CS205: Computing Foundations for Computational Science, Spring 2020

HARVARD

School of Engineering
and Applied Sciences

PSR |NSTITUTE FOR APPLIED Lt 2

gﬂmm COMPUTATIONAL SCIENCE
RO
>
-«

AT HARVARD UNIVERSITY

Guide: OpenMP on AWS

Ignacio M. Llorente

v2.1-4 Mar 2020

Abstract

This is a guideline document to show the necessary actions to set up and use gcc to evaluate its
OpenMP support on Ubuntu (16.04).

Requirements

e First you should have Followed the Guide “First Access to AWS". It is assumed you already have
an AWS account and a key pair, and you are familiar with the AWS EC2 environment.

e We strongly recommend an instance with at least 4 vCPUs to be able to evaluate parallel
implementation. The results in this guide have been obtained on a t2.2xlarge instance with 8
vCPUs, which is the instance type recommended in the homework assignment.

e The files needed to do the exercises are available for download from Canvas.
Acknowledgments

The author is grateful for constructive comments and suggestions from David Sondak, Charles Liu,
Matthew Holman, Keshavamurthy Indireshkumar, Kar Tong Tan, Zudi Lin, Nick Stern and Hayoun Oh.



1.

vy W U

S

CS205: Computing Foundations for Computational Science, Spring 2020

Install gcc
Install gcc via the toolchain PPA

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update

sudo apt-get install gcc

To check the gcc installation is successful run following command in the terminal

gcc -v

2. Verify OpenMP Support

This section includes a simple session aimed at verifying the OpenMP support provided by the gcc
compiler.

Use 1scpu to visualize the number of CPUs and cores of the system.

$ lscpu

Architecture: x86 64

CPU op-mode (s) : 32-bit, 64-bit
Byte Order: Little Endian
CPU (s) : 8

On-line CPU(s) list: 0-7

Thread(s) per core: 1

Core(s) per socket: 8

Socket (s) : 1

NUMA node (s) : 1

Vendor ID: GenuinelIntel
CPU family: 6

Model: 63

Model name: Intel (R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
Stepping: 2

CPU MHz: 2400.072

Ur

Upload to the VM the omp sc.c, compile it with the -fopenmp flag, and run the code with
different numbers of cores.

gcc -fopenmp omp sc.c -0 omp ScC
export OMP_NUM THREADS=8
time ./omp sc

Upload to the VM the omp mm.c code with the OpenMP parallelization of seq mm.c, compile it
with the -fopenmp flag, and run the code with a growing number of cores.



CS205: Computing Foundations for Computational Science, Spring 2020

$ ulimit -s 64000

$ gcc -03 -fopenmp omp mm.c -o omp mm O3
$ export OMP NUM THREADS=1
$ time ./omp mm O3 > output

real Om47.568s
user Omd7.512s
SYyS Om0.057s

$ export OMP NUM THREADS=2
$ time ./omp mm O3 > output

real Om25.851s
user 0m49.879s
SYyS Om0.048s

$ export OMP NUM THREADS=4
$ time ./omp mm O3 > output

real Oml13.981s
user 0m50.533s
SYyS Om0.076s

$ export OMP NUM THREADS=8
$ time ./omp mm O3 > output

real Om7.910s
user Om50.586s
sSyS 0m0.092s

There are two important considerations from previous results:

e An OpenMP program in one thread runs slower than its sequential version, because the
parallelized version introduces an overhead associated with the setup of the runtime environment
and the creation of the thread. Moreover the compiler may not be able to as aggressively optimise
the parallel code as the serial code.

e In order to measure times we must use real time and not cpu time, which adds the time consumed
by the process in all CPUs. See that CPU times are the same for any number of threads.

e This code ends with a write to file part that limits the speedup (Amdahl law). In our particular case
this sequential part takes 1.8 seconds approximately. If we only consider the parallel part we
achieve a linear speedup.



CS205: Computing Foundations for Computational Science, Spring 2020

4. Automatic Parallelization
gcc brings a simple automatic parallelization:

e Upload seqg mm.c, timing.c, timing.h totheVM
e Use the automatic parallelization flag -ftree-parallelize-loops=8 to generate a parallel
version of seq mm.c

$ gcc -03 -DUSE_CLOCK -ftree-parallelize-loops=8 seq mm.c timing.c -o seq mm ap
$ time ./seqg mm_ap > output

real Om7.960s
user 0m50.891s
SYyS Om0.084s

Stop your instances when are done for the day to avoid
incurring charges
Terminate them when you are sure you are done with your
instance




