Lecture 14: Recurrent Neural Networks

CS109B Data Science 2
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Outline

Why Recurrent Neural Networks (RNNs)
Main Concept of RNNs

More Details of RNNs

RNN training

Gated RNN
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-Fiattening the curve

CAT

Daily
number of
cases

Reduction in peak of
outbreak

“ALERT KITTY” Outbreak: Will
pounce and shred the

healthcare system like the arm ~ Case w'hout
of your couch. t  JF Y I

be s e e e e e e e e e e e e

measures

Time since first case
Source: CDC

v

“LAZY KITTY” Outbreak: Long
intervals between transmission
events, like the amount of time
kitty will hold this position.
Healthcare system can cope.
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Background

Many classification and regression tasks involve data that is
assumed to be independent and identically distributed (i.i.d.).
For example:

Face recognition Risk of heart attack

CS109B, PROTOPAPAS, GLICKMAN, TANNER




Background

Much of our data is inherently sequential

scale examples

WORLD Natural disasters (e.g., earthquakes)

Climate change

HUMANITY Stock market

Virus outbreaks

INDIVIDUAL PEOPLE Speech recognition

Machine Translation (e.g., English -> French)

Cancer treatment
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Background

Much of our data is inherently sequential

Marshawn Lynch

Shoves Saints cornerback Tracy Porter,
hits the hole

knocking him 5 yards downfield

Crosses the goal line

. 30 seconds

Ball hiked

PREDICTING
EARTHQUAKES

‘J‘t

Extra-point is kicked

Lynch breaks
through the line

Breaks
another tackle
£ 10 5

5 minutes
CS

s
€

CS109B, PROTOPAPAS, GLICKMAN, TANNER



Background

Much of our data is inherently sequential

STOCK
MARKET
PREDICTIONS

Market Summary > NVIDIA Corporation  Following
NASDAQ: NVDA

247.92 usp-1.36 (0.55%) +

Jan 21, 2:21 PM EST - Disclaimer

1 day 5 days 1 month 6 months YTD 1 year 5 years Max

300 24792 USD Jan 21,2020

200

100

I ' | '
2016 2017 2018 2019 2020
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Background

!l Sprint

Much of our data is inherently sequential

2:29 PM

What is the weather today

It doesn’t look so nice today...

SPEECH RECOGNITION down to 18°F:

M WEATHER

"What is the weather today?”
"What is the weather two day?”
"What is the whether too day?”

“What is, the Wrether to Dae?”
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Chance of Rain: 0%

High: 27° Low: 18°
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Sequence Modeling: Handwritten Text

hOUfe > "house"

U)o o Aene . o Hs
amswr ahevele .

Winter is here. Go to the store and buy
some show shovels.

* Input:Image
*  Qutput: Text

https://towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-
2326a3487cd5
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Sequence Modeling: Text-to-Speech

“text-to-speech”

’
X

y ! ! e d | ! i
n e W sl N law/ ISl Ipl Ny/ fchy

b

n

* Input: Text
e Qutput: Audio
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Sequence Modeling: Machine Translation

Economic growth has slowed down in recent years

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Economic growth has slowed down in recent years

| 4

La croissance économique s' est ralentie ces derniéres années .

* Input: Text
e Qutput: Translated Text
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Outline

Why RNNs

Main Concept of RNNs (part 1)
More Details of RNNs

RNN training

Gated RNN
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What can my NN do?

Training: Present to the NN examples and learn from them.

qf
e V)
ep b } } |
A& NIV [George, Mary, Tom, Suzi€]
Q

00 8
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What can my NN do?

Prediction: Given an example

o
} NN } George

——

i;;
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What my NN can NOT do?

0
0
Lol
8
B
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Learn from previous examples

| 5
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Recurrent Neural Network (RNN)

I 5

h.
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Recurrent Neural Network (RNN)

| have seen George
moving in this way
before.

h.

George

4

RNNs recognize the data's sequential characteristics and use patterns
to predict the next likely scenario.
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Recurrent Neural Network (RNN)

. WHO IS | do not know. | need to know
ie told me | could have it HE? who said that and what he
' said before. Can you tell me

more?

Our model requires context - or contextual information - to understand
the subject (he) and the direct object (it) in the sentence.
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RNN - Another Example with Text

- Hellen: Nice sweater Joe.
- Joe: Thanks, Hellen. It used

to belong to my brother anqﬁ?e
told me I could have it.

| see what you mean now!
WHO IS The noun “he” stands for
HE? Joe’s brother while ”it” for
the sweater.

After providing sequential information, the model recognize the
subject (Joe’s brother) and the object (sweater) in the sentence.
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Sequences

* We want a machine learning model to understand sequences, not isolated
samples.

e Can MLP do this?

 Assume we have a sequence of temperature measurements and we want to take 3
sequential measurements and predict the next one

features

35
32
45
48
41
39
36

samples
N o o BApWNE
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Sequences

* We want a machine learning model to understand sequences, not isolated
samples.

e Can MLP do this?

 Assume we have a sequence of temperature measurements and we want to take 3
sequential measurements and predict the next one

features
35 1|35
32 2132
45 3 | 45
48) 4 | a8

41
39
36

samples
N o o BApWNE
—
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Sequences

* We want a machine learning model to understand sequences, not isolated

samples.

e Can MLP do this?

 Assume we have a sequence of temperature measurements and we want to take 3
sequential measurements and predict the next one

samples

€
8
B

features

N o o BN

35

32

45

48

41

39

36

A W NN e

35

32

45

48

32
45
48
41

o B~ W N
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Sequences

* We want a machine learning model to understand sequences, not isolated
samples.

e Can MLP do this?

 Assume we have a sequence of temperature measurements and we want to take 3
sequential measurements and predict the next one

features

11|35 1 (35 2 |32 3|45

2 |32 2 |32 3 | 45 4|48
v 3 45 3145 4 | 48 5141
S 4|48 4 | 48 5 | 41 6|39
S 5|41

6 |39

7 | 36
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Sequences

* We want a machine learning model to understand sequences, not isolated
samples.

e Can MLP do this?

 Assume we have a sequence of temperature measurements and we want to take 3
sequential measurements and predict the next one

features

11|35 1 (35 2 |32 3|45

2 |32 2 |32 3 | 45 4|48
v 3 45 3145 4 | 48 5141
S 4|48 4 | 48 5 | 41 6|39
S 5|41

6 |39

7 | 36
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Windowed dataset

This is called overlapping windowed dataset, since we’re windowing observations to
create new.

We can easily do using a MLS:

10 RelLU 10 RelLU 1 RelLU

But re-arranging the order of the inputs like:

3145 2 |32 541
135 4 | 48 4 | 48
2 |32 345 3|45
4 5 6

will produce-the same resyl|
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Why not CNNs or MLPs?

1. MLPs/CNNs require fixed input and output size

2. MLPs/CNNs can’t classify inputs in multiple places
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Windowed dataset

What follows after: "I got in the car and’ ?
“drove away’

What follows after: "In car the and I got’ ?
Not obvious that it should be drove away’

The order of words matters. This is true for most sequential data.

A fully connected network will not distinguish the order and therefore
missing some information.
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Outline

Why RNNs

Main Concept of RNNs
More Details of RNNs
RNN training

Gated RNN
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Memory

Somehow the computational unit should remember what it has seen before.

Y
Should
‘ remember
Xo . Xp_q
Unit
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Memory

Somehow the computational unit should remember what it has seen before.

X594

Y

|

Unit
Internal
memory

|

Xt

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER




Memory

Somehow the computational unit should remember what it has seen before.

X594

we’ll call the information the unit’s state.

Y

|

RNN
Internal
memory

|

Xt
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Memory

In neural networks, once training is over, the weights do not change. This
means that the network is done learning and done changing.

Then, we feed in values, and it simply applies the operations that make up
the network, using the values it has learned.

But the RNN units can remember new information after training has
completed.

That is, they’re able to keep changing after training is over.
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Memory

Question: How can we do this? How can build a unit that remembers the
past?

The memory or state can be written to a file but in RNNs, we keep it inside
the recurrent unit.

In an array or in a vector!

Work with an example:
Anna Sofia said her shoes are too ugly. Her here means Anna Sofia.

Nikolas put his keys on the table. His here means Nikolas

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Memory

Question: How can we do this? How can we build a unit that remembers the
past?

The memory or state can be written to a file but in RNNs, we keep it inside
the recurrent unit.

In an array or in a vector!
Y; (e.g.Nikolas)

|

[ Memory } = RNN [ Memory J@ RNN

|

X; (e. g. his)
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Building an RNN

|

RNN

|

[ Memory }:> RNN | = [ Memory }

ﬁﬁ

Yt+1

|

RNN

|

Xt+1

ﬁﬁ

Yiio

|

RNN

|

Xit2
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Outline

Why RNNs

Main Concept of RNNs
More Details of RNNs
RNN training

Gated RNN
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Structure of an RNN cell

Ve %

i i I
@=Ma@ﬁﬁwwﬂw@vm=@=m
| |

3
0 0
X X

Y Y;
output <> update
weight weight

RNN <—-—[ State }

RNN <—-[ State J

‘ input
weight
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Output, y;
Anatomy of an RNN unit

activation activation

Wyh, + by

activation

he = g(z¢)

Zy = th + Uht—l + bT

Hidden state, hy_4

Input, x;

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER

input
weight

43



Outline

Why RNNs

Main Concept of RNNs
More Details of RNNs
RNN training

Gated RNN
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Backprop Through Time

* Foreach input, unfold network for the sequence length T

* Back-propagation: apply forward and backward pass on unfolded
network

* Memory cost: O(T)

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER

45



Backprop Through Time

output
weights

Y

b

update
weights

N

RNN

*-—[ State J

input
weights

b

Xt
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Backprop Through Time

output
weights

Y

b

update
weights

TS

RNN

4—-[ State }

input
weights
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Backprop Through Time

Yi

Output Weights: W () Update Weights: U

SN

RNN «-—[ State }

Input Weights: V <P

Xt
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Backprop Through Time

yt-2 yt1 Yt
v v [
U U U
he—» — he—q — he —_—
K K |
Xt X1 Xt

You have two activation functions g, which serves as the activation
for the hidden state and g, which is the activation of the output. In

the example shown before g, was the identity.
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Backprop Through Time

Vi1
| w
U
ht—l —
\ y
Xt—1
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Backprop Through Time

Ve = gy(Wht + b)

L=ZLt
t

dL dL,

Ly = Lt(j}t)

dL; 0,

Wztw_ta_ytﬁ
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Backprop Through Time

he = g,(Vx; + Uh._; + b")

Ve = 9yWgn(Vx, + Uhe—y +b') + D)
L = 2 I Ly =L:(De)

dL  ~O 0L, 09, Oh,
auv 09 0h, OU

hi—z

he-q

hy

Xt—Z

dh; )
oh. = gnU
aht Z aht ahk J—1
U “k=19p, au /
Ohy_ Ohy Oh¢—1  ORgy1 _ qt
dhy Ohi_q Ohe_, =" Ohy, =kt
0L, _3L.39, dhe dhe dhey = dhe dheydhes )

oU  0y,0h, dU * dh,_, dU

L 4 4

dh,_, dh,_, dU
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Gradient Clipping

Prevents exploding gradients
Clip the norm of gradient before update.
For some derivative g, and some threshold u

if ” g ” > U Without clipping
gu

g €
gl

J(w,b)

1

With clipping

N

J(w,b)



Outline

Why RNNs

Main Concept of RNNs
More Details of RNNs
RNN training

Gated RNN
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Long-term Dependencies

Unfolded networks can be very deep

Long-term interactions are given exponentially smaller weights than
small-term interactions

Gradients tend to either vanish or explode
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Long Short-Term Memory

Handles long-term dependencies
Leaky units where weight on self-loop a is context-dependent
Allow network to decide whether to accumulate or forget past info

CS109B, PrRoTOPAPAS, GLICKMAN, TANNER
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Notation

Using conventional and convenient notation

Update Weights: U

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

X:
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when your basic RNN isn’t
cabable of catching long-term
dependencies
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Simple RNN again

Output, y;

activation
he = g(z)

Zt = th + Uht—l + bT‘

Hidden state, hy_4

Input, x;

=
~
v

State

Vv
N

Xt
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Simple RNN again

Output, y;

activation
he = g(z)

Zt = th + Uht—l + bT‘

Hidden state, hy_4

Input, x;

=
~
v

State

Vv
N

Xt
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Simple RNN again: Memories

> State




Simple RNN again: Memories - Forgetting
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Simple RNN again: New Events




Simple RNN again: New Events Weighted
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Simple RNN again: Updated memories
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