CS205: Computing Foundations for Computational Science, Spring 2020

HARVARD

School of Engineering
and Applied Sciences

PX®ISE |NSTITUTE FOR APPLIED 5 00 108

@’W COMPUTATIONAL SCIENCE
\n N
»
-«

AT HARVARD UNIVERSITY

Guide: OpenACC on AWS

Ignacio M. Llorente, David Sondak

v2.0 - February 22, 2020

Abstract

This is a guideline document to show the necessary actions to set up the system to use OpenACCin
GPU-base accelerated computing instances on AWS.

Requirements

e First you should have followed the Guide “First Access to AWS”. It is assumed you already
have an AWS account and a key pair, and you are familiar with the AWS EC2 environment.

e Take into account that GPU-powered instances are expensive.

e The files needed to do the exercises are available for download from Canvas.

Acknowledgments

The author is grateful for constructive comments and suggestions from David Sondak, Charles Liu,
Matthew Holman, Keshavamurthy Indireshkumar, Kar Tong Tan, Zudi Lin and Nick Stern.



CS205: Computing Foundations for Computational Science, Spring 2020

1. Configure the VM

Launch an instance with “Ubuntu Server 16.04” as AMI and “g3.4xlarge” as instance type. This
is an instance powered by one NVIDIA Tesla M60 GPU with 8 GiB of GPU memory and 2048
parallel processing cores. [Your default account may not allow you to use any GPUs (including
g3.4xlarge). In that case, via “support” on AWS dashboard, request access to g3.4xlarge.]

You should include the internal hostname and IP to /etc/hosts. You will find these under
Description once the instance is up and running. In my specific case:

S cat /etc/hosts
127.0.0.1 localhost
172.30.4.157 ip-172-30-4-157

Check the availability of the GPU within the running instance

$ 1lspci | grep -i nvidia

00:1e.0 VGA compatible controller: NVIDIA Corporation
GM204GL [Tesla M60] (rev al)

By default the EBS volume is only 8GiB and we need 128GiB.

$ df -h

Filesystem Size Used Avail Use% Mounted on
udev 60G 0 60G 0% /dev

tmpfs 126G 8.7M 12G 1% /run
/dev/xvdal 8G 6G 4.0G 69% /

Go to the AWS control panel and in the Volumes section of the EC2 dashboard find your EBS
partition and resize its volume. Then within the running system you have to extend the Linux
File System.

$ sudo growpart /dev/xvda 1

CHANGED: disk=/dev/xvda partition=1: start=4096 old:
size=16773086,end=16777182 new: size=73396190,end=73400286

A look at the 1sblk output confirms that the partition /dev/xvdal now fills the available
space on the volume /dev/xvda:

$ 1lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT



CS205: Computing Foundations for Computational Science, Spring 2020

xvda 202:80 0 128G 0 disk
L_xvdal 202:81 0 128G 0 part

e Use a file system-specific command to resize each file system to the new volume capacity. For a
Linux ext2, ext3, or ext4 file system, use the following command, substituting the device name
to extend:
$ sudo resize2fs /dev/xvdal

e Make sure we have some basic packages installed on Ubuntu

$ sudo apt-get update
$ sudo apt-get install build-essential

e The gcc version I'm using is 5.x

$ gcc --version

gcc (Ubuntu 5.4.0-6ubuntul~16.04.4) 5.4.0 20160609

2. Install CUDA

e Usewget from the EC2 instance
$ wget

http://developer.download.nvidia.com/compute/cuda/repos/ubu

ntul604/x86 64/cuda-repo-ubuntul604 8.0.61-1 amd64.deb

e We should now have a deb file called
cuda-repo-ubuntul604 8.0.61-1 amd64.deb in the home directory. Run the
following commands to install CUDA:

$ sudo dpkg -i cuda-repo-ubuntul604 8.0.61-1 amdé64.deb
$ sudo apt-get update

$ sudo apt-get install cuda
e Now you can check the CUDA installation:
$ nvidia-smi

Tue Oct 17 14:47:53 2017

| NVIDIA-SMI 384.81 Driver Version: 384.81 |



[mmm e B Rt R +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap] Memory-Usage | GPU-Util Compute M. |
R e === mmmmmmm—m——m e fmm==—=———e ===
| 0 Tesla M60 Off | 00000000:00:1E.0 Off | 0 |
| N/A 28C PO 40W / 150W | OMiB / 7613MiB | 98% Default |
B e e T o o +
B e ettt bt +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
============================ === === ====================== ======|
| No running processes found
o +

e Check the time needed to run this command. This is not reasonable. It turns out this is due to
the default configurations being suboptimal. You can follow the steps below to re-configure
the GPU settings:

o Configure the GPU settings to be persistent
$ sudo nvidia-smi -pm 1

Disable the autoboost feature for all GPUs on the instance

o
$ sudo nvidia-smi --auto-boost-default=0
o Setall GPU clock speeds to their maximum frequency

$ sudo nvidia-smi -ac 2505,875

e Runningnvidia-smi should now be faster!

3. Install PGI Community Edition

PGl Community Edition includes a no-cost license to a recent release of the PGl Fortran, C and C++
compilers and tools for multicore CPUs and NVIDIA Tesla GPUs, including all OpenACC, OpenMP
and CUDA Fortran features.

e Download pgilinux-2019-1910-x86-64.tar.gz from
https://www.pgroup.com/products/community.htmand perform the following
installation steps
1. Download the file from the link onto your local machine (it’s a big file)

2. Copyittothe AWSinstance $ scp -i *course key* *local filepath*

*remote filepath*
Once the file is on the VM instance, proceed to unpack it using the following command.

$ tar -xzvf pgilinux-2019-1910-x86-64.tar.gz

$ sudo ./install


https://www.pgroup.com/products/community.htm

CS205: Computing Foundations for Computational Science, Spring 2020

During install you will need to go through the following steps:

Sign the EULA license by hitting @ where you should type “accept” to accept the license.

2. You will then be asked if you want to do a single system install or a network. Choose 1 for
single system

3. Then you will be asked which directory you would like to install in. Press enter to keep the
default /opt/pgi

4. You will be asked if you want to update the links in the 2019 directory. Press y for yes and
then hit enter to continue

5. You will be asked two questions about MPI and GPU support for OpenMPI. Go ahead and
pressy for both of these and hit enter to continue

6. Finally, you will be asked two last questions about using a professional license and setting

read/write permissions. Answer no to both of these.

Configure your shell environment.

export PGI=/opt/pgi;

v U U

export PATH=/opt/pgi/linux86-64/19.10/bin:S$SPATH;
export MANPATH=$MANPATH:/opt/pgi/linux86-64/19.10/man;
export LM LICENSE FILE=$LM LICENSE FILE:/opt/pgi/license.dat;

Run pgaccelinfo to see that your GPU and drivers are properly installed and available. For
NVIDIA, you should see output that looks something like the following:

$ pgaccelinfo

CUDA Driver Version:

NVRM version:

9000

NVIDIA UNIX x86 64 Kernel Module 384.81

Sat Sep 2 02:43:11 PDT 2017

Device Number: 0

Device Name: Tesla M60
Device Revision Number: 5.2

Global Memory Size: 7983005696
Number of Multiprocessors: 16

Concurrent Copy and Execution: Yes

Total Constant Memory: 65536

Total Shared Memory per Block: 49152
Registers per Block: 65536

Warp Size: 32

Maximum Threads per Block: 1024

Maximum Block Dimensions: 1024, 1024, o4
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B

Clock Rate: 873 MHz
Execution Timeout: No



CS205: Computing Foundations for Computational Science, Spring 2020

Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: Yes
Memory Clock Rate: 2505 MHz
Memory Bus Width: 256 bits

L2 Cache Size:

Max Threads Per SMP:

2097152 bytes
2048

Async Engines: 2
Unified Addressing: Yes
Managed Memory: Yes

PGI Compiler Option: -ta=tesla:cc50

4. Our First OpenACC Program

e Upload tothe VMthe acc_sc.c code, compile it with pgcc, and run the code on the GPU. Use
options -acc tosupport OpenACC and -Minfo to provide verbose info:

$ pgcc -acc -Minfo acc_sc.c -o acc_sc

vecaddgpu:
4, Generating copyin(al:n])
1)

Generating copyout (r[:n
Generating copyin(b[:n])

5, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
5, #pragma acc loop gang, vector (128)/* blockIdx.x threadIdx.x */

e Runthe code
$ ./acc_sc

e You should see the output
0 errors found

e You can enable additional output by setting environment variables.
$ export PGI ACC NOTIFY=1

e After executing the code you should see the output

launch CUDA kernel
function=vecaddgpu 1line=5 device=0 threadid=1 num gangs=782
num workers=1 vector length=128 grid=782 block=128

file=/home/ubuntu/acc_sc.c



CS205: Computing Foundations for Computational Science, Spring 2020

The extra output tells you that the program launched a kernel for the loop at line 5, with a
CUDA grid of size 782, and a thread block of size 128.

if you set the environment variable PGI_ACC NOTIFY to 3, the output will include information
about the data transfers as well:

upload CUDA data file=/home/ubuntu/acc sc.c function=vecaddgpu
line=4 device=0 threadid=1 variable=a bytes=400000

upload CUDA data file=/home/ubuntu/acc_sc.c function=vecaddgpu
line=4 device=0 threadid=1 variable=b bytes=400000

launch CUDA kernel file=/home/ubuntu/acc sc.c
function=vecaddgpu 1line=5 device=0 threadid=1 num gangs=782
num workers=1 vector length=128 grid=782 block=128

download CUDA data file=/home/ubuntu/acc_sc.c

function=vecaddgpu 1line=6 device=0 threadid=1 wvariable=r
bytes=400000

If you set the environment variable PGI ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU.

Accelerator Kernel Timing data
/home/ubuntu/acc_sc.c
vecaddgpu NVIDIA devicenum=0
time (us): 162
4: compute region reached 1 time
5: kernel launched 1 time
grid: [782] Dblock: [128]
device time (us): total=7 max=7 min=7 avg=7
elapsed time(us): total=550 max=550 min=550 avg=550
4: data region reached 2 times
4: data copyin transfers: 2
device time(us): total=105 max=59 min=46 avg=52

6: data copyout transfers: 1



CS205: Computing Foundations for Computational Science, Spring 2020

device time (us): total=50 max=50 min=50 avg=50

e This tells you that the program entered one accelerator region and spent a total of about 162
microseconds in that region. It copied two arrays to the device, launched one kernel and
brought one array back to the host.

Stop your instances when are done for the day to avoid
incurring charges
Terminate them when you are sure you are done with your
instance




