
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman and Chris Tanner

Lecture 11: Convolutional Neural Networks 2

1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps

6. Transfer Learning

7. A bit of history

2

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps

6. Transfer Learning

7. A bit of history

3

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

From last lecture

4

+ ReLU + ReLU

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 5

Lab

Quiz
Lecture

Homework

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 6

Lab

Quiz
Lecture

Homework

Lab

Quiz
Lecture

Homework

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Input
(size=32X32,

channels=3)

Output
(size=32X32)

How many parameters does the layer have?

n_filter x filter_volume + biases = total number of params

1 x (3 x 3 x 3) + 1 = 28

1 Filter
(size=3x3X3,

stride = 1,

padding = same)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Examples

• I have a convolutional layer with 16 3x3 filters that takes an RGB
image as input.

• How many parameters does the layer have?

16 x 3 x 3 x 3 + 16 = 448

8

Number of
filters

Size of
Filters

Number of
channels of
prev layer

Biases (one
per filter)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?
(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4
+ 4)

9

Conv1 Conv2 Dense1 Dense2

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

How many parameters does the layer have if I want to use 8 filters?

n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 = 224

Input
(size=32X32,

channels=3)

Output
(size=32X32,

channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,

padding = same)

filter x 1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 = 3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Fully Connected
(n_nodes=4)

How many parameters … ?

input x FC1_nodes + FC2_nodes = total number of params

(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 16X16X16)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Representation Learning

Task: classify cars, people, animals and objects

13

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

What do CNN layers learn?

• Each CNN layer learns filters of increasing complexity.
• The first layers learn basic feature detection filters: edges,

corners, etc.
• The middle layers learn filters that detect parts of objects.

For faces, they might learn to respond to eyes, noses, etc.
• The last layers have higher representations: they learn to

recognize full objects, in different shapes and positions.

14

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

15

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps

6. Transfer Learning

7. A bit of history

16

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 17

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps

6. Transfer Learning

7. A bit of history

18

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

19

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

Forward mode, 3x3 stride 1

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

20

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

9

Forward mode, 3x3 stride 1

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

21

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

9 8

Activation of layer L

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Forward mode, 3x3 stride 1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

22

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

9 8 8

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Forward mode, 3x3 stride 1

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

23

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

9 8 8

9 6 6

7 7 7

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Forward mode, 3x3 stride 1

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

24

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

25

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

26

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

27

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

+1

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

28

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

+1

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

29

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

+1

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

+3

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

30

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

+1

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

+3

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Backward propagation of Maximum Pooling Layer

31

2 4 8 3 6

9 3 4 2 5

5 4 6 3 1

2 3 1 3 4

2 7 4 5 7

1
9

3
8

1
8

1
9

4
6

2
6

6
7

2
7

1
7

+1

Backward mode. Large fonts represents the values of the derivatives of the current layer
(max-pool) and small font the corresponding value of the previous layer.

re
st

 o
f

th
e

n
et

w
or

k

re
st

 o
f

th
e

n
et

w
or

k

Activation of layer L

+4

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 32

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field, dilated CNNs

5. Saliency maps

6. Transfer Learning

7. A bit of history

33

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

34

 layer l

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

35

 layer l

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

36

 layer l

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

37

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

38

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

39

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layer’s Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature is looking at (i.e. be affected by).
Apply a convolution C with kernel size k = 3x3, padding size p = 1x1,
stride s = 2x2 on an input map 5x5, we will get an output feature
map 3x3 (green map).

40

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layer’s Receptive Field

Applying the same convolution on top of the 3x3 feature map, we will get
a 2x2 feature map (orange map)

41

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1

42

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Dilated CNNs

Let’s look at the receptive field again in 1D, no padding, stride 1 and
kernel 3x1.
Skip some of the connections

43

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Dilated CNNs

44

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps

6. Transfer Learning

7. A bit of history

45

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Saliency maps (cont)

If you are given an image of a dog and asked to classify it.
Most probably you will answer immediately – Dog! But your Deep
Learning Network might not be as smart as you. It might classify
it as a cat, a lion or Pavlos!

46

What are the reasons for that?
• bias in training data
• no regularization
• or your network has seen too

many celebrities

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Saliency maps (cont)

We want to understand what made my network give a certain
class as output?

Saliency Maps, they are a way to measure the spatial support of
a particular class in a given image.

“Find me pixels responsible for the class C having score S(C) when the
image I is passed through my network”.

47

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Salience maps (cont)

48

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Salience maps (cont)

Question: Easy Peasy?

Sort of! Auto-grad can do this!

1. Forward pass of the image through the network.
2. Calculate the scores for every class.
3. Enforce derivative of score S at last layer for all classes except class C to

be 0. For C, set it to 1
4. Backpropagate this derivative till the start
5. Render them and you have your Saliency Map!

Note: On step #2. Instead of doing softmax, we turn it to linear and use the logits.

49

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Salience maps (cont)

50

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Salience maps (cont)

51

[1]: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
[2]: Attention-based Extraction of Structured Information from Street View Imagery

Question: What do we do with color images?
Take the saliency map for each channel and either take the max or average
or use all 3 channels.

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1704.03549

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 52

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field, dilated CNNs

5. Saliency maps

6. Transfer Learning

7. A bit of history

53

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Classify Rarest Animals

54

Number of parameters: 134,268,737
Data Set: Few hundred images

VGG16

NOT ENOUGH DATA

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Classify Cats, Dogs, Chinchillas etc

55

Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16

TAKES TOO LONG

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning To The Rescue

How do you build an image classifier that can be trained in a
few minutes on a CPU with very little data?

56

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Basic idea of Transfer Learning

57

Wikipedia:
Transfer learning (TL) is a research
problem in machine learning (ML)
that focuses on storing knowledge
gained while solving one problem and
applying it to a different but related
problem.[1]

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning To The Rescue

How do you make an image classifier that can be trained in a
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: earlier layers of a network learn low level features,
which can be adapted to new domains by changing weights at
later and fully-connected layers.

Example: use ImageNet trained with any sophisticated huge
network. Then retrain it on a few images

58

CS109B, PROTOPAPAS, GLICKMAN AND TANNER 59

Hotdog or NotHotDog: https://youtu.be/ACmydtFDTGs
(offensive language and tropes alert)

https://youtu.be/ACmydtFDTGs

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning (cont)

• train on a big "source" data set, with a big model, on one particular
downstream tasks (say classification). Do it once and save the
parameters. This is called a pre-trained model.
• use these parameters for other smaller "target " datasets, say, for
classification on new images (possibly different domain, or training
distribution), or for image segmentation on old images (new task), or
new images (new task and new domain).
• less helpful if you have a large target dataset with many labels.
• will fail if source domain (where you trained big model) has nothing in
common with target domain (that you want to train on smaller data set).

60

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning (cont)

61

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning: Fine-tuning

62

• Up to now we have frozen the entire convolutional
base.

• Remember that earlier layers learn highly generic
feature maps (edges, colors, textures).

• Later layers learn abstract concepts (dog’s ear).

• To particularize the model to our task, its often worth
tuning the later layers as well.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Transfer Learning: Fine-tuning

63

• A low learning rate can take a lot of
time to train on the "later" layers.
Since we trained the FC head earlier,
we could probably retrain them at a
higher learning rate.
• General Idea: Train different layers
at different rates.
• Each "earlier" layer or layer group
(the color-coded layers in the image)
can be trained at 3x-10x smaller
learning rate than the next "later"
one.
• One could even train the entire
network again this way until we
overfit and then step back some
epochs.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Cool Transfer learning application

NVIDIA Video to Video Synthesis - 2018

64

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Latest events on Image Recognition

Mask- RCNN - 2017

65

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs

3. BackProp of MaxPooling layer

4. Layers Receptive Field

5. Saliency maps - more graphics

6. Transfer Learning. - AC295

7. Segmentation

8. A bit of history and SOTA

66

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Initial ideas

• The first piece of research proposing something similar to a
Convolutional Neural Network was authored by Kunihiko Fukushima
in 1980, and was called the NeoCognitron1.

• Inspired by discoveries on visual cortex of mammals.
• Fukushima applied the NeoCognitron to hand-written character

recognition.
• End of the 80’s: several papers advanced the field

• Backpropagation published in French by Yann LeCun in 1985 (independently
discovered by other researchers as well)

• TDNN by Waiber et al., 1989 - Convolutional-like network trained with
backprop.

• Backpropagation applied to handwritten zip code recognition by LeCun et al.,
1989

67

1 K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4): 93-202, 1980.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

LeNet

• November 1998: LeCun publishes one of his most recognized papers
describing a “modern” CNN architecture for document recognition,
called LeNet1.

• Not his first iteration, this was in fact LeNet-5, but this paper is the
commonly cited publication when talking about LeNet.

68

1 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

AlexNet

69

• Developed by Alex Krizhevsky, Ilya Sutskever and
Geoffrey Hinton at Utoronto in 2012. More than 25000
citations.

• Destroyed the competition in the 2012 ImageNet Large
Scale Visual Recognition Challenge. Showed benefits of
CNNs and kickstarted AI revolution.

• top-5 error of 15.3%, more than 10.8 percentage points
lower than runner-up.

AlexNet

• Main contributions:
• Trained on ImageNet with data

augmentation
• Increased depth of model, GPU

training (five to six days)
• Smart optimizer and Dropout layers
• ReLU activation!

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

• 1.2 million high-resolution (227x227x3) images in the ImageNet 2010 contest;
• 1000 different classes, NN with 60 million parameters to optimize (~ 255 MB);
• Uses ReLu activation functions; GPUs for training, 12 layers.

AlexNet

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ZFNet

• Introduced by Matthew Zeiler and Rob Fergus from NYU, won ILSVRC
2013 with 11.2% error rate. Decreased sizes of filters.

• Trained for 12 days.
• Paper presented a visualization technique named Deconvolutional

Network, which helps to examine different feature activations and
their relation to the input space.

71

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

VGG

• Introduced by Simonyan and Zisserman (Oxford) in 2014
• Simplicity and depth as main points. Used 3x3 filters exclusively

and 2x2 MaxPool layers with stride 2.
• Showed that two 3x3 filters have an effective receptive field of 5x5.
• As spatial size decreases, depth increases.
• Trained for two to three weeks.
• Still used as of today.

72

VGG
16

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

• ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters (~ 522 MB).
• Convolutional layers use ‘same’ padding and stride s=1.
• Max-pooling layers use a filter size f=2 and strie s=2.

VGG

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

• The motivation behind inception networks is to use more than a singe type of
convolution layer at each layer.

• Use 1 x 1,3 x 3,5 x convolutional layers, and max-pooling layers in parallel.
• All modules use same convolution.
• Basic implementation:

SOTA Deep Models: Inception (GoogLeNet)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

• Use 1 x 1 convolutions that reduce the size of the channel dimension.
• The number of channels can vary from the input to the output..

SOTA Deep Models: Inception (GoogLeNet)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

SOTA Deep Models: Inception (GoogLeNet)
• The inception network is formed by concatenating other inception modules.
• It includes several softmax output units to enforce regularization.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ResNet

• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple
categories.

• Main idea: Residual block. Allows for extremely deep networks.
• Authors believe that it is easier to optimize the residual mapping than the

original one. Furthermore, residual block can decide to “shut itself down” if
needed.

78

Residual Block

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ResNet

• Residual nets appeared in 2016 to train very deep NN (100 or more
layers).

• Their architecture uses ‘residual blocks’.
• Plain network structure:

• Residual network block

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ResNet

The idea is to allow the network to become deeper without increasing
the training time

The residual network stacks blocks sequentially

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Residual networks implement blocks with convolutional layers that use ‘same’
padding option (even when max-pooling).
– This allows the block to learn the identity function.
􏰀 The designer may want to reduce the size of features and use ‘valid’ padding.
– In such case, the shortcut path can implement a new set of convolutional layers that
reduces the size appropriately.

ResNet

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ResNet

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

SOTA Deep Models: MobileNet

Input: 8x8x3
Filter: 1x1x3x256

Output: 8x8x256
(no padding)

Standard Convolution

MACs: (5x5)x3x256x(12x12) ~ 2.8M
Parameters: (5x5x3)x256 + 256 ~ 20K

Filters and combines inputs into a new set of outputs in one step

Depth-Wise Separable Convolution (DW)

MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K
Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K

Output: 8x8x3
(no padding)

Input: 12x12x3
Filter: 5x5x3

Input: 12x12x3
Filter: 5x5x3x256

Output: 8x8x256
(no padding)

It combines a depth wise convolution and a pointwise convolution

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

SOTA Deep Models: DenseNets

• Goal: allow maximum information (and gradient) flow → connect every layer
directly with each other.

• DenseNets exploit the potential of the network through feature reuse → no
need to learn redundant feature maps.

• DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set
of new feature-maps.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

SOTA Deep Models: DenseNets

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Beyond

• MobileNetV2 (https://arxiv.org/abs/1801.04381)
• Inception-Resnet, v1 and v2

(https://arxiv.org/abs/1602.07261)
• Wide-Resnet (https://arxiv.org/abs/1605.07146)
• Xception (https://arxiv.org/abs/1610.02357)
• ResNeXt (https://arxiv.org/pdf/1611.05431)
• ShuffleNet, v1 and v2 (https://arxiv.org/abs/1707.01083)
• Squeeze and Excitation Nets

(https://arxiv.org/abs/1709.01507)

86

https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1610.02357
https://arxiv.org/pdf/1611.05431
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1709.01507

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

What’s next

Advanced topics start today on Transfer Learning :
4:30pm @ MD 115

Next Week:
Segmentation –
Autoencoders
Start of RNNs

87

CS109B, Protopapas, Glickman, Tanner Spring 2020

Advanced Sec. 2: Object Detection and Semantic Segmentation

● IMAGE CLASSIFICATION
assigning 1 single label to the entire picture = Easy!

○ Algorithms.: VGG/Resnet/Densenet

● OBJECT DETECTION
detect, classify and locate every object in the picture

○ Algorithms:
R-CNN/Fast-R-CNN/Faster-R-CNN &
YOLO

● SEMANTIC SEGMENTATION
assigning a meaningful label to every pixel in the image

○ Algorithms: FCN & U-NET 88

DOG

http://www.youtube.com/watch?v=YmbhRxQkLMg

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Latest events on Image Recognition

You Only Look Once (YOLO) - 2016

89

