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Lecture 16: Language Model 
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We could easily spend an entire semester on this material.

The goal for today and Wednesday is to convey:

• the ubiquity and importance of sequential data

• high-level overview of the most useful, relevant models

• foundation for diving deeper

• when to use which models, based on your data
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Background

5

Regardless of how we model sequential data, keep in mind that we can 

estimate any time series as follows:

𝑃 𝑥#, … , 𝑥& =(𝑝 𝑥* 𝑥*+#, … , 𝑥#)
&

*-#

Joint	distribution	of	all	
measurements

Conditional	probability	
of	an	event,	depends	on	
all	of	the	events	that	
occurred	before	it.

This compounds for 

all subsequent events, 

too
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Example

6

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3
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Example

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

𝑃 	∗∗,∗∗,∗∗ =
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Example

8

The probability of the following 3-day weather pattern in Seattle:

Day 1 Day 2 Day 3

𝑃 	∗∗,∗∗,∗∗ = 𝑃 ∗∗ 𝑃 ∗∗ | ∗∗ 𝑃(∗∗ | ∗∗,∗∗)
Day 1 Day 2 Day 3
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Example
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Why is it useful to accurately estimate the joint of any 

given sequence of length 𝑁?
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Background

10

Having the ability to estimate the probability of any 

sequence of length 𝑁 allows us to determine the 

most likely next event (i.e., sequence of length 𝑁 +
1)

𝑃 	∗∗,∗∗,∗∗, ? = 𝑃 ∗∗ 𝑃 ∗∗ | ∗∗ 𝑃(∗∗ | ∗∗,∗∗)𝑃(? | ∗∗,∗∗,∗∗)

Day 1 Day 2 Day 3 Day 4
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For the remainder of this lecture, we will use text

(natural language) as examples because:

• It’s easy to interpret success/failures

• Real-world impact and commonplace usages

• Availability of data to try things yourself

Yet, for any model, you can imagine using any other sequential data
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Language Modelling

12

A Language Model represents the language used by a given entity 

(e.g., a particular person, genre, or other well-defined class of text)
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Language Modelling

14

A Language Model represents the language used by a given entity 

(e.g., a particular person, genre, or other well-defined class of text)
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Language Modelling: Formal Definition

15

A Language Model estimates the probability of any sequence of words

Let 𝑿 = “Eleni was late for class”

P(𝑿) = 𝑃(“Eleni was late for class”)

𝑤# 𝑤9 𝑤: 𝑤; 𝑤<
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Language Modelling

16

Generate Text
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Language Modelling

17

Generate Text
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Language Modelling

18

Generate Text
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Language Modelling

19

“Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi, Schiff & 
Killary. The Feds then closed the courtroom doors.”
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Language Modelling

20

A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Authorship attribution

• Detecting spam vs not spam

And much more!
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Language Modelling

21

Today, we heavily focus on Language Modelling (LM) because:

1. It’s foundational for nearly all NLP tasks

2. Since we’re ultimately modelling a sequence, LM approaches are 

generalizable to any type of data, not just text.
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Language Modelling: unigrams
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How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others.

Count how often each word occurs (in the training data).
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Language Modelling: unigrams
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How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<
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Language Modelling: unigrams
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How can we build a language model?

Naive Approach: unigram model

Assume each word is independent of all others

Let 𝑿 = “Eleni was late for class”

P(𝑿) = 𝑃(Eleni)𝑃(was)𝑃(late)𝑃(for)𝑃(class)

𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

= 0.00015 * 0.01 * 0.004 * 0.03 * 0.0035
= 6.3x10-13

You calculate each of 

these probabilities from 

the training corpus
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Language Modelling: unigrams

25

UNIGRAM ISSUES?
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Language Modelling: unigrams
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UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all
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Language Modelling: unigrams
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UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all

Eleni was late for class _____

Sequence generation: What’s the most likely next word?
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Language Modelling: unigrams

28

UNIGRAM ISSUES?

𝑃(“Eleni was late for class”) = 𝑃(“class for was late Eleni”)

Context doesn’t play a role at all

Eleni was late for class _____

Sequence generation: What’s the most likely next word?

Eleni was late for class the

Anqi was late for class the the
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Language Modelling: bigrams
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How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<
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Language Modelling: bigrams
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How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)
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Language Modelling: bigrams

31

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)
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Language Modelling: bigrams
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How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)
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Language Modelling: bigrams
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How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)𝑃(class|for)
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Language Modelling: bigrams

34

How can we build a language model?

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Eleni was late for class”
𝑤# 𝑤9 𝑤: 𝑤; 𝑤<

probability

P(𝑿) = 𝑃(was|Eleni)𝑃(late|was)𝑃(for|late)𝑃(class|for)

You calculate each of these probabilities 

by simply counting the occurrences

P(class | for) = count(for class)
count(for)
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Language Modelling: bigrams

BIGRAM ISSUES?
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Language Modelling: bigrams

BIGRAM ISSUES?

• Out-of-vocabulary items are 0 à kills the overall probability

• Always need more context (e.g., trigram, 4-gram), but

sparsity is an issue (rarely seen subsequences)

• Storage becomes a problem as we increase window size

• No semantic information conveyed by counts (e.g., vehicle vs car)
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Language Modelling: neural networks

IDEA: Let’s use a neural networks!

First, each word is represented by a word embedding 

(e.g., vector of length 200)

man

woman

table
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Language Modelling: neural networks

IDEA: Let’s use a neural networks!

First, each word is represented by a word embedding 

(e.g., vector of length 200)

man

woman

table

• Each circle is a specific floating point scalar

• Words that are more semantically similar to one another 
will have embeddings that are proportionally similar, 
too

• We can use pre-existing word embeddings that have 
been trained on gigantic corpora
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Language Modelling: neural networks

These word embeddings are so rich that you get nice properties:

Word2vec:	https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
GloVe:	https://www.aclweb.org/anthology/D14-1162.pdf

king

woman

queen

man

____________
+

-

~
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Language Modelling: neural networks

How can we use these embeddings to build a LM?

Remember, we only need a system that can estimate:

She went to class

𝑃 𝑥*=#|𝑥*, 𝑥*+#, … , 𝑥#

next word previous words

Example input sentence
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

She went to

Example input sentence

𝑉

𝑊

Hidden layer

Output layer
class?
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

She went to

class?

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

classwent to

after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

classto after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
visiting
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

class after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

visiting

her
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Language Modelling: Feed-forward Neural Net

Neural Approach #1: Feed-forward Neural Net

General Idea: using windows of words, predict the next word

after

Example input sentence

𝑉

𝑊

Hidden layer

Output layer

𝑥 = [𝑥#, 𝑥9, 𝑥:]
Concatenated word embeddings

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P

visiting her

grandma
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Language Modelling : Feed-forward Neural Net

FFNN ISSUES?

FFNN STRENGTHS?
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Language Modelling : Feed-forward Neural Net

FFNN ISSUES?

FFNN STRENGTHS?

• No sparsity issues (it’s okay if we’ve never seen a segment of words)

• No storage issues (we never store counts)

• Fixed-window size can never be big enough. Need more context.

• Increasing window size adds many more weights

• The weights awkwardly handle word position

• No concept of time

• Requires inputting entire context just to predict one word
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Language Modelling

We especially need a system that:

• Has an “infinite” concept of the past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)
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Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

50

Outline
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Language Modelling

IDEA: for every individual input, output a prediction

She

Example input word

𝑉

𝑊

Hidden layer

Output layer

𝑥 = 𝑥#
single word embedding

ℎ = 𝑓(𝑉𝑥 + 𝑏#)

𝑦F = softmax 𝑊ℎ + 𝑏9 ∈ ℝ P
went

Let’s use the previous hidden state, too
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Language Modelling: RNNs

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

Neural Approach #2: Recurrent Neural Network (RNN)

V

𝑊

𝑦F9

𝑥9

𝑈

V

𝑊

𝑦F:

𝑥:

𝑈

V

𝑊

𝑦F;

𝑥;

𝑈
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Language Modelling: RNNs

We have seen this abstract view in Lecture 15. 

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦FR

𝑥R

𝑈
The recurrent loop 𝑼 conveys that the 
current hidden layer is influenced by the 

hidden layer from the previous time step.
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR )
�

X∈\

𝑉

𝑊

𝑦F9

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑦F:

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑦F;

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F#

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR )
�

X∈\

𝑉

𝑊

𝑦F9

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑦F:

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑦F;

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

During training, regardless of our output predictions,

we feed in the correct inputs
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR )
�

X∈\

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

Our total loss is simply the average loss across all 𝑇 time steps



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝐶𝐸 𝑦R, 𝑦FR = − W 𝑦XR log(𝑦FXR )
�

X∈\

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?
Using the chain rule, we trace the derivative all the 
way back to the beginning, while summing the results.

To update our weights (e.g. 𝑼), we calculate the gradient 

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑼
	).
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈9

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
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Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑦F

𝑥#

RNN (review) 
Training Process

𝐶𝐸 𝑦#, 𝑦F#Error

She

𝑉

𝑊

𝑥9

𝑈#

𝐶𝐸 𝑦9, 𝑦F9

went

𝑉

𝑊

𝑥:

𝑈9

𝐶𝐸 𝑦:, 𝑦F:

to

𝑉

𝑊

𝑥;

𝑈:

𝐶𝐸 𝑦;, 𝑦F;

class

went? over? class? after?

𝝏𝑳
𝝏𝑽
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RNN (review)

• This backpropagation through time (BPTT) process is 

expensive

• Instead of updating after every timestep, we tend to do so 

every 𝑇 steps (e.g., every sentence or paragraph)

• This isn’t equivalent to using only a window size 𝑇

(a la n-grams) because we still have ‘infinite memory’
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝑦F

Continue until we generate <EOS> symbol.
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝒚c

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from 𝒚c

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”

𝑉

𝑊

𝑥9

𝑈

“Sorry”

Harry

𝑉

𝑊

𝑥:

𝑈

“Harry”

shouted

𝑉

𝑊

𝑥;

𝑈

shouted,

panicking
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RNN: Generation

Input layer

Hidden layer

Output layer

𝑉

𝑊

𝑥#
<START>

“Sorry”

𝑉

𝑊

𝑥9

𝑈

“Sorry”

Harry

𝑉

𝑊

𝑥:

𝑈

“Harry”

shouted

𝑉

𝑊

𝑥;

𝑈

“shouted,”

panicking

NOTE: the same input (e.g., “Harry”) can easily yield different outputs, 
depending on the context (unlike FFNNs and n-grams).
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RNN: Generation

When trained on Harry Potter text, it generates:

Source:	https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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RNN: Generation

When trained on recipes

Source:	https://gist.github.com/nylki/1efbaa36635956d35bcc
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RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN) 

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context
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• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN) 

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context
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RNNs: Vanishing and Exploding Gradients (review)

𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
=	?
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𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑

RNNs: Vanishing and Exploding Gradients (review)
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𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐

RNNs: Vanishing and Exploding Gradients (review)
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𝑈 𝑈 𝑈 𝑈
𝑉:

𝐶𝐸 𝑦;, 𝑦F;

𝑦F

𝝏𝑳𝟒

𝝏𝑽𝟏
	

𝑉9𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

RNNs: Vanishing and Exploding Gradients (review)
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To address RNNs’ finnicky nature with long-range context, we 

turned to an RNN variant named LSTMs (long short-term 
memory)

But first, let’s recap what we’ve learned so far

RNNs: Vanishing and Exploding Gradients (review)
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Sequential Modelling (so far)

n-grams

𝑃 went 𝑆ℎ𝑒 =
count(𝑆ℎ𝑒	𝑤𝑒𝑛𝑡)
count(𝑆ℎ𝑒)

FFNN

She went to

𝑊

𝑈

class

𝑊

𝑈

𝑦F#

𝑊

𝑈

𝑊

𝑈

𝑦F9 𝑦F:

𝑉 𝑉

RNN

• Basic counts; fast

• Fixed window size

• Sparsity & storage issues

• Not robust

• Kind of robust… almost

• Fixed window size

• Weirdly handles context 
positions

• No “memory” of past

• Handles infinite context
(in theory)

• Robust to rare words

• Slow

• Difficulty with long context

She went to
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Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions

78
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Long short-term memory (LSTM)

• A type of RNN that is designed to better handle long-range 

dependencies

• In ”vanilla” RNNs, the hidden state is perpetually being 

rewritten

• In addition to a traditional hidden state h, let’s have a 

dedicated memory cell c for long-term events. More power to 

relay sequence info.
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Inside an LSTM Hidden Layer

𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten”

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer
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𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer
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𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the 
long-term memory becomes our 
short-term memory

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer
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𝐻*+#

𝐶*+#

𝐻*

𝐶*

𝐻*=#

𝐶*=#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the 
long-term memory becomes our 
short-term memory

memory is written, erased, and 
read by three gates – which are 
influenced by 𝒙 and 𝒉

Diagram:	https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Inside an LSTM Hidden Layer
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It’s still possible for LSTMs to suffer from vanishing/exploding 

gradients, but it’s way less likely than with vanilla RNNs:

• If RNNs wish to preserve info over long contexts, it must delicately 

find a recurrent weight matrix 𝑊ℎ that isn’t too large or small

• However, LSTMs have 3 separate mechanism that adjust the flow 

of information (e.g., forget gate, if turned off, will preserve all info)

Inside an LSTM Hidden Layer
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Long short-term memory (LSTM)

LSTM ISSUES?

LSTM STRENGTHS?

• Almost always outperforms vanilla RNNs

• Captures long-range dependencies shockingly well

• Has more weights to learn than vanilla RNNs; thus,

• Requires a moderate amount of training data (otherwise, vanilla 
RNNs are better)

• Can still suffer from vanishing/exploding gradients
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Sequential Modelling

n-grams

𝑃 went 𝑆ℎ𝑒 =
count(𝑆ℎ𝑒	𝑤𝑒𝑛𝑡)
count(𝑆ℎ𝑒)

FFNN
She went to

𝑊

𝑈

clas
s

𝑊

𝑈

𝑦F#

𝑊

𝑈

𝑊

𝑈

𝑦F9 𝑦F:

𝑉 𝑉

RNN

She went to

𝑦F# 𝑦F9 𝑦F:

She went to

LSTM
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Sequential Modelling

If your goal isn’t to predict the next item in a sequence, and you 

rather do some other classification or regression task using the 

sequence, then you can:

• Train an aforementioned model (e.g., LSTM) as a language model

• Use the hidden layers that correspond to each item in your 

sequence

IMPORTANT
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Sequential Modelling

Input 

layer

Hidden 

layer

Output 

layer

𝑉

𝑊

𝑦F#

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑦F9 𝑦F: 𝑦F;

𝑥# 𝑥9 𝑥: 𝑥;

𝑈 𝑈 𝑈

1. Train LM to learn hidden layer 
embeddings

2. Use hidden layer 
embeddings for other tasks

𝑥# 𝑥9 𝑥: 𝑥;

Sentiment score
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Sequential Modelling

Input 

layer

Hidden 

layer 1

Output 

layer

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑉

𝑊

𝑥# 𝑥9 𝑥: 𝑥;

𝑈 𝑈 𝑈

Or jointly learn hidden embeddings toward a particular task 
(end-to-end)

Sentiment score

Hidden 

layer 2
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You now have the foundation for modelling sequential data.

Most state-of-the-art advances are based on those core 

RNN/LSTM ideas. But, with tens of thousands of researchers 

and hackers exploring deep learning, there are many tweaks 

that haven proven useful.

(This is where things get crazy.)
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Bi-directional (review)

93

𝑌*+9	 𝑌*+#	 𝑌*	

𝑋*+9	 𝑋*+#	 𝑋*	

previous state

previous state

𝑌*	

𝑋*	

�symbol for a BRNN 
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RNNs/LSTMs use the left-to-right context and sequentially 

process data.

If you have full access to the data at testing time, why not 

make use of the flow of information from right-to-left, also?

Bi-directional (review)
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RNN Extensions: Bi-directional LSTMs (review)

Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

For brevity, let’s use the follow schematic to represent an RNN
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Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

For brevity, let’s use the follow schematic to represent an RNN

RNN Extensions: Bi-directional LSTMs (review)
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Input layer

Hidden layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

ℎ#v
ℎ#w

ℎ9v
ℎ9w

ℎ:v
ℎ:w

ℎ;v
ℎ;wConcatenate the hidden layers

RNN Extensions: Bi-directional LSTMs (review)
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Input layer

Hidden layer

Output layer

𝑥# 𝑥9 𝑥: 𝑥; 𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v ℎ#w ℎ9w ℎ:w ℎ;w

ℎ#v
ℎ#w

ℎ9v
ℎ9w

ℎ:v
ℎ:w

ℎ;v
ℎ;w

𝑦F# 𝑦F9 𝑦F: 𝑦F;

Concatenate the hidden layers

RNN Extensions: Bi-directional LSTMs (review)
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• Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

RNN Extensions: Bi-directional LSTMs (review)



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep RNN (review) 

LSTMs units can be arranged in layers, so that the output of each unit is 
the input to the other units. This is called a deep RNN, where the 
adjective “deep” refers to these multiple layers.

• Each layer feeds the LSTM on the next layer

• First time step of a feature is fed to the first LSTM, which processes 
that data and produces an output (and a new state for itself). 

• That output is fed to the next LSTM, which does the same thing, and 
the next, and so on. 

• Then the second time step arrives at the first LSTM, and the process 
repeats.

100
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Deep RNN (review)

101𝑋*+9	 𝑋*+#	 𝑋*	 𝑋*=#	 𝑋*=9	

𝑌*+9	 𝑌*+#	 𝑌*	 𝑌*=#	 𝑌*=9	

𝑋	

𝑌	
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Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.

Deep RNN (review)
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Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

ℎ;v9ℎ:v9ℎ9v9ℎ#v9
Hidden layer #2

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.

Deep RNN (review)
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Input layer

Hidden layer #1

𝑥# 𝑥9 𝑥: 𝑥;

ℎ#v ℎ9v ℎ:v ℎ;v

ℎ;v9ℎ:v9ℎ9v9ℎ#v9

𝑦F# 𝑦F9 𝑦F: 𝑦F;Output layer

Hidden layer #2

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.

Deep RNN (review)
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ELMo: Stacked Bi-directional LSTMs

General Idea:

• Goal is to get highly rich embeddings for each word (unique type)

• Use both directions of context (bi-directional), with increasing 

abstractions (stacked)

• Linearly combine all abstract representations (hidden layers) and 

optimize w.r.t. a particular task (e.g., sentiment classification) 

ELMo	Slides:	https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018
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Illustration:	http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs
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Illustration:	http://jalammar.github.io/illustrated-bert/
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• ELMo yielded incredibly good word embeddings, which yielded state-of-

the-art results when applied to many NLP tasks.

• Main ELMo takeaway: given enough training data, having tons of 

explicit connections between your vectors is useful

(system can determine how to best use context)

ELMo	Slides:	https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

ELMo: Stacked Bi-directional LSTMs
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REFLECTION

So far, for all of our sequential modelling, we have been 

concerned with emitting 1 output per input datum.

Sometimes, a sequence is the smallest granularity we care 

about though (e.g., an English sentence)
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Language Modelling

RNNs/LSTMs +ELMo

Seq2Seq +Attention

Transformers +BERT

Conclusions
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Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to 

Language B, it is clearly sub-optimal to translate word by word (like our 

current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to 

work with (a sequence of length N may emit a sequences of length M)

• Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x

The brown dog ran

ENCODER RNN

ℎ;x

The final hidden state of the encoder RNN 

is the initial state of the decoder RNN
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

The final hidden state of the encoder RNN 

is the initial state of the decoder RNN

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<
Training occurs like RNNs typically do; the loss 
(from the decoder outputs) is calculated, and 
we update weights all the way to the 

beginning (encoder)
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru

𝑦F# 𝑦F9 𝑦F: 𝑦F; 𝑦F<
Testing generates decoder outputs one word 
at a time, until we generate a <EOS> token.

Each decoder’s 𝒚c𝒊 becomes the input 𝒙𝒊=𝟏
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Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#x ℎ9x ℎ:x ℎ;x

The brown dog ran

It’s crazy that the entire “meaning” of the 1st sequence is expected 

to be packed into this one embedding, and that the encoder then 

never interacts w/ the decoder again. Hands free.

ENCODER RNN

ℎ#y ℎ9y ℎ:y

Le chien brun a

DECODER RNN

ℎ;y ℎ<y

couru
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Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a 

distribution of all of the encoder’s hidden states?
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seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

[𝑐#y, ℎ;x]

𝑦F#
Le𝑐#y

𝑎## 𝑎9# 𝑎:# 𝑎;#

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too. 
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seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐9y

𝑎#9 𝑎99 𝑎:9 𝑎;9

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#]

𝑦F9
Le chien

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too. 
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seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐:y

𝑎#: 𝑎9: 𝑎:: 𝑎;:

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9]

𝑦F9 𝑦F:
Le chien brun

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too. 
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seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐;y

𝑎#; 𝑎9; 𝑎:; 𝑎;;

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9] [𝑐;y,𝑦F:]

𝑦F9 𝑦F: 𝑦F;
Le chien brun a

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too. 
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seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN
DECODER RNN

𝑐<y

𝑎#< 𝑎9< 𝑎:< 𝑎;<

[𝑐#y, ℎ;x]

𝑦F#

[𝑐9y,𝑦F#] [𝑐:y,𝑦F9] [𝑐;y,𝑦F:] [𝑐<y,𝑦F;]

𝑦F9 𝑦F: 𝑦F; 𝑦F<
Le chien brun a couru

NOTE: each attention weight 𝑎𝑖
𝑗 is based on the decoder’s current hidden state, too. 
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seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each word gave 

during each step of the decoder

Image source: Fig 3 in Bahdanau et al., 2015
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