Lecture 16: Language Model

CS109B Data Science 2

Pavlos Protopapas, Mark Glickman, and Chris Tanner
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We could easily spend an entire semester on this material.
The goal for today and Wednesday is to convey:
* the ubiquity and importance of sequential data
* high-level overview of the most useful, relevant models
 foundation for diving deeper

* when to use which models, based on your data
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Background

Regardless of how we model sequential data, keep in mind that we can

estimate any time series as follows:
This compounds for

all subsequent events,
too

T

P(xq, ..., x7) = Hp(xtlxt-p es X1)

t=1

Conditional probability

of an event, depends on

all of the events that
occurred before it.

Joint distribution of all
measurements
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Example

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

YRR ‘
s
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Example

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

2,22, ‘
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Example

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

2,22, ‘

TDdm’ ) = P(O)P(4m| )P R
P(7fi0) = P(C2)P (S| ©2)P (1 |4, 2)

Day 1 Day 2 Day 3
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Example

Why is it useful to accurately estimate the joint of any
given sequence of length N7
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Background

Having the ability to estimate the probability of any
sequence of length N allows us to determine the
most likely next event (i.e, sequence of length N +
1)

P( &5 1%,7) = (43 | dm )P (2 | 15 fm )

P(% )P
‘—v—"—v—"—v—"—v—’

Day 1 Day 2 Day 3 Day 4

|IACS |58 18 0%

* CS109B, PROTOPAPAS, GLICKMAN, TANNER

10



For the remainder of this lecture, we will use text
(natural language) as examples because:

* |It’s easy to interpret success/failures

* Real-world impact and commonplace usages

* Availability of data to try things yourself

Yet, for any model, you can imagine using any other sequential data
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Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

| like to sing
during class

| like to give

homework
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Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

Spam Not Spam
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Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

I

I

French
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>
Q
>
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Language Modelling: Formal Definition

A Language Model estimates the probability of any sequence of words

let X = “Eleni was late for class”
Wl W2 W3 W4, W5

P(X) = P("Eleni was late for class”)
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Language Modelling

0O 0 0 O OLHOLOL HOL PP

Generate Text

Google

how do |

{=

how do i get my check

how do i file for unemployment
how do i download the zoom app
how do i renew my passport

how do i use zoom

how do i get a passport

how do i get home

how do i screenshot

how do i register to vote

how do i love thee

Google Search I'm Feeling Lucky

Report inappropriate predictions
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Language Modelling

B € wenttothe]

gym

Generate Text

space
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Language Modelling

Generate Text

Google Translate

X Text B Documents
DETECT LANGUAGE SPANISH v «’ ENGLISH SPANISH
El perro marrén X The brown dog

\!/ <.) 15/5000 v 4.)
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Language Modelling

“Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi, Schiff &
Killary. The Feds then closed the courtroom doors.”

v v

Fake News Real News
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Language Modelling

A Language Model is useful for:

Generating Text
* Auto-complete

* Speech-to-text

Classifying Text
* Authorship attribution

 Detecting spam vs not spam

* Question-answering / chatbots

e Machine translation

And much more!

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling

Today, we heavily focus on Language Modelling (LM) because:
1. It's foundational for nearly all NLP tasks

2. Since we’re ultimately modelling a sequence, LM approaches are

generalizable to any type of data, not just text.

v
K%g* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others.

Count how often each word occurs (in the training data).

v
K%%,* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

let X = “Eleni was late for class”
Wl WZ W3 W4_ W5

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

~

Let X = “Eleni was late for class You calculate each of

wp W Wz W4 Wsg these probabilities from
the training corpus

/

P(X) = P(Eleni)P(was)P(late)P(for)P(class)

= 0.00015 *0.01 * 0.004 * 0.03 * 0.0035
= 6.3x10°13
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Language Modelling: unigrams

UNIGRAM ISSUES?

% CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

UNIGRAM ISSUES?

Context doesn’t play a role at all

P("Eleni was late for class”) = P(“class for was late Eleni”)

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

UNIGRAM ISSUES?

Context doesn’t play a role at all

P("Eleni was late for class”) = P(“class for was late Eleni”)

Sequence generation: What’s the most likely next word?

Eleni was late for class

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling: unigrams

UNIGRAM ISSUES?

Context doesn’t play a role at all

P("Eleni was late for class”) = P(“class for was late Eleni”)

Sequence generation: What’s the most likely next word?

Eleni was late for class

Eleni was late for class th

Angi was late for class the the

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling: bigrams

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let X = "Eleni was late for class”
wqy Wy W3 W4 Wg

[IaCS |
K%;W@ CS109B, PROTOPAPAS, GLICKMAN, TANNER

29



Language Modelling: bigrams

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

probability

Let X = “lEleni was

wp Wy

P(X) = P(was|Eleni)

late for class”
W3 W4 W5

[IaCS |
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Language Modelling: bigrams

How can we build a language model?

Alternative Approach:

bigram model

Look at pairs of consecutive words

probability

Let X = "Elenilwas late

for class”

wqp Wy W3

P(X) = P(was|Eleni)P(late|was)

Wy W 5

[IaCS |
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Language Modelling: bigrams

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

probability
Let X = "Eleni waq late for tlass”
W1 WZ W3 W4 W5

P(X) = P(wasl|Eleni)P(late|was)P(for|late)

* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: bigrams

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

probability
Let X = "Eleni was latelfor class]|’
W1 WZ W3 W4 W5

P(X) = P(was|Eleni)P(late|was)P(for|late)P(class|tor)

%* CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: bigrams

How can we by~ N\
You calculate each of these probabilities

by simply counting the occurrences
count(for class)

P(class | for) =

probability
Let X = "Eleni was latelfor class]|’
W1 WZ W3 W4 W5

P(X) = P(was|Eleni)P(late|was)P(for|late)P(class|tor)

%,g‘gd.;’ﬁ CS109B, PROTOPAPAS, GLICKMAN, TANNER
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Language Modelling: bigrams

BIGRAM ISSUES?

|IACS |58 18 0%
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Language Modelling: bigrams

BIGRAM ISSUES?

* Out-of-vocabulary items are O - kills the overall probability

* Always need more context (e.g., trigram, 4-gram), but

sparsity is an issue (rarely seen subsequences)
* Storage becomes a problem as we increase window size

* No semantic information conveyed by counts (e.g., vehicle vs car)

4‘* CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling: neural networks

IDEA: Let’s use a neural networks!

First, each word is represented by a word embedding
(e.g., vector of length 200)

man (00000 @)

woman (00 00O @)

table 000 0O @)

s * CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling: neural networks

s S

Each circle is a specific floating point scalar

IDEA: Let’s ust

* Words that are more semantically similar to one another
will have embeddings that are proportionally similar,

First, each wo too

(e.g., vector of| « We can use pre-existing word embeddings that have
been trained on gigantic corpora /

000000

woman (00 00O @)

table 000 0O @)
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Language Modelling: neural networks

These word embeddings are so rich that you get nice properties:

king (00000 @]

man (00O 0O @)

+

woman (00000 @]

~ queen 000000

— Word2vec: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe: https://www.aclweb.org/anthology/D14-1162.pdf CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling: neural networks

How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

P(xeqq1|Xe) Xp—1) o) X1)

<

next word  previous words

Example input sentence QOO0 0000 0000 0000)

She went to class

W CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

class?
Output layer Q000
w
Hidden layer lOOOOOOOOm

v 4
Example input sentence [.“Q Q000 “‘.]

She went to

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

class?
Output layer Q000 9 = softmax(Wh + b,) € RV
w4
Hidden layer lOOOOOOOOm h=f(Vx+by)

v 1

Example input sentence (@@O@@® OOO® OOOO®| x = [xq,x,,x3]

Concatenated word embeddings

She went to
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

after
Output layer Q000 9 = softmax(Wh + b,) € RV
w4
Hidden layer lOOOOOOOOm h=f(Vx+by)

v 1

Example input sentence (@@O@@® OOO® OOOO®| x = [xq,x,,x3]

Concatenated word embeddings

went to class
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

visiting
Output layer Q000 9 = softmax(Wh + b,) € RV
w
Hidden layer lOOOOOOOOm h=f(Vx+by)

v 1

Example input sentence (@@O@@® OOO® OOOO®| x = [xq,x,,x3]

Concatenated word embeddings

to class after

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER

0
0
Lol
8
B




Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

her
Output layer Q000 9 = softmax(Wh + b,) € RV
w4
Hidden layer lOOOOOOOOm h=f(Vx+by)

v 1

Example input sentence (@@O@@® OOO® OOOO®| x = [xq,x,,x3]

Concatenated word embeddings

class after  visiting
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

grandma
Output layer Q000 9 = softmax(Wh + b,) € RV
wt
Hidden layer lOOOOOOOOm h=f(Vx+by)

v 1

Example input sentence (@@O@@® OOO® OOOO®| x = [xq,x,,x3]

Concatenated word embeddings

after visiting her
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Language Modelling : Feed-forward Neural Net

FFNN STRENGTHS?

FFNN ISSUES?

K%;W@ CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling : Feed-forward Neural Net

FFNN STRENGTHS?

* No sparsity issues (it’s okay if we’ve never seen a segment of words)

* No storage issues (we never store counts)

FFNN ISSUES?

* Fixed-window size can never be big enough. Need more context.

Increasing window size adds many more weights

The weights awkwardly handle word position

No concept of time

Requires inputting entire context just to predict one word

s * CS109B, PROTOPAPAS, GLICKMAN, TANNER




Language Modelling

We especially need a system that:
* Has an “infinite” concept of the past, not just a fixed window

* For each new input, output the most likely next event (e.g., word)

ggg‘;gg@ CS109B, PROTOPAPAS, GLICKMAN, TANNER




Outline

Language Modelling
RNNs/LSTMs +ELMo
Seq2Seq +Attention

Transformers +BERT

Conclusions
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Language Modelling

IDEA: for every individual input, output a prediction

Let's use the previous hidden state, too ‘

went
Output layer Q000 9 = softmax(Wh + b,) € RV
A
Hidden layer (OO0 0000000)] h=fVx+b)
v 1
Example input word (0000 | X = Xq

She single word embedding

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




Language Modelling: RNNs

Neural Approach #2: Recurrent Neural Network (RNN)

Y1 Y2 V3 YVa
Output layer Q000 000 0000 0000

vt wt o, vt wi

Hidden layer ~ ([QOOQOQ)] == (0OO000] == (0000 0) == (GOOOO)

v T vT vT vT

Input layer [‘.“ ] [‘..‘ ] [‘..‘ ] [‘... ]

X1 X2 X3 X4

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




Language Modelling: RNNs

We have seen this abstract view in Lecture 15.

Yi
Output layer 0000
w U
The recurrent loop U conveys that the
Hidden layer (©0000] current hidden layer is influenced by the
v T hidden layer from the previous time step.

Input layer (0000 |

4@# CS109B, PROTOPAPAS, GLICKMAN, TANNER




RNN (review)

Training Process

Error CE(y', 9" CE(y?,°) CE(y>,9°)
Y1 Y2 Y3

Output layer 0000 000 0000
ot vt wt

Hidden layer ~ (QOOO O] == (OO0 O) = (OO0
v 4 v 4 v 4

Input layer [“.‘ ] [“‘. ] [.‘.‘ ]
X1 X9 X3
She went to

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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RNN (review)

Training Process

CE(yL,9) == ) yilog®h)

weWw

Error

QuiipLitleyer During training, regardless of our output predictions,

we feed in the correct inputs

Hidden layer

Input layer

=’ PROTOPAPAS, GLICKMAN, TANNER




RNN (review)

Training Process

CE(yL,9) == ) yilog®h)

weWw

Error CE(y", oY) CE(y?, %) CE(y®,9°) CE(y*, 9%
went? over? class? after?
Outputlayer § |[OO0O 0000 0000 O000O

vt o, vt o, vt , wt

Hidden layer CO000) == (0O0OQ) = (O0O000) =P (6O00O




RNN (review)

(y,,9!) = — z yilog(9L)

weWw

To update our weights (e.g. U), we calculate the gradient

JL

of our loss w.r.t. the repeated weight matrix (e.g., -0 )

Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

Hidden layer CO000] == (0000 0] = (00000) =P (60000

A T S S

Input layer [“" ] [“" ] [".‘ ] [“‘. ]
X1 X2 X3 X4
She went to class

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




RNN (review)

Training Process

Error CE(y", oY) CE(y?,°) CE(y?,9°) CE(y*, 9%
went? over? class? after?
Output layer y Q000 Q000 0000 0000

vt o, vt o, vt , wt

Hidden layer ~ (OOOOOQ)] == (0000 O] == (0000 0) = (6000 O)

VT VT VT VT

Input layer (0000 | (0000 | (0000 ] [“‘. ]
X1 X2 X3 X4
She Went 'tO Class

NSO

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




RNN (review)

Training Process oL
av
Error CEyh %) CE(y% %) CE(y*, %) CE(y*, 9%
went? over? class? after?
Output layer § |[OOOO Q000 Q000 Q000

vt , vt o, wt o, wih

Hidden layer  (OOOOQ)] == (0000 0] == (00000) == (6000 O)

VT VT VT VT

Input layer (0000 | (0000 | (0000 ] [“‘. ]
X1 X2 X3 X4
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RNN (review)

Training Process oL
v
Error CEyh %) CE(y% %) CE(y*, %) CE(y*, 9%
went? over? class? after?
Output layer § |[OOOO Q000 Q000 Q000

vt , vt .owt o, wi

Hidden layer ~ (QOOOQ)] == (0000 O] == (00000) =P (G000 0)

VT VT VT VT

Input layer (0000 | (0000 | (0000 ] [“‘. ]
X1 X2 X3 X4
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RNN (review)

Training Process oL
aVv
Error CE(y',9h) CE(y?,9?) CE(y>,93) CE(y*, 3%
went? over? class? after?
Output layer y Q000 Q000 0000 0000
w T Ul w T K w T U3 w T
Hidden layer (OO0 Q) ==p (0000 0] == (00000) =P (00000)
1t vt vt 1
Input layer (0000 | (0000 | (0000 ] [“‘. ]
X1 X2 X3 X4
She went to class

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER



RNN (review)

* This backpropagation through time (BPTT) process is

expensive

* Instead of updating after every timestep, we tend to do so

every T steps (e.g., every sentence or paragraph)

* This isn’t equivalent to using only a window size T

(a la n-grams) because we still have ‘infinite memory’

%,g‘g.ﬁ CS109B, PROTOPAPAS, GLICKMAN, TANNER




RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

4‘* CS109B, PROTOPAPAS, GLICKMAN, TANNER




RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

"Sorry”
Output layer 0000

Hidden layer Q0000

Input layer (0000 ]

<START>

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

"Sorry” Harry shouted panicking
Output layer 0000 Q000 Q000 0000

vt vt Wty wt

Hidden layer [OOOOO)] _> (elele)e)e)! —> ([OOO0OO0] # (OOOOO)]

VT VT VT VT

Input layer (0000 | (0000 | (0000 ] (0000 ]
X1 X2 X3 X4
<START> "Sorry” "Harry” shouted,

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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RNN: Generation

NOTE: the same input (e.g., “Harry”) can easily yield different outputs,
depending on the context (unlike FFNNs and n-grams).

"Sorry” Harry shouted panicking
Output layer 0000 Q000 Q000 0000

vt vt Wty wt

Hidden layer OO000Q] = (00000) = (00000 =P (00000

VT VT VT VT

Input layer (0000 ] (0000 | (0000 ) (0000 )
X1 X9 X3 X4
<START> "Sorry” “Harry” “shouted,”

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




RNN: Generation

When trained on Harry Potter text, it generates:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the

common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

matce: https://medium.com/deep-writing/harry- potter- -written-by-artificial-intelligence-8a9431803da6

- CS10YB, PROTOPAPAS, GLICKMAN, TANNER




RNN: Generation

When trained on recipes

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese -- chopped
1 ¢ Coconut milk

3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




RNNs: Overview

RNN STRENGTHS?

* Can handle infinite-length sequences (not just a fixed-window)
* Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

* Same weights used for all inputs, so word order isn’t wonky (like FFNN)

RNN ISSUES?

 Slow to train (BPTT)

* Due to ”infinite sequence”, gradients can easily vanish or explode

* Has trouble actually making use of long-range context

K%@é‘ CS109B, PROTOPAPAS, GLICKMAN, TANNER




RNNs: Overview

RNN STRENGTHS?

* Can handle infinite-length sequences (not just a fixed-window)
* Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

* Same weights used for all inputs, so word order isn’t wonky (like FFNN)

RNN ISSUES?

 Slow to train (BPTT)

* Due to ”infinite sequence”, gradients can easily vanish or explode

* Has trouble actually making use of long-range context
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RNNs: Vanishing and Exploding Gradients (review)

aL*
vl

?

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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RNNs: Vanishing and Exploding Gradients (review)

aL*
vl

oLt
av3
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RNNs: Vanishing and Exploding Gradients (review)

L4
oLt 9Lt gv3 av
_— — 4 o4
avl — av3 gv2 BRI

(0000
V1 VZ V3 u




RNNs: Vanishing and Exploding Gradients (review)

oLt
1
oL*  aL* av3 av? W
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RNNs: Vanishing and Exploding Gradients (review)

To address RNNs’ finnicky nature with long-range context, we
turned to an RNN variant named LSTMs (long short-term
memory)

But first, let’s recap what we’ve learned so far
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Sequential Modelling (so far)

ClaSS yl 5;2 5;3
(ceiote) 0 o

vt ot v oot v vt

P(went|She) = SoUnt(She went) 00000) = (G5000) = (00000
count(She) W T WT W T W T
©5%%) @9 @@
She went  to She went to
n-grams FENN RNN 00C
 Kind of robust... almost « Handles infinite context

Basic counts; fast .
(in theory)

* Fixed window size

Fixed window size
 Robust to rare words

« Weirdly handles context
positions * Slow

Sparsity & storage issues

Not robust

* No ”memory" Of past ° DlﬁlCUIty Wlth |Ong context
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_YOU KEEP USING THAT WORDS.
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Long short-term memory (LSTM)

* A type of RNN that is designed to better handle long-range

dependencies

* In “vanilla” RNNs, the hidden state is perpetually being

rewritten

* In addition to a traditional hidden state h, let’s have a
dedicated memory cell c for long-term events. More power to

relay sequence info.
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Inside an LSTM Hidden Layer

Ct+1

Neural Network Pointwise Vector

Layer Operation  Transfer Concatenate Copy

R https://colah.github.io/posts/2015-08-Understanding-LSTMéé
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Inside an LSTM Hidden Layer

some old memories are “forgotten”

A Lo |l I [ ? A
ﬁ hey ~ b 4
&) %) &)

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

R https://colah.github.io/posts/2015-08-Understanding-LSTMéé
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Inside an LSTM Hidden Layer

Neural Network Pointwise Vector
BEMER: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation  Transfer  Concatenate Copy
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Inside an LSTM Hidden Layer

A

some old memories are “forgotten”

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

Bl https://colah.github.io/posts/2015-08-Understanding-LSTMs/

109B, PROTOPAPAS, GLIC
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Inside an LSTM Hidden Layer

) AT @

memory is written, erased, and
read by three gates — which are
influenced by x and h

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

Neural Network Pointwise Vector

%@ https://colah.github.io/posts/2015-08-Understanding-LSTMS/, 15 proromapas. GLic Layer Operation Transfer Concavenate Copy




Inside an LSTM Hidden Layer

It’s still possible for LSTMs to suffer from vanishing/exploding

gradients, but it’s way less likely than with vanilla RNNs:

* If RNNs wish to preserve info over long contexts, it must delicately

find a recurrent weight matrix W), that isn’t too large or small

* However, LSTMs have 3 separate mechanism that adjust the flow

of information (e.g., forget gate, if turned off, will preserve all info)
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Long short-term memory (LSTM)

LSTM STRENGTHS?

« Almost always outperforms vanilla RNNs

« Captures long-range dependencies shockingly well

LSTM ISSUES?

« Has more weights to learn than vanilla RNNs; thus,

* Requires a moderate amount of training data (otherwise, vanilla
RNNs are better)

 Can still suffer from vanishing/exploding gradients

s * CS109B, PROTOPAPAS, GLICKMAN, TANNER




Sequential Modelling

Y1 Y2 Y3
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Sequential Modelling

IMPORTANT

If your goal isn’t to predict the next item in a sequence, and you

rather do some other classification or regression task using the

sequence, then you can:
* Train an aforementioned model (e.g., LSTM) as a language model

* Use the hidden layers that correspond to each item in your

sequence

v
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Sequential Modelling

1. Train LM to learn hidden layer 2. Use hidden layer
embeddings embeddings for other tasks

Sentiment score

Y1 Y2 Y v
Output L @ & (0900}
layer M I/I/T I/I/T M/T T
Hidden 050> 55550 % @509 Y @o5ss @00000000000000)
S I Y N S T SR S
nput  (©999)  (0089) (G0%9)  (6669) 00000)  (CO000 00000 00000
layer X4 T X3 X4 X1 X2 X3 X4
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Sequential Modelling

Or jointly learn hidden embeddings toward a particular task
(end-to-end)

Output Sentiment score
ayer @%50)
Hidden T

ayer2 (OO0 000000O000O0)]

Hi Wt vt wto ot
idden U U U
layer 1 (©2000) = (65000) = (G0000) =p [©2000)

VT VT VT VT
Input (G0%9) (©909) (689) (©8%9)

layer X1 X5 X3 X4
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You now have the foundation for modelling sequential data.

Most state-of-the-art advances are based on those core
RNN/LSTM ideas. But, with tens of thousands of researchers
and hackers exploring deep learning, there are many tweaks

that haven proven useful.

(This is where things get crazy.)




Bi-directional (review)

symbol for a BRNN :

Y

|

previous state

t
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Bi-directional (review)

RNNs/LSTMs use the left-to-right context and sequentially

process data.

If you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?
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RNN Extensions: Bi-directional LSTMs (review)

For brevity, let’s use the follow schematic to represent an RNN

hk R hL hj
IR IREING
Hidden layer ) _} ® —} O —> O
O @) @) @)
o o o o
Input layer X1 X2 X3 X4
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RNN Extensions: Bi-directional LSTMs (review)

For brevity, let’s use the follow schematic to represent an RNN

o . lo| 8 .8
Hidden layer ) _} ® —} O —> O
O @) @) @)
O O O O
Input layer X1 X2 X3 X4

hi h3 h3 hi
9 9 g 8
Ol=|0 Ol€==|0
O O O O
< o < <
X1 X2 X3 X4
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RNN Extensions: Bi-directional LSTMs (review)

hR 6 hR 6
Concatenate the hidden layers 1 8 2 8
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RNN Extensions: Bi-directional LSTMs (review)

Output layer Y1 V2 V3 Va
ROl r[Q] &[0 z [0
Concatenate the hidden layers hl 8 hz 8 h3 8 h4 8
19 hzl9) hil9)  hal©
ht RL h% hj hY  hE h¥ hy
SINCGIRGINRG o /L Bl R
Hidden layer O_>O_>O_> O 04—0 04_0
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Input layer X1 X5 X3 X4 X1 X2 X3 X4
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RNN Extensions: Bi-directional LSTMs (review)

BI-LSTM STRENGTHS?

« Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

e Slower to train

* Only possible if access to full data is allowed
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Deep RNN (review)

LSTMs units can be arranged in layers, so that the output of each unitis
the input to the other units. This is called a deep RNN, where the
adjective “deep” refers to these multiple layers.

* Each layer feeds the LSTM on the next layer

* First time step of a feature is fed to the first LSTM, which processes
that data and produces an output (and a new state for itself).

* That output is fed to the next LSTM, which does the same thing, and
the next, and so on.

* Then the second time step arrives at the first LSTM, and the process
repeats.
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Deep RNN (review)




Deep RNN (review)

Hidden layer #1

Input layer

L 4 4
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2 =i (0000

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.
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Deep RNN (review)

Hidden layer #2

Hidden layer #1

Input layer
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Deep RNN (review)
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ELMo: Stacked Bi-directional LSTMs

General Idea:
* Goalis to get highly rich embeddings for each word (unique type)

* Use both directions of context (bi-directional), with increasing

abstractions (stacked)

* Linearly combine all abstract representations (hidden layers) and

optimize w.r.t. a particular task (e.g., sentiment classification)




ELMo: Stacked Bi-directional LSTMs

Forward Language Model Backward Language Model

™ 3'3'3' 3'5'3'
5'3'3' ij?if’ifj

Embedding I_I_I_I_ Ll_l_l_] I_I_I_I_l [TTT] [ITTT] [TTT]

I I

lf‘ : . Let < {

LSTM
Layer #1

skeation: http://jalammar.github.io/illustrated-bert/

CS109B, PROTOPAPAS, GLICKMAN, TANNER




Embedding of “stick” in “Let’s stick to” - Step #2

—1- Concatenate hidden layers Forward Language Model Backward

1]

(...

2- Multiply each vector by
a weight based on the task

I < S
il X Sy

A N A ST

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context

|llgsikeation: http://jalammar.github.io/illustrated-bert/
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ELMo: Stacked Bi-directional LSTMs

* ELMo yielded incredibly good word embeddings, which yielded state-of-

the-art results when applied to many NLP tasks.

* Main ELMo takeaway: given enough training data, having tons of

explicit connections between your vectors is useful

(system can determine how to best use context)




REFLECTION

So far, for all of our sequential modelling, we have been

concerned with emitting 1 output per input datum.

Sometimes, a sequence is the smallest granularity we care

about though (e.g., an English sentence)
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Sequence-to-Sequence (seq2seq)

If our input is a sentence in Language A, and we wish to translate it to
Language B, it is clearly sub-optimal to translate word by word (like our

current models are suited to do).

Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder
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Sequence-to-Sequence (seq2seq)

h% hE ht h%
SN NG
Hidden Iayer O O O O
O O O O
© © e B
Inputlayer  The  brown dog  ran

ENCODER RNN
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Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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SN I
Hidden Iayer O O O O
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ENCODER RNN
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Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

hE  RE hE | KE hP D hP hy  hg
GGG R RN RN

Hidden layer O»O»O*O #O»O»O»O»O
O O O O O O O O O
o © ¥ |© ¥ & g 9 e

nputlayer  The  brown dog ran Le  chien brun a  couru
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Sequence-to-Sequence (seq2seq)

571 Y2 }73 )74 )75

hE  RE hE | KE h?  Rp hP hy  hg

R RGN R R
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ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

Training occurs like RNNs typically do; the loss
(from the decoder outputs) is calculated, and Y2 Y3 Va Vs

we update weights all the way to the T T T T
beginning (encoder)

2 3 z 2 3 5
| 2 P = 5 - @ 3 ] R
Hidden layer O e _} '®) _} ®)
O v, v, v, Q O O @,
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ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

Testing generates decoder outputs one word

at a time, until we generate a <EOS> token. Y2 V3 Va Vs
Each decoder’s y; becomes the input x;, 4 T T T T
2 3 : h h? EE h_ls)
| o «8 & (& [9 @ 9 B £
Hidden layer O 3 o o
O O O O Q O Q O
o o ¥ |& o o 1 I

Inputlayer  The brown dog ran Le chien brun a couru

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?
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Sequence-to-Sequence (seq2seq)

It’s crazy that the entire “meaning” of the 15t sequence is expected
to be packed into this one embedding, and that the encoder then
never interacts w/ the decoder again. Hands free.
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GGG R RN RN
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O O O O O O O O O
o © ¥ |© ¥ & g 9 e
nputlayer  The  brown dog ran Le  chien brun a  couru

ENCODER RNN DECODER RNN
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Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a

distribution of all of the encoder’s hidden states?
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seq2seq + Attention

NOTE: each attention weight aij Is based on the decoder’s current hidden state, too.
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seq2seq + Attention

NOTE: each attention weight aij Is based on the decoder’s current hidden state, too.
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seq2seq + Attention

NOTE: each attention weight aij Is based on the decoder’s current hidden state, too.
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seq2seq + Attention

NOTE: each attention weight aij Is based on the decoder’s current hidden state, too.
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seq2seq + Attention

NOTE: each attention weight aij Is based on the decoder’s current hidden state, too.
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seq2seq + Attention
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