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A Convolutional Network
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The code 
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DONE
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Feedforward Neural Network, Multilayer Perceptron (MLP)
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Feedforward Neural Network, Multilayer Perceptron (MLP)

 

Neural networks can approximate a wide variety of functions
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Quick review of MLPs 

hidden layer 1 hidden layer 2

output layerinput layer

Loss function
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MLP as an additive model

output layer

X Y

hidden layer 1

input layer

Basis functions. 
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MLP as an additive model (cont)

From lecture 1:

Minor modification:

X Y

hidden 
layer 1

input layer
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MLP as an additive model (cont)
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MLP as an additive model (cont)

If we add more neurons, it clearly 
overfits.

CS109A Lecture 21:

Regularization of NN 
▪Norm Penalties
▪Early Stopping
▪Data Augmentation
▪Sparse Representation
▪Dropout
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Main drawbacks of MLPs

• MLPs use one node for each input (e.g. pixel in an image, 
multiplied by 3 in RGB case). The amount of weights rapidly 
becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an input (images) and its shifted 
version – they are not translation invariant.
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MLP: number of weights

hidden layer 1

input layer

X
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MLP: number of weights for images

… … …

•
•
•
•

From 109A Lecture 7: 
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MLP: number of weights for images

Example: CIFAR10

Simple 32x32 color 
images (3 channels)

Each pixel is a feature: 
an MLP would have 
32x32x3+1 = 3073 
weights per neuron!
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MLP: number of weights for images

Example:  ImageNet

Images are usually 224x224x3: an MLP 
would have  150129 weights per neuron. 
If the first layer of the MLP is around 128 
nodes, which is small, this already 
becomes very heavy to calculate.

Model complexity is extremely high: 
overfitting.
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Model Selection and Dimensionality Reduction

Recall from 109A to reduce the number of predictors we can:

• PCA 

• Stepwise Variable Selection 
• Regularization, in particular L1 will produce sparsity
• Drop predictors that are highly correlated

• Summarize input (image) with high level features => 
feature extraction or representation learning
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Feature extraction 

Features: 

Features: 
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Model Selection and Dimensionality Reduction

Features: 

Features: 
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Image analysis

Imagine that we want to recognize swans in an image:
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Cases can be a bit more complex…
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Now what?

…
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We need to be able to deal with these cases
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And these
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Image features

• We’ve been basically talking about detecting features in images, in a very 
naïve way.

• Researchers built multiple computer vision techniques to deal with these 
issues: SIFT, FAST, SURF, BRIEF, etc.

• However, similar problems arose: the detectors where either too general or 
too over-engineered. Humans were designing these feature detectors, and 
that made them either too simple or hard to generalize.
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Image features (cont)

• What if we learned the features to detect? 
• We need a system that can do Representation Learning (or 

Feature Learning).

Representation Learning: technique that allows a system to 
automatically find relevant features for a given task. Replaces 
manual feature engineering.

Multiple techniques for this: 
• Unsupervised (K-means, PCA, …).
• Supervised (Sup. Dictionary learning, Neural Networks!)
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Images are Local and Hierarchical

Moreover 
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Images are Invariant 
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Outline

Motivation

CNN basic ideas

Building a CNN
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Each neuron from first layer has one weight per pixel.  Recall, the importance 
of the predictors (here pixels) is given by the value of the coefficient (here W).  

In this case, the red weights will be 
modified to better recognize cat.

In this case, the blue weights will be 
modified.
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Solution: Cut the image to smaller 
pieces.
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Do the same for all images
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But what if cat is not the box?
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But what if cat is not the box?
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Convolution
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“Convolution” Operation
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Convolutions – step by step
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Convolutions – another example
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Convolution and cross-correlation
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“Convolution” Operation in action
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A Convolutional Network
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Why more than one feature map?

Feature 1: Horizontal Lines

Feature 2: Vertical Lines

Feature 3: Orange bulb
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Why more than one layer?
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So far

We know that MLPs:
• Do not scale well for images
• Ignore the information brought by pixel position and correlation with 

neighbors
• Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties 
of images:
• Pixel position and neighborhood have semantic meanings. 
• Elements of interest can appear anywhere in the image.
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Basics of CNNs

CNNs are also composed of layers, but those layers are not fully connected: 
they have filters, sets of cube-shaped weights that are applied throughout 
the image. Each 2D slice of the filters are called kernels.
These filters introduce translation invariance and parameter sharing.
How are they applied? Convolutions!
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Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be 
down-sampled by an amount depending on the size of the 
filter.

We can avoid this by padding the edges in different ways.
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Padding
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Stride

 Stride = 1

Stride = 2
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Convolutional layers



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutional layers (cont)

• To be clear: each filter is convolved with the 
entirety of the 3D input cube, but generates 
a 2D feature map.

• Because we have multiple filters, we end up 
with a 3D output: one 2D feature map per 
filter.

• The feature map dimension can change 
drastically from one conv layer to the next: 
we can enter a layer with a 32x32x16 input 
and exit with a 32x32x128 output if that 
layer has 128 filters.
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Learning CNN

In a convolutional layer, we are basically applying multiple 
filters at over the image to extract different features. 
But most importantly, we are learning those filters!

One thing we’re missing: non-linearity.
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ReLU

The most successful non-linearity for CNNs is the Rectified 
Non-Linear unit (ReLU):

Combats the vanishing gradient problem occurring in 
sigmoids, is easier to compute, generates sparsity (not always 
beneficial)
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Convolutional layers so far

• A convolutional layer convolves each of its filters with the 
input.

• Input: a 3D tensor, where the dimensions are Width, Height 
and Channels (or Feature Maps)

• Output: a 3D tensor, with dimensions Width, Height and 
Feature Maps (one for each filter)

• Applies non-linear activation function (usually ReLU) over 
each value of the output.

• Multiple parameters to define: number of filters, size of 
filters, stride, padding, activation function to use, 
regularization.
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A Convolutional Network
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Pooling

Invariant to small, “local transitions”
– Face detection: enough to check the presence of eyes, not their precise 

location

Reduces input size to final fully connected layers
No learnable parameters

max pool with 2x2 window
and stride 1



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Pooling (cont) 

max pool with 2x2 window
and stride 2

mean pool with 2x2 window
and stride 2
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A Convolutional Network
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Building a CNN

A convolutional neural network is built by stacking layers, 
typically of 3 types:
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•

•

•

•
•

•
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Fully built CNN (VGG)



CS109B, PROTOPAPAS, GLICKMAN AND TANNER

What do CNN layers learn?

• Each CNN layer learns filters of increasing complexity.
• The first layers learn basic feature detection filters: edges, 

corners, etc.
• The middle layers learn filters that detect parts of objects. 

For faces, they might learn to respond to eyes, noses, etc.
• The last layers have higher representations: they learn to 

recognize full objects, in different shapes and positions.
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Examples

• I have a convolutional layer with 12 4x4 filters that takes an RGB 
image as input. 

• What else can we define about this layer?
• Activation function

• Stride

• Padding type

• How many parameters does the layer have?

12 x 4 x 4 x 3 + 12 =  588
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Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?
(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4 
+ 4)   
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3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

