
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman and Chris Tanner

Lecture 10: Convolutional Neural Networks 1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

A Convolutional Network

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

The code

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

DONE

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

Motivation

CNN basic ideas

Building a CNN

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

Motivation

CNN basic ideas

Building a CNN

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Feedforward Neural Network, Multilayer Perceptron (MLP)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Feedforward Neural Network, Multilayer Perceptron (MLP)

Neural networks can approximate a wide variety of functions

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Quick review of MLPs

hidden layer 1 hidden layer 2

output layerinput layer

Loss function

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP as an additive model

output layer

X Y

hidden layer 1

input layer

Basis functions.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP as an additive model (cont)

From lecture 1:

Minor modification:

X Y

hidden
layer 1

input layer

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP as an additive model (cont)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP as an additive model (cont)

If we add more neurons, it clearly
overfits.

CS109A Lecture 21:

Regularization of NN
▪Norm Penalties
▪Early Stopping
▪Data Augmentation
▪Sparse Representation
▪Dropout

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Main drawbacks of MLPs

• MLPs use one node for each input (e.g. pixel in an image,
multiplied by 3 in RGB case). The amount of weights rapidly
becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an input (images) and its shifted
version – they are not translation invariant.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Main drawbacks of MLPs

• MLPs use one node for each input (e.g. pixel in an image,
multiplied by 3 in RGB case). The amount of weights
rapidly becomes unmanageable for large images.

• Training difficulties arise, overfitting can appear.

• MLPs react differently to an input (images) and its shifted
version – they are not translation invariant.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP: number of weights

hidden layer 1

input layer

X

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP: number of weights for images

… … …

•
•
•
•

From 109A Lecture 7:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP: number of weights for images

Example: CIFAR10

Simple 32x32 color
images (3 channels)

Each pixel is a feature:
an MLP would have
32x32x3+1 = 3073
weights per neuron!

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MLP: number of weights for images

Example: ImageNet

Images are usually 224x224x3: an MLP
would have 150129 weights per neuron.
If the first layer of the MLP is around 128
nodes, which is small, this already
becomes very heavy to calculate.

Model complexity is extremely high:
overfitting.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Model Selection and Dimensionality Reduction

Recall from 109A to reduce the number of predictors we can:

• PCA

• Stepwise Variable Selection
• Regularization, in particular L1 will produce sparsity
• Drop predictors that are highly correlated

• Summarize input (image) with high level features =>
feature extraction or representation learning

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Feature extraction

Features:

Features:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Model Selection and Dimensionality Reduction

Features:

Features:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Image analysis

Imagine that we want to recognize swans in an image:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Cases can be a bit more complex…

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Now what?

…

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

We need to be able to deal with these cases

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

And these

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Image features

• We’ve been basically talking about detecting features in images, in a very
naïve way.

• Researchers built multiple computer vision techniques to deal with these
issues: SIFT, FAST, SURF, BRIEF, etc.

• However, similar problems arose: the detectors where either too general or
too over-engineered. Humans were designing these feature detectors, and
that made them either too simple or hard to generalize.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Image features (cont)

• What if we learned the features to detect?
• We need a system that can do Representation Learning (or

Feature Learning).

Representation Learning: technique that allows a system to
automatically find relevant features for a given task. Replaces
manual feature engineering.

Multiple techniques for this:
• Unsupervised (K-means, PCA, …).
• Supervised (Sup. Dictionary learning, Neural Networks!)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Images are Local and Hierarchical

Moreover

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Images are Invariant

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Outline

Motivation

CNN basic ideas

Building a CNN

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Each neuron from first layer has one weight per pixel. Recall, the importance
of the predictors (here pixels) is given by the value of the coefficient (here W).

In this case, the red weights will be
modified to better recognize cat.

In this case, the blue weights will be
modified.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Solution: Cut the image to smaller
pieces.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Do the same for all images

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

But what if cat is not the box?

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

But what if cat is not the box?

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

But what if cat is not the box?

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolution

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

“Convolution” Operation

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutions – step by step

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutions – another example

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolution and cross-correlation

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

“Convolution” Operation in action

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

A Convolutional Network

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Why more than one feature map?

Feature 1: Horizontal Lines

Feature 2: Vertical Lines

Feature 3: Orange bulb

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Why more than one layer?

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

So far

We know that MLPs:
• Do not scale well for images
• Ignore the information brought by pixel position and correlation with

neighbors
• Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties
of images:
• Pixel position and neighborhood have semantic meanings.
• Elements of interest can appear anywhere in the image.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Basics of CNNs

CNNs are also composed of layers, but those layers are not fully connected:
they have filters, sets of cube-shaped weights that are applied throughout
the image. Each 2D slice of the filters are called kernels.
These filters introduce translation invariance and parameter sharing.
How are they applied? Convolutions!

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be
down-sampled by an amount depending on the size of the
filter.

We can avoid this by padding the edges in different ways.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Padding

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Stride

 Stride = 1

Stride = 2

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutional layers

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutional layers (cont)

• To be clear: each filter is convolved with the
entirety of the 3D input cube, but generates
a 2D feature map.

• Because we have multiple filters, we end up
with a 3D output: one 2D feature map per
filter.

• The feature map dimension can change
drastically from one conv layer to the next:
we can enter a layer with a 32x32x16 input
and exit with a 32x32x128 output if that
layer has 128 filters.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Learning CNN

In a convolutional layer, we are basically applying multiple
filters at over the image to extract different features.
But most importantly, we are learning those filters!

One thing we’re missing: non-linearity.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

ReLU

The most successful non-linearity for CNNs is the Rectified
Non-Linear unit (ReLU):

Combats the vanishing gradient problem occurring in
sigmoids, is easier to compute, generates sparsity (not always
beneficial)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Convolutional layers so far

• A convolutional layer convolves each of its filters with the
input.

• Input: a 3D tensor, where the dimensions are Width, Height
and Channels (or Feature Maps)

• Output: a 3D tensor, with dimensions Width, Height and
Feature Maps (one for each filter)

• Applies non-linear activation function (usually ReLU) over
each value of the output.

• Multiple parameters to define: number of filters, size of
filters, stride, padding, activation function to use,
regularization.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

A Convolutional Network

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Pooling

Invariant to small, “local transitions”
– Face detection: enough to check the presence of eyes, not their precise

location

Reduces input size to final fully connected layers
No learnable parameters

max pool with 2x2 window
and stride 1

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Pooling (cont)

max pool with 2x2 window
and stride 2

mean pool with 2x2 window
and stride 2

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

A Convolutional Network

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

•

•

•

•

•
•

•
•

•
•
•
•

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

•

•

•

•

•

•
•

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

•

•

•

•

•
•

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Fully built CNN (VGG)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

What do CNN layers learn?

• Each CNN layer learns filters of increasing complexity.
• The first layers learn basic feature detection filters: edges,

corners, etc.
• The middle layers learn filters that detect parts of objects.

For faces, they might learn to respond to eyes, noses, etc.
• The last layers have higher representations: they learn to

recognize full objects, in different shapes and positions.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Examples

• I have a convolutional layer with 12 4x4 filters that takes an RGB
image as input.

• What else can we define about this layer?
• Activation function

• Stride

• Padding type

• How many parameters does the layer have?

12 x 4 x 4 x 3 + 12 = 588

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Examples

• Let C be a CNN with the following disposition:
• Input: 32x32x3 images
• Conv1: 8 3x3 filters, stride 1, padding=same
• Conv2: 16 5x5 filters, stride 2, padding=same
• Flatten layer
• Dense1: 512 nodes
• Dense2: 4 nodes

• How many parameters does this network have?
(8 x 3 x 3 x 3 + 8) + (16 x 5 x 5 x 8 + 16) + (16 x 16 x 16 x 512 + 512) + (512 x 4
+ 4)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

