scale on larger scales.

2.4.6 DynamoDB performance

In this section we are evaluating the performance of Ama-
zon DynamoDB. DynamoDB is a commonly used NoSql
database used by commercial and scientific applications
[30]. We conduct micro benchmarks to measure the
throughput and latency of insert and look up calls scaling
from 1 to 96 instances with total number of calls scaling

from 10,000 to 960,000 calls. We conduct the benchmarks on
both m1.medium and cc2.8xlarge instances. The provision
capacity for the benchmarks is 10 K operations/s which is
the maximum default capacity available. There is no infor-
mation released about how many nodes are used to offer a
specific throughput. We have observed that the latency of
DynamoDB doesn’t change much with scales, and the value
is around 10 ms. This shows that DynamoDB is highly scal-
able. Fig. 13 shows the latency of look up and insert calls
made from 96 cc2.8xxlarge instances. The average latency
for insert and look up are respectively 10 and 8.7 ms.
Ninety percent of the calls had a latency of less than 12 ms
for insert and 10.5 ms for look up.

We compare the throughput of DynamoDB with ZHT on
EC2 [26]. ZHT is an open source consistent NoSql database
providing a service which is comparable to DynamoDB in
functionality. We conduct this experiment to better under-
stand the available options for having a scalable key-value
store. We use both m1.medium and cc2.8xlarge instances to
run ZHT. On 96 nodes scale with 2cc.8xlarge instance type,
ZHT offers 1,215.0 K ops/s while DynamoDB failed the test
since it saturated the capacity. The maximum measured
throughput of DynamoDB was 11.5 K ops/s which is found
at 64 cc2.8xlarge instance scale. For a fair comparison, both
DynamoDB and ZHT have eight clients per node.

Fig. 14 shows that the throughput of ZHT on m1.
medium and cc2.8xlarge instances are respectively 59x
and 559x higher than DynamoDB on 1 instance scale. On
the 96 instance scale they are 20x and 134x higher than
the DynamoDB.

Fig. 13. CDF plot for insert and look up latency on 96 8xxl instances.

Fig. 14. Throughput comparison of DynamoDB with ZHT running on m1.
medium and cc2.8xlarge instances on different scales.

Fig. 12. Scalability of PVFS2 and NFS in read/write throughput using
memory as storage.

Fig. 11. PVFS read on different transfer sizes over instance storage.
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2.4.7 Workflow Application Performance

In this section we analyze the performance of a complex sci-
entific computing application on the Amazon EC2 cloud.
The application investigated is Power Locational Marginal
Price Simulation (LMPS), and it is coordinated and run
through the Swift parallel programming system [12].
Optimal power flow studies are crucial in understanding
the flow and price patterns in electricity under different
demand and network conditions. A big computational chal-
lenge arising in power grid analysis is that simulations need
to be run at high time resolutions in order to capture effect
occurring at multiple time scales. For instance, power flows
tend to be more constrained at certain times of the day and
of the year, and these need to be identified.

The power flow simulation application under study ana-
lyzes historical conditions in the Illinois grid to simulate
instant power prices on an hourly basis. The application
runs linear programming solvers invoked via an AMPL (A
Mathematical Programming Language) representation and
collects flow, generation, and price data with attached geo-
graphical coordinates [25]. A typical application consists of
running the model in 8,760 independent executions corre-
sponding to each hour of the year. Each application task
execution spans in the range between 25 and 80 seconds as
shown in the application tasks time distribution graph in
Fig. 15. A snapshot of one such result prices plotted over
the map of Illinois is shown in Fig. 16. The prices are in US
dollars per megaWatt-hour shown as interpolated contour
plots across the areas connected by transmission lines and
generation stations shown as lines and circles respectively.
A series of such plots could be post processed to give an ani-
mated visualization for further analysis in trends etc.

The execution of the application was performed on an
increasing number of m1.large instances (see Fig. 17).

For data storage, we use S3. Given that the application
scales well to 80 instances, but not beyond that. The perfor-
mance saturation is a salient point that comes out of Fig. 17.
With S3 object store being remote, at 100 VMs it takes long
enough to fetch the data that it is dominating execution
time. More scalable distributed storage subsystem should
be investigated that is geared towards scientific computing,
such as PVFS, Lustre, or GPFS.

2.5 Performance Comparison of EC2 versus
FermiCloud

In this section we compare the performance of the EC2 as a
public cloud with FermiCloud as a private cloud on HPL

benchmark which is a real HPC application. Before com-
paring the performance of Amazon on real Applications,
we need to compare the raw performance of the two
resources.

2.5.1 Raw Performance Comparison

Before comparing the performance of the two infrastructures
on real applications like HPL, we need to compare their raw
performance on the essential metrics in order to find the root
causes of their performance differences. The most effective
factors on HPL performance are compute power, and
Network latency and bandwidth. We need to compare these
factors on the instances with similar functionalities.

On both of the Clouds, we chose the instances that can
achieve the highest performance on HPL applications. On
EC2, we use c3.8xlarge instances that are enabled with Intel
Xeon E5-2,680 v2 (Ivy Bridge) Processors and a 10 Gigabits
network adapter with SRIOV technology. On FermiCloud,
each server machine is enabled with 2 quad core 2.66 GHz
Intel processors, and eight port RAID Controller. On Fermi-
Cloud machines are backed by (16 Gigabits effective) Infini-
band network adapters.

Fig. 17. The runtime of LMPS on m1.large instances in different scales.

Fig. 16. A contour plot snapshot of the power prices in $/MWh across the
state of Illinois for an instance in July 2000

Fig. 15. The LMPS application tasks time distributions.
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The CPU efficiency is defined as the performance of the
VM running HPL on a single VM with no network connec-
tivity, divided by the theoretical peak performance of the
CPU. Fig. 18 compares the raw performance of the Amazon
EC2 with FermiCloud on CPU and network performance.
The results show that the virtualization overhead on Fermi-
Cloud instances are slightly lower than the EC2 instances.

The significant difference of the two infrastructures is
on the network adapters. The FermiCloud instances are
enabled with InfiniBand network adapters and are able to
provide higher performance compared to the EC2 instances
that have 10 Gigabit network cards. The efficiency of both of
the systems on network throughput is high. The network
throughput efficiency is defined as the VM network perfor-
mance divided by the theoretical peak of the device. Fermi-
Cloud and EC2 network adapters respectively achieve 97.9
and 97.4 percent efficiency. We used MPIbench to calculate
the network latency. There is a 6x difference between the
network latency of the two clouds. The latency of the Fermi-
Cloud instance is 2.2 us as compared to the latency of EC2
instance which is 13 us. Another important factor is the
latency variance. The latency variance on both systems is
within 20 percent which is stable. HPL application uses MPI
for communication among the nodes. The network latency
can decrease the performance of the application by affecting
the MPI performance.

2.5.2 HPL Performance Comparison

In this section we evaluate the performance of HPL applica-
tion on both on a virtual cluster on both FermiCloud and
EC2. The main difference on the two infrastructures is
on their virtualization layer and the network performance.
FermiCloud uses KVM and is enabled with InfiniBand
network adapters. EC2 uses its own type of virtualization
which is based on Xen hypervisor and has 10 Gigabit net-
work adapters.

The best way to measure the efficiency of a virtual cluster
on a cloud environment is defining it as the performance of
the VM which include the virtualization overhead divided
by the host performance that doesn’t include virtualization
overhead. We can measure the efficiency as defined for Fer-
miCloud since we have access to the host machines. But
that is not possible for EC2 since we do not have access to
the physical host machines. Therefore we compare the scal-
ability efficiency of the two clouds which is defined as the
overhead of the application performance as we scale up the
number of cloud instances.

Fig. 19 compares the efficiency of EC2 and FermiCloud
running HPL application on a virtual cluster. Due to budget
limitations we run the experiment up to 32 instances scale.

The results show that the efficiency is dependent on the
network latency. On the two instances scale, both clouds
show good efficiency. They only lose 10 percent efficiency
that is due to the MPI communications latency added
between the instances. Since both of the clouds have rela-
tively powerful network adapters, the communication over-
head is still not a bottleneck on two instances scale. As the
number of instances increase, the applications processes
make more MPI calls to each other and start saturating the
network bandwidth. Having InfiniBand network, the Fermi-
Cloud loses less efficiency than the EC2. The efficiency of
EC2 drops to 82 percent and the efficiency of the Fermi-
Cloud drops to 87 percent. The only major difference
between the instances of private and public cloud is on their
network latency. As a result, we can see that they provide
similar efficiency with the private cloud instance being
roughly about 5-8 percent more efficient on different scales.

3 COST ANALYSIS

In this section we analyze the cost of the Amazon EC2 cloud
from different aspects. We analyze the cost of instances for
compute intensive applications as well as for data intensive
applications. Our analysis provides suggestions to different
cloud users to find the instance type that fits best for certain
application with specific requirements. Next section com-
pares the instances based on their memory capacity and
performance.

3.1 Memory Cost
This section compares the cost of the memory on Amazon
EC2 instances. Fig. 20 compares the cost of instances based
on their memory capacity and bandwidth.

The GB/Dollar metric on the left hand side shows the
capacity cost effectiveness of the instances. The most cost
effective instances for memory capacity are the high mem-
ory (m2.2xlarge & m2.4xlarge) instances. But looking at
the cost of the memory bandwidth, we can observe that
these instances do not have the best memory bandwidth
efficiency. The most cost effective instances based on the

Fig. 18. Raw performance comparison overview of EC2 versus
FermiCloud.

Fig. 19. Efficiency comparison of EC2 and FermiCloud running HPL
application on a virtual cluster.
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memory bandwidth efficiency are the m1.small and m1.
medium instances.

3.2 CPU Cost
In this section we analyze the cost-effectiveness of instances
based on the performance of the instances while running
compute intensive applications. The metric for our analysis
is GFLOPS/Dollar.

Fig. 21 compares the ideal performance cost of the instan-
ces based on Amazon claims with their actual performance
while running HPL benchmark. The results show that the
most cost-effective instance is c3.8xlarge.

3.3 Cluster Cost
We analyze the cost of the virtual clusters set up by m1.
medium and cc1.4xlarge instances in different sizes. Fig. 22
compares the cost of the virtual clusters based on their
compute performance.

3.4 DynamoDB Cost
Finally in this section we evaluate the cost of DynamoDB. In
order to better understand the value of offered service, we
compare the cost with the cost of running ZHT on EC2 on
different instance types.

Fig. 23 shows the hourly cost of 1,000 ops/s capacity
offered by DynamoDB compared to the equal capacity pro-
vided by ZHT from the user point of view.

We are comparing the two different scenarios of cost of
using a free application on rented EC2 instances versus get-
ting the service from DynamoDB. In case of DynamoDB,
since the users pays for the capacity that they get, the num-
ber of instances doesn’t affect the cost. That’s why the cost
of DynamoDB is always constant. For ZHT, the system effi-
ciency and performance varies on different scales hence the
variation in costs for ZHT at different scales. Since the
cc2.8xlarge instances provide much better performance per
money spent, the cost per operation is as good as 65X lower
than DynamoDB. However, the better costs come at the
complexity of managing a virtual cluster of machines to
operate ZHT. It is likely that for low loads including spo-
radic requirements for DynamoDB, it makes financial sense
to run on Amazon AWS services, but for higher perfor-
mance requirements it is much more beneficial to simply
operate a dedicated ZHT system over EC2 resources.

3.5 Performance and Cost Summary
This section summarizes the performance and the cost effi-
ciency of Amazon EC2 and other services of AWS. Table 1
shows the performance overview of the different instance
types on EC2. The performance results of the instances
mostly match with the prediction based on the claims of

Fig. 23. Cost comparison of dynamoDB with ZHT.

Fig. 22. Cost of virtual cluster of m1.medium and cc1.4xlarge.

Fig. 21. CPU performance cost of instances.

Fig. 20. Memory capacity and memory bandwidth cost.
TABLE 1

Performance Summary of EC2 Instances

CPU bw Mem. bw Net. bw Disk I/O

m1.small Low Low Low Low
m1.med Low Avg Avg Low
m1.lrg Avg Avg Avg Avg
m1.xlrg Avg Avg Avg Avg
c1.med Avg Avg Avg Low
c1.xlrg Avg High Avg Avg
m2.2xlrg High High Avg Avg
cc1.4xlrg High High High Avg
cc2.8xlrg High High High Avg
c3.8xlrg High High High High
hi1.lrg High Avg High High
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Amazon. There have been anomalies in some of the specific
instance types. Instances like m1.xlarge have average per-
formance while m1.medium instance has shown a perfor-
mance that was higher than expected.

Table 2 summarizes the cost-efficiency of instance types
of EC2. The compute optimized instances show better cost
efficiency. Finally Table 3 summarizes the performance of
S3 and DynamoDB.

4 RELATED WORK

There have been many researches that have tried to evaluate
the performance of Amazon EC2 cloud [14], [16], [17]. How-
ever the experiments were mostly run on limited types and
number of instances. Therefore they lack the generality in
their results and conclusions, as they have not covered all
instance types.

Ostermann et al. have evaluated Amazon EC2 using
micro-benchmarks in different performance metrics. How-
ever their experiments do not include the more high-end
instances that are more competitive to HPC systems. More-
over, the Amazon performance has improved since then and
more features have been added to make it useful for HPC
applications [14]. In addition to the experiments scope of
that paper, our work provides the evaluations of the raw per-
formance of a variety of the instances including the high-end
instances, as well as the performance of the real applications.

He et al. have deployed a NASA climate prediction
application into major public clouds, and compared the
results with dedicated HPC systems results. They have run
micro-benchmarks and real applications [15]. However they
only run their experiments on small number of VMs. We
have evaluated the performance of EC2 on larger scales.

Jackson et al. have deployed a full application that per-
forms massive file operations and data transfer on Amazon
EC2 [18]. The research mostly focuses on different storage
options on Amazon.

Walker evaluates the performance of EC2 on NPB bench-
marks and compares their performance on EC2 versus
NCSA ABE supercomputer on limited scale of 1 and 4
instances [36]. The paper suffices to bring the results with-
out detailed analysis and does not identify what this gap
contributes to. Other papers have run the same benchmark
on different infrastructures and provided better analysis of
the results [15], [35].

Only a few of the researches that measure the applicabil-
ity of clouds for scientific applications have used the new
Amazon EC2 cluster instances that we have tested [10], [20],
[24]. Mehrotra compares the performances of Amazon EC2
HPC instances to that of NASA’s Pleiades supercomputer
[10]. However the performance metrics in that paper is very
limited. They have not evaluated different performance
metrics of the HPC instances. Ramakrishnan et al. have
measured the performance of the HPCC benchmarks [20].
They have also applied two real applications of PARATEC
and MILC.

Juve et al. investigate different options of data manage-
ment of the workflows on EC2 [24]. The paper evaluates the
runtime of different workflows with different underlying
storage options. The aforementioned works have not pro-
vided a comprehensive evaluation of the HPC instances.
Their experiments are limited to a few metrics. Among the
works that have looked at the new HPC instances, our work
is the only one that has evaluated all of the critical perfor-
mance metrics such as memory, compute, and network
performance.

Jackson compares the conventional HPC platforms to
EC2 using real applications on small scales. The evaluation
results show poor performance from EC2 virtual cluster
running scientific applications. However they haven’t used
HPC instances, and have used instances with slower inter-
connects. Apart from the virtualization overhead, the
instances are not quite comparable to highly tuned nodes
on the super computers [21].

Many works have covered the performance of public
clouds without having an idea about the host performance
of the nodes without virtualization overhead [14], [15], [16].
Younge et al. have evaluated the performance of different
virtualization techniques on FutureGrid private cloud [11].
The focus of that work is on the virtualization layer rather
than the cloud infrastructure.

Gupta et al. in identify the best fit for the cloud among
the HPC applications [35]. He investigates the co-existence
of the cloud with super computers and suggests a hybrid
infrastructure run for HPC applications that fit into the
cloud environment. The paper also provides the cost analy-
sis of running cloud on different HPC applications and
shows where it is beneficial to use cloud.

Many papers have analyzed the cost of the cloud as an
alternative resource to dedicated HPC resources [18], [19],
[25]. Our work covers the storage services performance
both on micro-benchmarks as well as the performance while
being used by data-intensive applications.

Our work is unique in a sense that it provides compre-
hensive evaluation of EC2 cloud in different aspects. We
first evaluate the performance of all instance types in order
to better identify their potentials and enable users to choose
the best instances for different use case scenarios. After

TABLE 2
Cost-Efficiency Summary of EC2 Instances

CPU bw Mem. Cap. Mem. bw Net. bw

m1.small Avg Avg High High
m1.med Avg Avg High High
m1.lrg Avg Avg Avg Avg
m1.xlrg Avg Avg Low Low
c1.med High Low High Low
c1.xlrg High Low Low Low
m2.2xlrg Avg High Low Low
cc1.4xlrg Avg Avg Low Low
cc2.8xlrg High Avg Low Avg
c3.8xlrg High Avg Low Avg
hi1.lrg Low Low Low Low

TABLE 3
Performance and Cost-Efficiency Summary of AWS Services

Scalability Cost-efficiency Data Granularity

S3 High High Large data
DynamoDB High Low Small data
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identifying the potentials, we compare the performance of
the public cloud and a private cloud on different aspects,
running both microbenchmarks and real scientific applica-
tions. Being able to measure the virtualization overhead on
the FermiCloud as a private cloud, we could provide a
more realistic evaluation of EC2 by comparing it to the
FermiCloud.

Another important feature of the Cloud is having differ-
ent services. We provide a broader view of EC2 by analyzing
the performance of cloud services that could be used inmod-
ern scientific applications. More scientific frameworks and
applications have turned into using cloud services to better
utilize the potential of Cloud [12], [31]. We evaluate the per-
formance of the services such Amazon S3 and DynamoDB
as well as their open source alternatives running on cloud.
Finally, this work is unique in comparing the cost of different
instances based onmajor performance factors in order to find
the best use case for different instances of Amazon EC2.

5 CONCLUSION

In this paper, we present a comprehensive, quantitative
study to evaluate the performance of the Amazon EC2 for
the goal of running scientific applications. We first evaluate
the performance of various instance types by running micro
benchmarks on memory, compute, network and storage. In
most of the cases, the actual performance of the instances is
lower than the expected performance that is claimed by
Amazon. The network bandwidth is relatively stable. The
network latency is higher and less stable than what is avail-
able on the supercomputers. Next, based on the perfor-
mance of instances on micro-benchmarks, we run scientific
applications on certain instances. We finally compare the
performance of EC2 as a commonly used public cloud with
FermiCloud, which is a higher-end private cloud that is tai-
lored for scientific for scientific computing.

We compare the raw performance as well as the perfor-
mance of the real applications on virtual clusters with multi-
ple HPC instances. The performance and efficiency of the
two infrastructures is quite similar. Their only difference
that affects their efficiency on scientific applications is the
network bandwidth and latency which is higher on Fermi-
Cloud. FermiCloud achieves higher performance and effi-
ciency due to having InfiniBand network cards. We can
conclude that there is need for cloud infrastructures with
more powerful network capacity that are more suitable to
run scientific applications.

We evaluated the I/O performance of Amazon instances
and storage services like EBS and S3. The I/O performance
of the instances is lower than performance of dedicated
resources. The only instance type that shows promising
results is the high-IO instances that have SSD drives on
them. The performance of different parallel file systems is
lower than performance of them on dedicated clusters. The
read and write throughput of S3 is lower than a local stor-
age. Therefore it could not be a suitable option for scientific
applications. However it shows promising scalability that
makes it a better option on larger scale computations. The
performance of PVFS2 over EC2 is convincible for using in
scientific applications that require a parallel file system.

Amazon EC2 provides powerful instances that are capa-
ble of running HPC applications. However, the performance

a major portion of the HPC applications are heavily depen-
dent on network bandwidth, and the network performance
of Amazon EC2 instances cannot keep upwith their compute
performance while running HPC applications and become a
major bottleneck. Moreover, having the TCP network proto-
col as the main network protocol, all of the MPI calls on HPC
applications are made on top of TCP protocol. That would
add a significant overhead to the network performance.
Although the newHPC instances have higher network band-
width, they are still not on par with the non-virtualized HPC
systems with high-end network topologies. The cloud
instances have shown to be performing very well, while run-
ning embarrassingly parallel programs that have minimal
interaction between the nodes [10]. The performance of
embarrassingly parallel application with minimal communi-
cation on Amazon EC2 instances is reported to be compara-
ble with non-virtualized environments [21], [22].

Armed with both detailed benchmarks to gauge expected
performance and a detailed price/cost analysis, we expect
that this paper will be a recipe cookbook for scientists
to help them decide between dedicated resources, cloud
resources, or some combination, for their particular scien-
tific computing workload.
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