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Online lectures guidelines

• We would prefer you have your video on, but it is OK if you have 
it off. 

• We would prefer you have your real name.

• All lectures, labs and a-sections will be live streamed and als
available for viewing later on canvas/zoom. 

• We will have course staff in the chat online and during lecture 
you can also make use of this spreadsheet to enter your own 
questions or 'up vote' those of your fellow students.  

• Quizzed will be available for 24 hours. 
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Outline

Why Recurrent Neural Networks (RNNs)

Main Concept of RNNs

More Details of RNNs  

RNN training

Gated RNN
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Background

Many classification and regression tasks involve data that is 
assumed to be independent and identically distributed (i.i.d.). 
For example:

5

Detecting lung cancer Face recognition Risk of heart attack
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Background

Much of our data is inherently sequential
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WORLD

HUMANITY

INDIVIDUAL PEOPLE

Natural disasters (e.g., earthquakes)

Climate change

Stock market

Virus outbreaks

Speech recognition

Machine Translation (e.g., English -> French)

Cancer treatment

scale examples
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Much of our data is inherently sequential

PREDICTING
EARTHQUAKES
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Background
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Much of our data is inherently sequential

STOCK 
MARKET 

PREDICTIONS
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Background
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Much of our data is inherently sequential

SPEECH RECOGNITION

“What is the weather today?”

“What is the weather two day?”

“What is the whether too day?”

“What is, the Wrether to Dae?”

9

Background
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Sequence Modeling: Handwritten Text

10

• Input	:	Image
• Output:	Text

https://towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-
2326a3487cd5
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Sequence Modeling: Text-to-Speech
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• Input	:	Text
• Output:	Audio
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Sequence Modeling: Machine Translation
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• Input	:	Text
• Output:	Translated	Text
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Outline

Why RNNs

Main Concept of RNNs (part 1) 
More Details of RNNs  

RNN training

Gated RNN
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What can my NN do?
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NN [George, Mary, Tom, Suzie]

Training: Present to the NN examples and learn from them.
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What can my NN do?

16

NN George

NN Mary

Prediction: Given an example
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What my NN can NOT do?

17

WHO IS 
IT? ?
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Learn from previous examples

18

Time
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Recurrent Neural Network (RNN)

19

NN George
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Recurrent Neural Network (RNN)

RNNs recognize the data's sequential characteristics and use patterns 
to predict the next likely scenario.

20

NN George

I have seen George 
moving in this way 
before.
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Recurrent Neural Network (RNN)

Our model requires context - or contextual information - to understand 
the subject (he) and the direct object (it) in the sentence.

21

WHO IS 
HE?

I do not know. I need to know 
who said that and what he 
said before. Can you tell me 
more?

He told me I could have it
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RNN – Another Example with Text

After providing sequential information, the model recognize the 
subject (Joe’s brother) and the object (sweater) in the sentence.

22

WHO IS 
HE?

I	see	what	you	mean	now!	
The	noun	“he”	stands	for	
Joe’s	brother	while	”it”	for	
the	sweater.

- Hellen:	Nice	sweater	Joe.
- Joe:	Thanks,		Hellen.	It	used	

to	belong	to	my	brother	and		he	
told	me	I	could	have	it.
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Batch_size =	2048
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 

• Assume we have a sequence of temperature measurements and we want to take 3 
sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 

• Assume we have a sequence of temperature measurements and we want to take 3 
sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 

• Assume we have a sequence of temperature measurements and we want to take 3 
sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 

• Assume we have a sequence of temperature measurements and we want to take 3 
sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 

• Assume we have a sequence of temperature measurements and we want to take 3 
sequential measurements and predict the next one
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Windowed dataset 

This is called overlapping windowed dataset, since we’re windowing observations to 
create new. 

We can easily do using a MLS: 
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3 1
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will produce the same results

But re-arranging the order of the inputs like:
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Why not CNNs or MLPs?

30

1. MLPs/CNNs require fixed input and output size 

2. MLPs/CNNs can’t classify inputs in multiple places 
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Windowed dataset 

What follows after: `I got in the car and’ ?

`drove away’ 

What follows after: `In car the and I got’ ? 

Not obvious that it should be `drove away’ 

The order of words matters. This is  true for most sequential data. 
A fully connected network will not distinguish the order and therefore 
missing some information. 

31
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Outline

Why RNNs

Main Concept of RNNs
More Details of RNNs  

RNN training

Gated RNN
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Memory

Somehow the computational unit should remember what it has seen before. 

34

Unit

𝑋"

𝑌"
Should 

remember 
𝑋$ …𝑋"&'
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Memory

Somehow the computational unit should remember what it has seen before. 

35

Unit
Internal	
memory

𝑋"

𝑌"



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Memory

Somehow the computational unit should remember what it has seen before.

We’ll call the information the unit’s state. 

36

RNN
Internal	
memory

𝑋"

𝑌"
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Memory

In neural networks, once training is over, the weights do not change. This 
means that the network is done learning and done changing. 

Then, we feed in values, and it simply applies the operations that make up 
the network, using the values it has learned. 

But the RNN units can remember new information after training has 
completed. 

That is, they’re able to keep changing after training is over.

37
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Memory

Question: How can we do this? How can build a unit that remembers the 
past? 

The memory or state can be written to a file but in RNNs, we keep it inside 
the recurrent unit.

In an array or in a vector! 

Work with an example: 

Anna Sofia said her shoes are too ugly.  Her here means Anna Sofia.

Nikolas put his keys on the table. His here means Nikolas

38



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Memory

Question: How can we do this? How can we build a unit that remembers the 
past? 

The memory or state can be written to a file but in RNNs, we keep it inside 
the recurrent unit.

In an array or in a vector! 
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RNN

𝑋"	(𝑒. 𝑔. ℎ𝑖𝑠)

Memory RNN

𝑌"	(𝑒. 𝑔. 𝑁𝑖𝑘𝑜𝑙𝑎𝑠)

Memory
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Building an RNN
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RNN

𝑌"	

Memory

𝑋"	

Memory

RNN

𝑌"	

Memory

𝑋"	

Memory RNN

𝑌"6'	

Memory

𝑋"6'	

RNN

𝑌"67	

Memory

𝑋"67	

RNN

𝑌"68	

Memory

𝑋"68	
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Outline

Why RNNs

Main Concept of RNNs

More Details of RNNs  
RNN training

Gated RNN
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Structure of an RNN cell

42

RNN

𝑌"	

State

𝑋"	

RNN

𝑌"	

State

𝑋"	

output
weight

update
weight

input
weight
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Input,	𝑥"

H
id

d
en

 s
ta

te
,	ℎ

"&
' U

V

𝑧" = 𝑉𝑥" + 𝑈ℎ"&' + 𝑏@

activation
ℎ" = 𝑔(𝑧")

W2

activation activation

W1

Output,	𝑦"

𝑊'ℎ" + 𝑏' 𝑊7ℎ" + 𝑏7

Anatomy of an RNN unit
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Outline

Why RNNs

Main Concept of RNNs

More Details of RNNs  

RNN training
Gated RNN

44



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Backprop Through Time

• For each input, unfold network for the sequence length T

• Back-propagation: apply forward and backward pass on unfolded 
network

• Memory cost: O(T)

45
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Backprop Through Time
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RNN

𝑌"	

State

𝑋"	

output
weights

update
weights

input
weights



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Backprop Through Time
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RNN

𝑌"	

State

𝑋"	

output
weights

update
weights

input
weights
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Backprop Through Time

48

RNN

𝑌"	

State

𝑋"	

Update Weights: UOutput Weights: W

Input Weights: V

ℎ"	
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Backprop Through Time

49

You have two activation functions 𝑔C which serves as the activation 
for the hidden state and 𝑔D which is the  activation of the output. In 
the example shown before 𝑔D was the identity. 

ℎ"&7
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𝑦Et-2 𝑦Et-1 𝑦Et
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Backprop Through Time
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Backprop Through Time
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Backprop Through Time
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Gradient Clipping

Prevents exploding gradients

Clip the norm of gradient before update.

For some derivative 𝑔,	and some threshold u

54

if	 𝑔 > 𝑢

𝑔 ⟵
𝑔𝑢
𝑔
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Outline

Why RNNs

Main Concept of RNNs

More Details of RNNs  

RNN training

Gated RNN
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Long-term Dependencies

Unfolded networks can be very deep

Long-term interactions are given exponentially smaller weights than 
small-term interactions

Gradients tend to either vanish or explode

56
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Long Short-Term Memory

Handles long-term dependencies

Leaky units where weight on self-loop α is context-dependent

Allow network to decide whether to accumulate or forget past info

57
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Notation

Using conventional and convenient notation
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𝑌"	

𝑋"	
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Simple RNN again 

60
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Simple RNN again 

61
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Simple RNN again: Memories

State

V

+

W

σ

σ

U

𝑋"	

𝑌"	

ℎ"	
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Simple RNN again: Memories - Forgetting

State

V

+

W

σ

σ
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𝑌"	

ℎ"	
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Simple RNN again: New Events

State

V

+

W

σ

σ
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𝑋"	

𝑌"	

ℎ"	
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Simple RNN again: New Events Weighted

State
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Simple RNN again: Updated memories

State

V

+

W

σ

σ
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𝑋"	

𝑌"	

ℎ"	



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Ref

• [Chen17b] Qiming Chen, Ren Wu, “CNN Is All You Need”, arXiv 1712.09662, 2017. 
https://arxiv.org/abs/1712.09662

• [Chu17] Hang Chu, Raquel Urtasun, Sanja Fidler, “Song From PI: A Musically Plausible 
Network for Pop Music Generation”, arXiv preprint, 2017. 
https://arxiv.org/abs/1611.03477

• [Johnson17] Daniel Johnson, “Composing Music with Recurrent Neural Networks”, 
Heahedria, 2017. http://www.hexahedria.com/2015/08/03/ composing-music-with-
recurrent-neural-networks/

• [Deutsch16b] Max Deutsch, “Silicon Valley: A New Episode Written by AI”, Deep 
Writing blog post, 2017. https://medium.com/deep-writing/ silicon-valley-a-new-
episode-written-by-ai-a8f832645bc2

• [Fan16] Bo Fan, Lijuan Wang, Frank K. Soong, Lei Xie “Photo-Real Talking Head with 
Deep Bidirectional LSTM”, Multimedia Tools and Applications, 75(9), 2016. 
https://www.microsoft.com/en-us/research/wp-
content/uploads/2015/04/icassp2015_fanbo_1009.pdf

67


