
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman, and Chris Tanner

Lecture 16: Language Model

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

2

Outline

CS109B, PROTOPAPAS, GLICKMAN, TANNER

We could easily spend an entire semester on this material.

The goal for today and Wednesday is to convey:

• the ubiquity and importance of sequential data

• high-level overview of the most useful, relevant models

• foundation for diving deeper

• when to use which models, based on your data

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

4

Outline

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Background

5

Regardless of how we model sequential data, keep in mind that we can

estimate any time series as follows:

𝑃 𝑥#, … , 𝑥& =(𝑝 𝑥* 𝑥*+#, … , 𝑥#)
&

*-#

Joint	distribution	of	all	
measurements

Conditional	probability	
of	an	event,	depends	on	
all	of	the	events	that	
occurred	before	it.

This compounds for

all subsequent events,

too

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Example

6

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Example

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

𝑃 	∗∗,∗∗,∗∗ =

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Example

8

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

𝑃 	∗∗,∗∗,∗∗ = 𝑃 ∗∗ 𝑃 ∗∗ | ∗∗ 𝑃(∗∗ | ∗∗,∗∗)
Day 1 Day 2 Day 3

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Example

9

Why is it useful to accurately estimate the joint of any

given sequence of length 𝑁?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Background

10

Having the ability to estimate the probability of any

sequence of length 𝑁 allows us to determine the

most likely next event (i.e., sequence of length 𝑁 +
1)

𝑃 	∗∗,∗∗,∗∗, ? = 𝑃 ∗∗ 𝑃 ∗∗ | ∗∗ 𝑃(∗∗ | ∗∗,∗∗)𝑃(? | ∗∗,∗∗,∗∗)

Day 1 Day 2 Day 3 Day 4

CS109B, PROTOPAPAS, GLICKMAN, TANNER 11

For the remainder of this lecture, we will use text

(natural language) as examples because:

• It’s easy to interpret success/failures

• Real-world impact and commonplace usages

• Availability of data to try things yourself

Yet, for any model, you can imagine using any other sequential data

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

12

A Language Model represents the language used by a given entity

(e.g., a particular person, genre, or other well-defined class of text)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

13

A Language Model represents the language used by a given entity

(e.g., a particular person, genre, or other well-defined class of text)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

14

A Language Model represents the language used by a given entity

(e.g., a particular person, genre, or other well-defined class of text)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Formal Definition

15

A Language Model estimates the probability of any sequence of words

Let 𝑿 = “Eleni was late for class”

P(𝑿) = 𝑃(“Eleni was late for class”)

𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

16

Generate Text

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

17

Generate Text

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

18

Generate Text

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

19

“Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi, Schiff &
Killary. The Feds then closed the courtroom doors.”

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

20

A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Authorship attribution

• Detecting spam vs not spam

And much more!

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

21

Today, we heavily focus on Language Modelling (LM) because:

1. It’s foundational for nearly all NLP tasks

2. Since we’re ultimately modelling a sequence, LM approaches are

generalizable to any type of data, not just text.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

22

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others.

Count how often each word occurs (in the training data).

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

23

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

24

How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

Let 𝑿 = “Eleni was late for class”

P(𝑿) = 𝑃(Eleni)𝑃(was)𝑃(late)𝑃(for)𝑃(class)

𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

= 0.00015 * 0.01 * 0.004 * 0.03 * 0.0035
= 6.3x10-13

You calculate each of

these probabilities from

the training corpus

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

25

UNIGRAM ISSUES?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

26

UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

27

UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all

Eleni was late for class _____

Sequence generation: What’s the most likely next word?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: unigrams

28

UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all

Eleni was late for class _____

Sequence generation: What’s the most likely next word?

Eleni was late for class the

Anqi was late for class the the

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

29

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

30

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

31

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

32

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

33

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)𝑃(class|for)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

34

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)𝑃(class|for)

You calculate each of these probabilities

by simply counting the occurrences

P(class | for) = count(for class)
count(for)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

BIGRAM ISSUES?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: bigrams

BIGRAM ISSUES?

• Out-of-vocabulary items are 0 à kills the overall probability

• Always need more context (e.g., trigram, 4-gram), but

sparsity is an issue (rarely seen subsequences)

• Storage becomes a problem as we increase window size

• No semantic information conveyed by counts (e.g., vehicle vs car)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: neural networks

IDEA: Let’s use a neural networks!

First, each word is represented by a word embedding

(e.g., vector of length 200)

man

woman

table

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: neural networks

IDEA: Let’s use a neural networks!

First, each word is represented by a word embedding

(e.g., vector of length 200)

man

woman

table

• Each circle is a specific floating point scalar

• Words that are more semantically similar to one another
will have embeddings that are proportionally similar,
too

• We can use pre-existing word embeddings that have
been trained on gigantic corpora

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: neural networks

These word embeddings are so rich that you get nice properties:

Word2vec:	https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe:	https://www.aclweb.org/anthology/D14-1162.pdf

king

woman

queen

man

+

-

~

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: neural networks

How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

She went to class

𝑃 𝑥*=#|𝑥*, 𝑥*+#, … , 𝑥#

next word previous words

Example input sentence

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

She went to

Example input sentence

𝑉

𝑊

Hidden layer

Output layer
class?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

She went to

class?

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

classwent to

after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

classto after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
visiting

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

class after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

visiting

her

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

visiting her

grandma

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling : Feed-forward Neural Net

FFNN ISSUES?

FFNN STRENGTHS?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling : Feed-forward Neural Net

FFNN ISSUES?

FFNN STRENGTHS?

• No sparsity issues (it’s okay if we’ve never seen a segment of words)

• No storage issues (we never store counts)

• Fixed-window size can never be big enough. Need more context.

• Increasing window size adds many more weights

• The weights awkwardly handle word position

• No concept of time

• Requires inputting entire context just to predict one word

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

We especially need a system that:

• Has an “infinite” concept of the past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

50

Outline

CS109B, PROTOPAPAS, GLICKMAN, TANNER 51

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

IDEA: for every individual input, output a prediction

She

Example input word

𝑉

𝑊

Hidden layer

Output layer

𝑥 = 𝑥#
single word embedding

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
went

Let’s use the previous hidden state, too

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: RNNs

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

Neural Approach #2: Recurrent Neural Network (RNN)

V

𝑊

𝑦F9

𝑥9

𝑈

V

𝑊

𝑦F:

𝑥:

𝑈

V

𝑊

𝑦F;

𝑥;

𝑈

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling: RNNs

We have seen this abstract view in Lecture 15.

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦FR

𝑥R

𝑈
The recurrent loop 𝑼 conveys that the
current hidden layer is influenced by the

hidden layer from the previous time step.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR)
�

X∈\

𝑉

𝑊

𝑦F9

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑦F:

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑦F;

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR)
�

X∈\

𝑉

𝑊

𝑦F9

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑦F:

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑦F;

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

During training, regardless of our output predictions,

we feed in the correct inputs

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR)
�

X∈\

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

Our total loss is simply the average loss across all 𝑇 time steps

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR)
�

X∈\

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?
Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

To update our weights (e.g. 𝑼), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑼
).

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
	

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈9

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
	

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review)
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈#

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈9

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
	

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN (review)

• This backpropagation through time (BPTT) process is

expensive

• Instead of updating after every timestep, we tend to do so

every 𝑇 steps (e.g., every sentence or paragraph)

• This isn’t equivalent to using only a window size 𝑇

(a la n-grams) because we still have ‘infinite memory’

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝑦F

Continue until we generate <EOS> symbol.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝒚c

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝒚c

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”

𝑉

𝑊

𝑥9

𝑈

“Sorry”

Harry

𝑉

𝑊

𝑥:

𝑈

“Harry”

shouted

𝑉

𝑊

𝑥;

𝑈

shouted,

panicking

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”

𝑉

𝑊

𝑥9

𝑈

“Sorry”

Harry

𝑉

𝑊

𝑥:

𝑈

“Harry”

shouted

𝑉

𝑊

𝑥;

𝑈

“shouted,”

panicking

NOTE: the same input (e.g., “Harry”) can easily yield different outputs,
depending on the context (unlike FFNNs and n-grams).

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

When trained on Harry Potter text, it generates:

Source:	https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN: Generation

When trained on recipes

Source:	https://gist.github.com/nylki/1efbaa36635956d35bcc

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN)

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN)

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNNs: Vanishing and Exploding Gradients (review)

𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
=	?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑

RNNs: Vanishing and Exploding Gradients (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐

RNNs: Vanishing and Exploding Gradients (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

RNNs: Vanishing and Exploding Gradients (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

To address RNNs’ finnicky nature with long-range context, we

turned to an RNN variant named LSTMs (long short-term
memory)

But first, let’s recap what we’ve learned so far

RNNs: Vanishing and Exploding Gradients (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequential Modelling (so far)

n-grams

𝑃 went 𝑆ℎ𝑒 =
count(𝑆ℎ𝑒	𝑤𝑒𝑛𝑡)
count(𝑆ℎ𝑒)

FFNN

She went to

𝑊

𝑈

class

𝑊

𝑈

𝑦F#

𝑊

𝑈

𝑊

𝑈

𝑦F9 𝑦F:

𝑉 𝑉

RNN

• Basic counts; fast

• Fixed window size

• Sparsity & storage issues

• Not robust

• Kind of robust… almost

• Fixed window size

• Weirdly handles context
positions

• No “memory” of past

• Handles infinite context
(in theory)

• Robust to rare words

• Slow

• Difficulty with long context

She went to

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

78

Outline

CS109B, PROTOPAPAS, GLICKMAN, TANNER 79

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Long short-term memory (LSTM)

• A type of RNN that is designed to better handle long-range

dependencies

• In ”vanilla” RNNs, the hidden state is perpetually being

rewritten

• In addition to a traditional hidden state h, let’s have a

dedicated memory cell c for long-term events. More power to

relay sequence info.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Inside an LSTM Hidden Layer

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten”

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

memory is written, erased, and
read by three gates – which are
influenced by 𝒙 and 𝒉

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER

It’s still possible for LSTMs to suffer from vanishing/exploding

gradients, but it’s way less likely than with vanilla RNNs:

• If RNNs wish to preserve info over long contexts, it must delicately

find a recurrent weight matrix 𝑊ℎ that isn’t too large or small

• However, LSTMs have 3 separate mechanism that adjust the flow

of information (e.g., forget gate, if turned off, will preserve all info)

Inside an LSTM Hidden Layer

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Long short-term memory (LSTM)

LSTM ISSUES?

LSTM STRENGTHS?

• Almost always outperforms vanilla RNNs

• Captures long-range dependencies shockingly well

• Has more weights to learn than vanilla RNNs; thus,

• Requires a moderate amount of training data (otherwise, vanilla
RNNs are better)

• Can still suffer from vanishing/exploding gradients

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequential Modelling

n-grams

𝑃 went 𝑆ℎ𝑒 =
count(𝑆ℎ𝑒	𝑤𝑒𝑛𝑡)
count(𝑆ℎ𝑒)

FFNN
She went to

𝑊

𝑈

clas
s

𝑊

𝑈

𝑦F#

𝑊

𝑈

𝑊

𝑈

𝑦F9 𝑦F:

𝑉 𝑉

RNN

She went to

𝑦F# 𝑦F9 𝑦F:

She went to

LSTM

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequential Modelling

If your goal isn’t to predict the next item in a sequence, and you

rather do some other classification or regression task using the

sequence, then you can:

• Train an aforementioned model (e.g., LSTM) as a language model

• Use the hidden layers that correspond to each item in your

sequence

IMPORTANT

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequential Modelling

Input

layer

Hidden

layer

Output

layer

𝑉

𝑊

𝑦F#

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑦F9 𝑦F: 𝑦F;

𝑥# 𝑥9 𝑥: 𝑥;

𝑈 𝑈 𝑈

1. Train LM to learn hidden layer
embeddings

2. Use hidden layer
embeddings for other tasks

𝑥# 𝑥9 𝑥: 𝑥;

Sentiment score

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequential Modelling

Input

layer

Hidden

layer 1

Output

layer

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑥# 𝑥9 𝑥: 𝑥;

𝑈 𝑈 𝑈

Or jointly learn hidden embeddings toward a particular task
(end-to-end)

Sentiment score

Hidden

layer 2

CS109B, PROTOPAPAS, GLICKMAN, TANNER

You now have the foundation for modelling sequential data.

Most state-of-the-art advances are based on those core

RNN/LSTM ideas. But, with tens of thousands of researchers

and hackers exploring deep learning, there are many tweaks

that haven proven useful.

(This is where things get crazy.)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Bi-directional (review)

93

𝑌*+9	 𝑌*+#	 𝑌*	

𝑋*+9	 𝑋*+#	 𝑋*	

previous state

previous state

𝑌*	

𝑋*	

�symbol for a BRNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNNs/LSTMs use the left-to-right context and sequentially

process data.

If you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?

Bi-directional (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

RNN Extensions: Bi-directional LSTMs (review)

Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

For brevity, let’s use the follow schematic to represent an RNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

For brevity, let’s use the follow schematic to represent an RNN

RNN Extensions: Bi-directional LSTMs (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

ℎ#v
ℎ#w

ℎ9v
ℎ9w

ℎ:v
ℎ:w

ℎ;v
ℎ;wConcatenate the hidden layers

RNN Extensions: Bi-directional LSTMs (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

ℎ#v
ℎ#w

ℎ9v
ℎ9w

ℎ:v
ℎ:w

ℎ;v
ℎ;w

𝑦F# 𝑦F9 𝑦F: 𝑦F;

Concatenate the hidden layers

RNN Extensions: Bi-directional LSTMs (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

• Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

RNN Extensions: Bi-directional LSTMs (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep RNN (review)

LSTMs units can be arranged in layers, so that the output of each unit is
the input to the other units. This is called a deep RNN, where the
adjective “deep” refers to these multiple layers.

• Each layer feeds the LSTM on the next layer

• First time step of a feature is fed to the first LSTM, which processes
that data and produces an output (and a new state for itself).

• That output is fed to the next LSTM, which does the same thing, and
the next, and so on.

• Then the second time step arrives at the first LSTM, and the process
repeats.

100

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep RNN (review)

101𝑋*+9	 𝑋*+#	 𝑋*	 𝑋*=#	 𝑋*=9	

𝑌*+9	 𝑌*+#	 𝑌*	 𝑌*=#	 𝑌*=9	

𝑋	

𝑌	

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

Deep RNN (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

ℎ;v9ℎ:v9ℎ9v9ℎ#v9
Hidden layer #2

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

Deep RNN (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

ℎ;v9ℎ:v9ℎ9v9ℎ#v9

𝑦F# 𝑦F9 𝑦F: 𝑦F;Output layer

Hidden layer #2

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

Deep RNN (review)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

ELMo: Stacked Bi-directional LSTMs

General Idea:

• Goal is to get highly rich embeddings for each word (unique type)

• Use both directions of context (bi-directional), with increasing

abstractions (stacked)

• Linearly combine all abstract representations (hidden layers) and

optimize w.r.t. a particular task (e.g., sentiment classification)

ELMo	Slides:	https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

CS109B, PROTOPAPAS, GLICKMAN, TANNER
Illustration:	http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs

CS109B, PROTOPAPAS, GLICKMAN, TANNER
Illustration:	http://jalammar.github.io/illustrated-bert/

CS109B, PROTOPAPAS, GLICKMAN, TANNER

• ELMo yielded incredibly good word embeddings, which yielded state-of-

the-art results when applied to many NLP tasks.

• Main ELMo takeaway: given enough training data, having tons of

explicit connections between your vectors is useful

(system can determine how to best use context)

ELMo	Slides:	https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

ELMo: Stacked Bi-directional LSTMs

CS109B, PROTOPAPAS, GLICKMAN, TANNER

REFLECTION

So far, for all of our sequential modelling, we have been

concerned with emitting 1 output per input datum.

Sometimes, a sequence is the smallest granularity we care

about though (e.g., an English sentence)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

110

Outline

CS109B, PROTOPAPAS, GLICKMAN, TANNER 111

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly sub-optimal to translate word by word (like our

current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x

The brown dog ran

ENCODER RNN

ℎ;x

The final hidden state of the encoder RNN

is the initial state of the decoder RNN

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

The final hidden state of the encoder RNN

is the initial state of the decoder RNN

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<
Training occurs like RNNs typically do; the loss
(from the decoder outputs) is calculated, and
we update weights all the way to the

beginning (encoder)

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<
Testing generates decoder outputs one word
at a time, until we generate a <EOS> token.

Each decoder’s 𝒚c𝒊 becomes the input 𝒙𝒊=𝟏

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

It’s crazy that the entire “meaning” of the 1st sequence is expected

to be packed into this one embedding, and that the encoder then

never interacts w/ the decoder again. Hands free.

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a

distribution of all of the encoder’s hidden states?

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

[𝑐#y, ℎ;x]

𝑦F#
Le𝑐#y

𝑎## 𝑎9# 𝑎:# 𝑎;#

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐9y

𝑎#9 𝑎99 𝑎:9 𝑎;9

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#]

𝑦F9
Le chien

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐:y

𝑎#: 𝑎9: 𝑎:: 𝑎;:

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9]

𝑦F9 𝑦F:
Le chien brun

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐;y

𝑎#; 𝑎9; 𝑎:; 𝑎;;

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9] [𝑐;y,𝑦F:]

𝑦F9 𝑦F: 𝑦F;
Le chien brun a

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐<y

𝑎#< 𝑎9< 𝑎:< 𝑎;<

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9] [𝑐;y,𝑦F:] [𝑐<y,𝑦F;]

𝑦F9 𝑦F: 𝑦F; 𝑦F<
Le chien brun a couru

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too.

CS109B, PROTOPAPAS, GLICKMAN, TANNER

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each word gave

during each step of the decoder

Image source: Fig 3 in Bahdanau et al., 2015

CS109B, PROTOPAPAS, GLICKMAN, TANNER

Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

128

Outline

