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From last lecture

4

+ ReLU + ReLU
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Input
(size=32X32,

channels=3)

Output
(size=32X32)

How many parameters does the layer have?

n_filter  x filter_volume + biases = total number of params

1 x (3 x 3 x 3) + 1 =  28

1 Filter
(size=3x3X3,

stride = 1,

padding = same)



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Examples

• I have a convolutional layer with 16 3x3 filters that takes an RGB 
image as input. 

• How many parameters does the layer have?

16 x 3 x 3 x 3 + 16 =  448

8

Number of 
filters

Size of 
Filters

Number of 
channels of 
prev layer

Biases (one 
per filter)
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Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?
(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 
+ 4)   

9

Conv1 Conv2 Dense1 Dense2
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How many parameters does the layer have if I want to use 8 filters?

n_filters x filter_volume + biases = total number of params

8 x (3 x 3 x 3) + 8 =  224

Input
(size=32X32,

channels=3)

Output
(size=32X32,

channels = 8)

Filter
8 x (size=3X3x3,

stride = 1,

padding = same)

filter x 1
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How many parameters does the layer have if I want to use 16 filters?

n_filters x filter_volume + biases = total number of params

16 x (5 x 5 x 8) + 16 =  3216

Input
(size=32X32,

channels=8)

Output
(size=16X16,

channels=16)

Filter
16 x (size=5X5X8,

stride = 2,

padding = same)

16 filters
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Fully Connected
(n_nodes=4)

How many parameters … ?

input x FC1_nodes + FC2_nodes = total number of params

(16x16x16) x 512 + 512 + 512 x 4 + 4 = 2,099,716

Input
(size=16X16,

channels=16)

Fully Connected
(n_nodes=512)

Flatten
(size= 16X16X16)
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Representation Learning

Task: classify cars, people, animals and objects

13

CNN Layer 1 CNN Layer 2 CNN Layer n FCN…  
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What do CNN layers learn?

• Each CNN layer learns filters of increasing complexity.
• The first layers learn basic feature detection filters: edges, 

corners, etc.
• The middle layers learn filters that detect parts of objects. 

For faces, they might learn to respond to eyes, noses, etc.
• The last layers have higher representations: they learn to 

recognize full objects, in different shapes and positions.

14
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3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

15

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y
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Backward propagation of Maximum Pooling Layer

19
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and 
kernel 3x1 

34

 layer l
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Layers Receptive Field 
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Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and 
kernel 3x1 
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Layer’s Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature is looking at (i.e. be affected by).
Apply a convolution C with kernel size k = 3x3, padding size p = 1x1, 
stride s = 2x2 on an input map 5x5, we will get an output feature 
map 3x3 (green map).

40
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Layer’s Receptive Field

Applying the same convolution on top of the 3x3 feature map, we will get 
a 2x2 feature map (orange map)

41
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Layers Receptive Field

Let’s look at the receptive field again in 1D, no padding, stride 1 and 
kernel 3x1 

42
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Dilated CNNs

Let’s look at the receptive field again in 1D, no padding, stride 1 and 
kernel 3x1. 
Skip some of the connections 

43



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Dilated CNNs

44
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Saliency maps (cont)

If you are given an image of a dog and asked to classify it. 
Most probably you will answer immediately – Dog! But your Deep 
Learning Network might not be as smart as you. It might classify 
it as a cat, a lion or Pavlos!

46

What are the reasons for that? 
•  bias in training data 
•  no regularization 
•  or your network has seen too 

many celebrities 
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Saliency maps (cont)

We want to understand what made my network give a certain 
class as output? 

Saliency Maps, they are a way to measure the spatial support of 
a particular class in a given image. 

“Find me pixels responsible for the class C having score S(C) when the 
image I is passed through my network”.

47
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Salience maps (cont)

 

48
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Salience maps (cont)

Question: Easy Peasy?

Sort of! Auto-grad can do this! 

1. Forward pass of the image through the network.
2. Calculate the scores for every class.
3. Enforce derivative of score S at last layer for all classes except class C to 

be 0. For C, set it to 1
4. Backpropagate this derivative till the start
5. Render them and you have your Saliency Map!

Note: On step #2. Instead of doing softmax, we turn it to linear and use the logits. 

49
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Salience maps (cont)

50
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Salience maps (cont)

51

[1]: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
[2]: Attention-based Extraction of Structured Information from Street View Imagery

Question: What do we do with color images? 
Take the saliency map for each channel and either take the max or average 
or use all 3 channels. 

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1704.03549


CS109B, PROTOPAPAS, GLICKMAN AND TANNER 52



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

1. Review from last lecture

2. Training CNNs 

3. BackProp of MaxPooling layer 

4. Layers Receptive Field, dilated CNNs

5. Saliency maps  

6. Transfer Learning

7. A bit of history

53



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Classify Rarest Animals 

54

Number of parameters: 134,268,737
Data Set: Few hundred images 

VGG16

NOT ENOUGH DATA
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Classify Cats, Dogs, Chinchillas etc

55

Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M

VGG16

TAKES TOO LONG
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Transfer Learning To The Rescue

How do you build an image classifier that can be trained in a 
few minutes on a CPU with very little data? 

56
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Basic idea of  Transfer Learning

57

 

 

 

 

Wikipedia: 
Transfer learning (TL) is a research 
problem in machine learning (ML) 
that focuses on storing knowledge 
gained while solving one problem and 
applying it to a different but related 
problem.[1] 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1
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Transfer Learning To The Rescue

How do you make an image classifier that can be trained in a 
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: earlier layers of a network learn low level features, 
which can be adapted to new domains by changing weights at 
later and fully-connected layers.

Example: use ImageNet trained with any sophisticated huge 
network. Then retrain it on a few images

58
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Hotdog or NotHotDog: https://youtu.be/ACmydtFDTGs 
(offensive language and tropes alert)

https://youtu.be/ACmydtFDTGs
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Transfer Learning (cont)

• train on a big "source" data set, with a big model, on one particular 
downstream tasks (say classification). Do it once and save the 
parameters. This is called a pre-trained model.
• use these parameters for other smaller "target " datasets, say, for 
classification on new images (possibly different domain, or training 
distribution), or for image segmentation on old images (new task), or 
new images (new task and new domain).
• less helpful if you have a large target dataset with many labels.
• will fail if source domain (where you trained big model) has nothing in 
common with target domain (that you want to train on smaller data set).

60
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Transfer Learning (cont)

61
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Transfer Learning: Fine-tuning

62

• Up to now we have frozen the entire convolutional 
base.

• Remember that earlier layers learn highly generic 
feature maps (edges, colors, textures).

• Later layers learn abstract concepts (dog’s ear).

• To particularize the model to our task, its often worth 
tuning the later layers as well.
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Transfer Learning: Fine-tuning

63

• A low learning rate can take a lot of 
time to train on the "later" layers. 
Since we trained the FC head earlier, 
we could probably retrain them at a 
higher learning rate.
• General Idea: Train different layers 
at different rates.
• Each "earlier" layer or layer group 
(the color-coded layers in the image) 
can be trained at 3x-10x smaller 
learning rate than the next "later" 
one.
• One could even train the entire 
network again this way until we 
overfit and then step back some 
epochs.
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Cool Transfer learning application

NVIDIA Video to Video Synthesis - 2018

64
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Latest events on Image Recognition

Mask- RCNN - 2017

65
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Initial ideas

• The first piece of research proposing something similar to a 
Convolutional Neural Network was authored by Kunihiko Fukushima 
in 1980, and was called the NeoCognitron1.

• Inspired by discoveries on visual cortex of mammals.
• Fukushima applied the NeoCognitron to hand-written character 

recognition.
• End of the 80’s: several papers advanced the field

• Backpropagation published in French by Yann LeCun in 1985 (independently 
discovered by other researchers as well)

• TDNN by Waiber et al., 1989 - Convolutional-like network trained with 
backprop.

• Backpropagation applied to handwritten zip code recognition by LeCun et al., 
1989

67

1 K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. 
Biological Cybernetics, 36(4): 93-202, 1980.
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LeNet

• November 1998: LeCun publishes one of his most recognized papers 
describing a “modern” CNN architecture for document recognition, 
called LeNet1. 

• Not his first iteration, this was in fact LeNet-5, but this paper is the 
commonly cited publication when talking about LeNet.

68

1 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
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AlexNet

69

• Developed by Alex Krizhevsky, Ilya Sutskever and 
Geoffrey Hinton at Utoronto in 2012. More than 25000 
citations.

• Destroyed the competition in the 2012 ImageNet Large 
Scale Visual Recognition Challenge. Showed benefits of 
CNNs and kickstarted AI revolution.

• top-5 error of 15.3%, more than 10.8 percentage points 
lower than runner-up.

AlexNet

•   Main contributions:
• Trained on ImageNet with data 

augmentation
• Increased depth of model, GPU 

training (five to six days)
• Smart optimizer and Dropout layers
• ReLU activation!
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• 1.2 million high-resolution (227x227x3) images in the ImageNet 2010 contest;
• 1000 different classes, NN with 60 million parameters to optimize (~ 255 MB);
• Uses ReLu activation functions; GPUs for training, 12 layers.

AlexNet
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ZFNet

• Introduced by Matthew Zeiler and Rob Fergus from NYU, won ILSVRC 
2013 with 11.2% error rate. Decreased sizes of filters.

• Trained for 12 days.
• Paper presented a visualization technique named Deconvolutional 

Network, which helps to examine different feature activations and 
their relation to the input space.

71
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VGG

• Introduced by Simonyan and Zisserman (Oxford) in 2014
• Simplicity and depth as main points. Used 3x3 filters exclusively 

and 2x2 MaxPool layers with stride 2.
• Showed that two 3x3 filters have an effective receptive field of 5x5.
• As spatial size decreases, depth increases.
• Trained for two to three weeks.
• Still used as of today.

72

VGG
16
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• ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters (~ 522 MB).
• Convolutional layers use ‘same’ padding and stride s=1.
• Max-pooling layers use a filter size f=2 and strie s=2.

VGG
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• The motivation behind inception networks is to use more than a singe type of 
convolution layer at each layer. 

• Use 1 x 1,3 x 3,5 x convolutional layers, and max-pooling layers in parallel.
• All modules use same convolution.
• Basic implementation:

SOTA Deep Models: Inception (GoogLeNet)



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

• Use 1 x 1 convolutions that reduce the size of the channel dimension.
• The number of channels can vary from the input to the output..

SOTA Deep Models: Inception (GoogLeNet)
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SOTA Deep Models: Inception (GoogLeNet)
• The inception network is formed by concatenating other inception modules.
• It includes several softmax output units to enforce regularization.
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ResNet

• Presented by He et al. (Microsoft), 2015. Won ILSVRC 2015 in multiple 
categories.

• Main idea: Residual block. Allows for extremely deep networks.
• Authors believe that it is easier to optimize the residual mapping than the 

original one. Furthermore, residual block can decide to “shut itself down” if 
needed.
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Residual Block
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ResNet

• Residual nets appeared in 2016 to train very deep NN (100 or more 
layers). 

• Their architecture uses ‘residual blocks’. 
• Plain network structure: 

• Residual network block
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ResNet

The idea is to allow the network to become deeper without increasing 
the training time

The residual network stacks blocks sequentially 
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Residual networks implement blocks with convolutional layers that use ‘same’ 
padding option (even when max-pooling). 
– This allows the block to learn the identity function. 
􏰀  The designer may want to reduce the size of features and use ‘valid’ padding. 
– In such case, the shortcut path can implement a new set of convolutional layers that 
reduces the size appropriately. 

ResNet
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ResNet
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SOTA Deep Models: MobileNet

 

Input: 8x8x3
Filter: 1x1x3x256

Output: 8x8x256 
(no padding) 

Standard Convolution 

MACs:     (5x5)x3x256x(12x12) ~ 2.8M
Parameters: (5x5x3)x256 + 256 ~ 20K

Filters and combines inputs into a new set of outputs in one step

Depth-Wise Separable Convolution (DW) 

MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K
Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K

Output: 8x8x3 
(no padding) 

Input: 12x12x3
Filter: 5x5x3

Input: 12x12x3
Filter: 5x5x3x256

Output: 8x8x256 
(no padding) 

It combines a depth wise convolution and a pointwise convolution
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SOTA Deep Models: DenseNets

• Goal: allow maximum information (and gradient) flow → connect every layer 
directly with each other. 

• DenseNets exploit the potential of the network through feature reuse → no 
need to learn redundant feature maps. 

• DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set 
of new feature-maps. 
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SOTA Deep Models: DenseNets
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Beyond

• MobileNetV2 (https://arxiv.org/abs/1801.04381) 
• Inception-Resnet, v1 and v2 

(https://arxiv.org/abs/1602.07261)
• Wide-Resnet (https://arxiv.org/abs/1605.07146)
• Xception (https://arxiv.org/abs/1610.02357)
• ResNeXt (https://arxiv.org/pdf/1611.05431)
• ShuffleNet, v1 and v2 (https://arxiv.org/abs/1707.01083)
• Squeeze and Excitation Nets 

(https://arxiv.org/abs/1709.01507 )
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What’s next

Advanced topics start today on Transfer Learning : 
4:30pm @ MD 115 

Next Week:
Segmentation – 
Autoencoders 
Start of RNNs
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Advanced Sec. 2: Object Detection and Semantic Segmentation

● IMAGE CLASSIFICATION
assigning 1 single label to the entire picture = Easy!

○ Algorithms.: VGG/Resnet/Densenet

● OBJECT DETECTION
detect, classify and locate every object in the picture

○ Algorithms: 
R-CNN/Fast-R-CNN/Faster-R-CNN & 
YOLO

● SEMANTIC SEGMENTATION
assigning a meaningful label to every pixel in the image

○ Algorithms: FCN & U-NET 88

DOG

http://www.youtube.com/watch?v=YmbhRxQkLMg
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Latest events on Image Recognition

You Only Look Once (YOLO) - 2016
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