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Outline

Why Recurrent Neural Networks (RNNs)
Main Concept of RNNs
More Details of RNNs  
RNN training
Gated RNN
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Background

Many classification and regression tasks involve data that is 
assumed to be independent and identically distributed (i.i.d.). 
For example:

4

Detecting lung cancer Face recognition Risk of heart attack
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Background

Much of our data is inherently sequential
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WORLD

HUMANITY

INDIVIDUAL PEOPLE

Natural disasters (e.g., earthquakes)

Climate change

Stock market

Flu outbreaks

Speech recognition

Machine Translation (e.g., English -> 
French)

Cancer treatment

scale examples
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Background

Much of our data is inherently sequential

PREDICTING
EARTHQUAKES
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Background

Much of our data is inherently sequential

STOCK 
MARKET 

PREDICTIONS
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Background

Much of our data is inherently sequential

SPEECH RECOGNITION

“What is the weather today?”

“What is the weather two day?”

“What is the whether too day?”

“What is, the Wrether to Dae?”

8
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Sequence Modeling: Handwritten Text
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• Input : Image
• Output: Text

https://towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-2326a3487c
d5

https://towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-2326a3487cd5
https://towardsdatascience.com/build-a-handwritten-text-recognition-system-using-tensorflow-2326a3487cd5
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Sequence Modeling: Text-to-Speech
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• Input : Audio
• Output: Text
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Sequence Modeling: Machine Translation
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• Input : Text
• Output: Translated 

Text
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Outline

Why RNNs
Main Concept of RNNs (part 1) 
More Details of RNNs  
RNN training
Gated RNN
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What can my NN do?
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NN [George, Mary, Tom, Suzie]

Training: Present to the NN examples and learn from them.
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What can my NN do?

14

NN George

NN Mary

Prediction: Given an example
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What my NN can NOT do?

15

WHO IS 
IT? ?
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Learn from previous examples

16

Time
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Recurrent Neural Network (RNN)

17

NN George
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Recurrent Neural Network (RNN)

RNNs recognize the data's sequential characteristics and use patterns 
to predict the next likely scenario.

18

NN George

I have seen George 
moving in this way 
before.
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Recurrent Neural Network (RNN)

Our model requires context - or contextual information - to understand 
the subject (he) and the direct object (it) in the sentence.

19

WHO IS 
HE?

I do not know. I need to know 
who said that and what he 
said before. Can you tell me 
more?

He told me I could have it
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RNN – Another Example with Text

After providing sequential information, the model understood 
the subject (Joe’s brother) and the direct object (sweater) in 
the sentence .

20

WHO IS 
HE?

I see what you mean now! 
The noun “he” stands for 
Joe’s brother while ”it” for 
the sweater.

- Hellen: Nice sweater Joe.
- Joe: Thanks,  Hellen. It used   

to belong to my brother and  he 
told me I could have it.
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 
• Assume we have a sequence of temperature measurements and we want to take 3 

sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 
• Assume we have a sequence of temperature measurements and we want to take 3 

sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 
• Assume we have a sequence of temperature measurements and we want to take 3 

sequential measurements and predict the next one

23

35

32

45

48

41

39

36

…

1

2

3

4

5

6

7

…

features

sa
m

p
le

s

35

32

45

48

1

2

3

4

32

45

48

41

2

3

4

5



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 
• Assume we have a sequence of temperature measurements and we want to take 3 

sequential measurements and predict the next one
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Sequences

• We want a machine learning model to understand sequences, not isolated 
samples. 

• Can MLP do this? 
• Assume we have a sequence of temperature measurements and we want to take 3 

sequential measurements and predict the next one
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Windowed dataset 

This is called overlapping windowed dataset, since we’re windowing observations to 
create new. 
We can easily do using a MLS: 

26
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will produce the same results

But re-arranging the order of the inputs like:
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Why not CNNs or MLPs?

27

1. MLPs/CNNs require fixed input and output size 

2. MLPs/CNNs can’t classify inputs in multiple places 



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Windowed dataset 

What follows after: ‘I got in the car and’ ?

drove away 

What follows after: ‘In car the and I’ ? 

Not obvious it should be ‘drove away’ 

The order of words matters. This is  true for most sequential data. 
A fully connected network will not distinguish the order and therefore 
missing some information. 

28
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Outline

Why RNNs
Main Concept of RNNs
More Details of RNNs  
RNN training
Gated RNN
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Memory

Somehow the computational unit should remember what it has seen before. 

30

Unit
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Memory

Somehow the computational unit should remember what it has seen before. 
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Unit
Internal 
memory
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Memory

Somehow the computational unit should remember what it has seen before.
We’ll call the information the unit’s state. 

32

RNN
Internal 
memory
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Memory

In neural networks, once training is over, the weights do not change. This 
means that the network is done learning and done changing. 

Then, we feed in values, and it simply applies the operations that make up 
the network, using the values it has learned. 

But the RNN units can remember new information after training has 
completed. 

That is, they’re able to keep changing after training is over.

33
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Memory

Question: How can we do this? How can build a unit that remembers the 
past? 

The memory or state can be written to a file but in RNNs, we keep it inside 
the recurrent unit.

In an array or in a vector! 

Work with an example: 

Anna Sofia said her shoes are too ugly.  Her here means Anna Sofia.

Nikolas put his keys on the table. His here means Nikolas

34
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Memory

Question: How can we do this? How can build a unit that remembers the 
past? 

The memory or state can be written to a file but in RNNs, we keep it inside 
the recurrent unit.

In an array or in a vector! 
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Building an RNN
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Outline

Why RNNs
Main Concept of RNNs
More Details of RNNs  
RNN training
Gated RNN
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Structure of an RNN cell
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Anatomy of an RNN unit
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Outline

Why RNNs
Main Concept of RNNs
More Details of RNNs  
RNN training
Gated RNN
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Backprop Through Time

• For each input, unfold network for the sequence length T
• Back-propagation: apply forward and backward pass on unfolded 

network
• Memory cost: O(T)

41
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Backprop Through Time

42
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Backprop Through Time
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Backprop Through Time

44

 

RNN

 

State

 

Update Weights: UOutput Weights: W

Input Weights: V
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Backprop Through Time
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Backprop Through Time
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Backprop Through Time
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Backprop Through Time
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Gradient Clipping
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Gradient Clipping
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Outline

Why RNNs
Main Concept of RNNs
More Details of RNNs  
RNN training
Gated RNN
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Long-term Dependencies

Unfolded networks can be very deep
Long-term interactions are given exponentially smaller weights than 
small-term interactions
Gradients tend to either vanish or explode

52
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Long Short-Term Memory

Handles long-term dependencies
Leaky units where weight on self-loop α is context-dependent
Allow network to decide whether to accumulate or forget past info

53
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Notation

Using conventional and convenient notation
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Simple RNN again 
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Simple RNN again 
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Simple RNN again: Memories
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Simple RNN again: Memories - Forgetting
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Simple RNN again: New Events
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Simple RNN again: New Events Weighted
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Simple RNN again: Updated memories
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Continue on Wednesday 
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RNN
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Is it raining? We build an RNN to the probability if it is raining: 
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RNN + Memory
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RNN + Memory + Output
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LSTM: Long short term memory
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Before to really understand LSTM lets see 
the big picture … 

Forget Gate
Input Gate

Cell State
Output Gate
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69

1. LSTM are recurrent neural network with a cell 
and a hidden state, boths of these are 
updated in each step and can be thought as 
memories.
 

2. Cell states work as a long term memory and 
the updates depends on the relation between 
the hidden state in t -1 and the input.

3. The hidden state of the next step is a 
transformation of the cell state and the 
output (which is the section that is in general 
used to calculate our  loss, ie information 
that we want in a short memory). 

Before to really understand LSTM lets see 
the big picture … 
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Let's think about 
my cell state

Let's predict if i will help you in 
the homework in time t
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Forget Gate

Erase 
everything!

The forget gate tries to estimate what features of the cell 
state should be forgotten.
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Input Gate
The input gate layer works in a similar way that the 
forget layer, the input gate layer estimate the degree of 
confidence of        and      is a new estimation of the cell 
state.

Let’s say that my input 
gate estimation is:
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Cell state
After the calculation of forget gate and input gate we can 
update our cell state.

73



CS109B, PROTOPAPAS, GLICKMAN, TANNER 74

Output gate ● The output gate layer is calculated using the 
information of the input x in time t and hidden state 
of the last step.

● It is important to notice that hidden state used in 
the next step is obtained using the output gate layer 
which is usually the function that we optimize.
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To optimize my parameters i basically need to do:
Let’s calculate all the derivatives in some time t!

wcct! = we can calculate this!

wcct! 

wcct! 

wcct! 

wcct! 

So… every derivative is wrt the cell state or the hidden state
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Let’s calculate the cell state and the hidden state
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RNN Structures

77

 

 

one to one

• The one to one structure is useless. 

• It takes a single input and it produces a single 
output. 

• Not useful because the RNN cell is making little 
use of its unique ability to remember things 
about its input sequence
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RNN Structures (cont)
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many to one

 

 

 

The many to one structure 
reads in a sequence and gives 
us back a single value. 
Example: Sentiment analysis, 
where the network is given a 
piece of text and then reports 
on some quality inherent in the 
writing. A common example is 
to look at a movie review and 
determine if it was positive or 
negative. 
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RNN Structures (cont)

79

 

 

one to many

  

The one to many takes in a single 
piece of data and produces a 
sequence. 
For example we give it the starting 
note for a song, and the network 
produces the rest of the melody for 
us. 
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RNN Structures (cont)

80

 

 

many to many

 

 

 

 

The many to many structures are in 
some ways the most interesting. used 
for machine translation. 
Example: Predict if it will rain given 
some inputs.
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RNN Structures (cont)

81

 

many to many

 

 

 This form of many to many can be 
used for machine translation. 

For example, the English sentence: 
“The black dog jumped over the cat” 
In Italian as:
 “Il cane nero saltò sopra il gatto” 
In the Italia, the adjective “nero” 
(black) follows the noun “cane” (dog), 
so we need to have some kind of 
buffer so we can produce the words in 
their proper English. 
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Bidirectional 

LSTM and RNN are designed to analyze sequence of values. 

For example: Patrick said he needs a vacation. 
he here means Patrick and we know this because Patrick  was before the 
word he. 

However consider the following sentence: 
He needs to work more, Pavlos said about Patrick.

Bidirectional RNN or BRNN or bidirectional LSTM or BLSTM when using 
LSTM units. 

82
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Bidirectional (cond) 

83

   

   

previous state

previous state

 

 

symbol for a BRNN 



CS109B, PROTOPAPAS, GLICKMAN, TANNER

Deep RNN

LSTM units can be arranged in layers, so that each the output of each 
unit is the input to the other units. This is called a deep RNN, where the 
adjective “deep” refers to these multiple layers.

• Each layer feeds the LSTM on the next layer
• First time step of a feature is fed to the first LSTM, which processes 

that data and produces an output (and a new state for itself). 
• That output is fed to the next LSTM, which does the same thing, and 

the next, and so on. 
• Then the second time step arrives at the first LSTM, and the process 

repeats.

84
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Deep RNN
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Skip Connections

Add additional connections between units d time steps apart
Creating paths through time where gradients neither vanish or explode

86

t-1 t t+1
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Leaky Units

Linear self-connections
Maintain cell state: running average of past hidden activations 

87
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PAVLOS PROTOPAPAS

Standard RNN

88colah.github.io
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PAVLOS PROTOPAPAS

Leaky Unit 
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✕

colah.github.io


