Lecture 10: Convolutional Neural Networks 1

CS109B Data Science 2
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The code

In [ J:| 1
2 mnist_cnn_model = Sequential() # Create sequential model
3
4 # Add network layers
5 mnist_cnn_model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
6 mnist _cnn_model.add(MaxPooling2D( (2, 2)))
7 mnist_cnn_model.add(Conv2D(64, (3, 3), activation='relu'))
8 mnist _cnn_model.add(MaxPooling2D( (2, 2)))
9 mnist_cnn_model.add(Conv2D(64, (3, 3), activation='relu'))
10
11 mnist _cnn model.add(Flatten())
12 mnist _cnn_model.add(Dense(64, activation='relu'))
13
14 mnist cnn _model.add(Dense(10, activation='softmax'))
15
16 mnist _cnn_model.compile(optimizer=optimizer,
1L7; loss=loss,
18 metrics=metrics)
19
20 history = mnist_cnn model.fit(train images, train_labels,
21 kpochs=epochs,
22 batch_size=batch_size,
23 verbose=verbose,
24 validation_split=0.2,
25 # validation data=(X val, y val) # IF you have val data
26 shuffle=True)
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DONE
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Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN
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Feedforward Neural Network, Multilayer Perceptron (MLP)

We assume that the response variable, Y, relates to the predictors, X,
through some unknown function expressed generally as:

Y=f(X)+¢

Here, f is the unknown function expressing an underlying rule for
relating Y to X, € is the random amount (unrelated to X) that Y differs
from the rule f(X).

A statistical model is any algorithm that estimates f. We denote the
estimated function as f.
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Feedforward Neural Network, Multilayer Perceptron (MLP)

A function is a relation that associates each element x of a set X to a single
element y of asetY

X >y

Neural networks can approximate a wide variety of functions

N\

>y
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Quick review of MLPs

Activation
depends on
task

| do not like
calling it a

Loss function

Input layer output layer

Loss
function
depends on
task

hidden layer 1 hidden layer 2

<earn weights and biases using backpro and gradient descent




MLP as an additive model

W@ W@

input layer ‘

hidden layer 1

Y = 2 w® f(W(l)X+b)
J
l

|
‘ Basis functions.

Y is a linear combination of these basis
functions.

output layer  we learn the coefficients of the basis
functions I/IG.(Z) as well as the parameters of

the basis functions (Mg(l),ﬁ_j)

If activation is ReLU then bj’s are the locations
of the knots.
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MLP as an additive model (cont)

From lecture 1:
E(Y|X)=ap+ ayx + B1(x — &)1 +B2(x —&3) 4 + -+ Br(x — §x )4

Minor modification:
E(Y|X)= ag+ Bo(x — )4 + B1(x —&§1)4+B2(x — &2) 4 + -+ Br(x — &) 4

\_Y_I

ReLU(Wx + &;) where W = 1

1774¢! (2

Location of Knots can be learned
as well as the f’s and ag

Input layer

hidden
layer 1
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MLP as an additive model (cont)

3 knots

— MLP
— = Linear Additive Model
]=| =—— Truth
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MLP:

&, =1.98248
&, = 5.03615
&5 = 7.91110
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MLP as an additive model (cont)

20-

If we add more neurons, it clearly
overfits. =
2 10-
CS109A Lecture 21: .

Regularization of NN
*Norm Penalties
=Early Stopping
=Data Augmentation
=Sparse Representation
*Dropout
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Main drawbacks of MLPs

* MLPs use one node for each input (e.g. pixel in an image,
multiplied by 3 in RGB case). The amount of weights rapidly
becomes unmanageable for large images.

* Training difficulties arise, overfitting can appear.

* MLPs react differently to an input (images) and its shifted
version - they are not translation invariant.
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Main drawbacks of MLPs

e MLPs use one node for each input (e.g. pixel in an image,
multiplied by 3 in RGB case). The amount of weights
rapidly becomes unmanageable for large images.

* Training difficulties arise, overfitting can appear.

* MLPs react differently to an input (images) and its shifted
version - they are not translation invariant.
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MLP: number of weights

WX + b,

How many weights?

—_— WzX + bz

input layer

hidden layer 1

»IfX € R thenW, € R

ey ar i > If X € R™ then W, € R™

W,X + b,
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MLP: number of weights for images

If we consider each pixel as an
independent predictor, then X € R** or
16 predictors, and therefore 16 weights
for each node in the fist hidden layer.

From 109A Lecture 7:

A strong motivation for performing model selection is to avoid overfitting, which we
saw can happen when:

* there are too many predictors:
* the feature space has high dimensionality
* the polynomial degree is too high
* too many cross terms are considered
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MLP: number of weights for images

Example: CIFAR10

ship dog deer bird ship cat dog dog

— i
. ‘1B ’
' J | A

Simple 32x32 color

Images (3 Channe|S) horse ~ horse ship frog bird ship bird cat
‘ . ™ ’ on
BEIWRPE > =
Each pixel is a feature:
automobile ship deer truck dog deer automobile horse

an MLP would have
32x32x3+1 = 3073
weights per neuron!

S ;‘ “ . '
| 3=
)
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MLP: number of weights for images

Example: ImageNet

Images are usually 224x224x3: an MLP
would have 150129 weights per neuron.
If the first layer of the MLP is around 128
nodes, which is small, this already
becomes very heavy to calculate.

Model complexity is extremely high:
overfitting.
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Me using neural network for simple
regression problem

- soupma})
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Model Selection and Dimensionality Reduction

Recall from 109A to reduce the number of predictors we can:

° PCA

 Stepwise Variable Selection

* Regularization, in particular L1 will produce sparsity
 Drop predictors that are highly correlated

 Summarize input (image) with high level features =>
feature extraction or representation learning

CS1098B, ProTtoprapas, GLICKMAN AND TANNER
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Feature extraction

Features: E—
Bald

Grey hair

Oval shape head
Glasses

Awesome

DU g= D [

Features:

Bald

Grey hair

Oval shape head
No Glasses
Awesome —

U = Y e [
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Model Selection and Dimensionality Reduction

Features:

Bald

Grey hair

Oval shape head
No Glasses
Awesome ?

DU g= D [

Features:

Not Bald

Dark hair

Oval shape head
Glasses

Extremely Awesome

U = Y e [
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Image analysis

Imagine that we want to recognize swans in an image:

Oval-shaped white
blob (body)

CS109B, Protoraras, GLIckMAN AND TANNER

Round, elongated
oval with orange
protuberance

Long white
rectangular shape
(neck)
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Cases can be a bit more complex...

Round, elongated
head with orange or

black beak Oval-shaped white

body with or
without large white
symmetric blobs
(wings)

Long white neck,
square shape

CS1098B, Protorapras, GLiIckMAN AND TANNER
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Now what?

Small black circles,

Round, elongated head with Long white neck, can bend can be facing the Black triangular
orange or black beak, can around, not necessarily camera, sometimes shaped form, on the
be turned backwards straight can see both head, can have

different sizes

White tail, gerferally far

from the head, looks Black feet. und White elongated piece, can Luckily, the
feathery : SIASHES, HINGIS b d i
White, oval shaped body, can have , € squa:re el ”b‘oreb ucted color is
riangular, can be obstructe

wings visible

consistent...

[ IACS [y .
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We need to be able to deal with these cases
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And these

CS [mman|

s

Man in swan tent photographing
swans
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Image features

 We've been basically talking about detecting features in images, in a very
naive way.

* Researchers built multiple computer vision techniques to deal with these
Issues: SIFT, FAST, SURF, BRIEF, etc.

 However, similar problems arose: the detectors where either too general or
too over-engineered. Humans were designing these feature detectors, and
that made them either too simple or hard to generalize.

/: 7 IS il \\
SIFT feature INEE UEE >‘< FAST corner
descriptor i g = i | 123 detection

P " A ul* e ‘{ o ;< >< algorithm

L s ™ e I | %

Nt r A

g
Image gradients Keypoint descriptor
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Image features (cont)

e What if we learned the features to detect?

* We need a system that can do Representation Learning (or
Feature Learning).

Representation Learning: technique that allows a system to
automatically find relevant features for a given task. Replaces
manual feature engineering.

Multiple techniques for this:
* Unsupervised (K-means, PCA, ...).
* Supervised (Sup. Dictionary learning, Neural Networks!)
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Moreover

Nearby pixels are more
strongly related than
distant ones.

Objects are built up
out of smaller parts.
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Outline

1. Motivation
2. CNN basic ideas
3. Building a CNN
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Each neuron from first layer has one weight per pixel. Recall, the importance
of the predictors (here pixels) is given by the value of the coefficient (here W).
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YWV yet another position.

In this case, the red weights will be
modified to better recognize cat.

In this case, the blue weights will be
modified.

We are learning redundant features. Approach is not robust, as cats could appear in
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Solution: Cut the image to smaller A X: 454
pieces. ,
m\/‘*\é’\l
VIS
A%
X:8%8
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&% /

OO0
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Do the same for all images

4xX:4%x4

~
e

e
OO0

A

)67 .Ki/:
7 7 -

ﬂ
=

7 —
\_/
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4XX:4X4

But what if cat is not the box? K\V‘A‘\

X:8%8

~
e
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O 0O
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4XX:4X4

But what if cat is not the box?
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4XX:4X4

But what if cat is not the box?

X:8X%X8

K
(KQ.
4

~
- v

O 0O

7
1
S

Naw
)
»

&
N

i

A

<.
\

LI

i\

CS1098B, Protorapras, GLiIckMAN AND TANNER

O 0O

39



Convolution

N

\

A

\i\L\ﬁ
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A

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

By

e

P

"
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Convolutions - step by step
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Convolutions - another example
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Convolution and cross-correlation

* Aconvolution of fand g (f * g) is defined as the integral of the
product, having one of the functions inverted and shifted:

(f = g)(t) = j f(@)g(tr a)da
L \/ Function is
e Discrete convolution: inverted and

o0 shifted left by t

CS109B, Protoraras, GLIckMAN AND TANNER

44



“Convolution” Operation in action

Edge detection Kernel
-1 -1 -1
* _1 8 _1
_1 _1 _1
Sharpen

0 -1 0

* _1 5 _1 _
0O -1 0
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A Convolutional Network
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Why more than one feature map?

Feature 1: Horizontal Lines

Feature 2: Vertical Lines
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Why more than one layer?

Layer 2, Feature 1: Combine
horizontal and vertical lines from
Layer 1 produce diagonal lines.

Layer 3, Feature 1: Combine
diagonal to identify shapes

CS109B, Protoraras, GLIckMAN AND TANNER
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So far

We know that MLPs:

* Do not scale well for images

* Ignore the information brought by pixel position and correlation with
neighbors

e Cannot handle translations

The general idea of CNNs is to intelligently adapt to properties
of Images:

* Pixel position and neighborhood have semantic meanings.

* Elements of interest can appear anywhere in the image.

CS1098B, Protorapras, GLiIckMAN AND TANNER
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Basics of CNNs

3
(OO
va

[
ez
W\\ . 4 output layer .=
input layer

hidden layer 1  hidden layer 2

MLP CNN

CNNs are also composed of layers, but those layers are not fully connected:

they have filters, sets of cube-shaped weights that are applied throughout
the image. Each 2D slice of the filters are called kernels.

These filters introduce translation invariance and parameter sharing.
How are they applied? Convolutions!

CS109B, Protoraras, GLIckMAN AND TANNER
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Convolutions - what happens at the edges?

If we apply convolutions on a normal image, the result will be
down-sampled by an amount depending on the size of the
filter.

We can avoid this by padding the edges in different ways.

R0 CS1098B, ProTtoprapas, GLICKMAN AND TANNER
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Padding

Full padding. Introduces zeros such that all
pixels are visited the same amount of times by
the filter. Increases size of output.

[IACS [mmus
CS1098B, ProTtoprapas,

Same padding. Ensures that the
output has the same size as the
input.

GLICKMAN AND TANNER

52



Stride

5 x 5 Output Volume

Stride controls how the filter Stride =1
convolves around the input 7%7 Input Volume
volume.

The formula for calculating the

output size is:

Stride = 2

W —_ K + 2P 7 x7 Input Volume
- +1

~

CS109B, Protoraras, GLIckMAN AND TANNER

3 x 3 Output Volume
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Convolutional layers

Convolutional layer with four 3x3 filters
on an RGB image. As you can see, the
filters are now cubes, and they are
applied on the full depth of the image..

Convolutional layer with four 3x3 filters on a
black and white image (just one channel)

CS109B, Protoraras, GLIckMAN AND TANNER
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Convolutional layers (cont)

* To be clear: each filter is convolved with the
entirety of the 3D input cube, but generates
a 2D feature map. Input Layer 12 Activation Maps

 Because we have multiple filters, we end up
with a 3D output: one 2D feature map per
filter.

* The feature map dimension can change
drastically from one conv layer to the next:
we can enter a layer with a 32x32x16 input
and exit with a 32x32x128 output if that
layer has 128 filters.

12 Filters/Kernels

CS109B, Protoraras, GLIckMAN AND TANNER
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Learning CNN

In a convolutional layer, we are basically applying multiple
filters at over the image to extract different features.

But most importantly, we are learning those filters!

One thing we’re missing: non-linearity.

CS1098B, Protorapras, GLiIckMAN AND TANNER
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RelLU

The most successful non-linearity for CNNs is the Rectified
Non-Linear unit (ReLU):

Output = Max(zero, Input)

AAAAAAAAA

L
-10 -5 5 10

Combats the vanishing gradient problem occurring in
sigmoids, is easier to compute, generates sparsity (not always
beneficial)

CS109B, Protoraras, GLIckMAN AND TANNER
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Convolutional layers so far

A convolutional layer convolves each of its filters with the
Input.

Input: a 3D tensor, where the dimensions are Width, Height
and Channels (or Feature Maps)

Output: a 3D tensor, with dimensions Width, Height and
Feature Maps (one for each filter)

Applies non-linear activation function (usually ReLU) over
each value of the output.

Multiple parameters to define: number of filters, size of
filters, stride, padding, activation function to use,
regularization.
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Pooling

Invariant to small, “local transitions”

— Face detection: enough to check the presence of eyes, not their precise
location

Reduces input size to final fully connected layers
No learnable parameters

111 2|5
77|38
517 1|7 |8
>
31110 max pool with 2x2 window
and stride 1
1 12|34

CS1098B, Protorapras, GLiIckMAN AND TANNER
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Pooling (cont)

max pool with 2x2 window
and stride 2

>

mean pool with 2x2 window
and stride 2

1|1
5 |7
3 |1
1| 2
1|1
5| 7
3|1
1| 2

>
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A Convolutional Network

pooled Fully-connected 1
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Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, Protopraras, GLICKMAN AND TANNER
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Building a CNN

Action

Apply filters to
extract features
Filters are composed
of small kernels,
learned.

Parameters

Number of kernels
Size of kernels (W
and Honly, Dis

defined by input

CS109B, Protopraras, GLICKMAN AND TANNER
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* Input: 3D cube,
previous set of
feature maps

* Qutput: 3D cube, one
2D map per filter
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Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, Protopraras, GLICKMAN AND TANNER
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Building a CNN

Action

e Reduce
dimensionality
e Extract maximum of

Parameters

Stride
Size of window

CS109B, Protopraras, GLICKMAN AND TANNER
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* Input: 3D cube,
previous set of
feature maps
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Building a CNN

A convolutional neural network is built by stacking layers,
typically of 3 types:

CS109B, Protopraras, GLICKMAN AND TANNER
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Building a CNN

Action

Aggregate
information from
final feature maps
Generate final
classification

Parameters

Number of nodes
Activation function:
usually changes
depending on role of

CS109B, Protopraras, GLICKMAN AND TANNER

/O

Input: FLATTENED 3D
cube, previous set of
feature maps
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Fully built CNN (VGG)

224 x 224 x3 224 x 224 x 64

112 x 128

x 56 x 256
28 x 28 x 512 XExols

7
y. F
/0 S L 1x 154096 1x1x1000

@ convolution+ReLU

tﬂ max pooling

1 fully connected+Rel.U

] softmax
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What do CNN layers learn?

Each CNN layer learns filters of increasing complexity.

The first layers learn basic feature detection filters: edges,
corners, etc.

The middle layers learn filters that detect parts of objects.
For faces, they might learn to respond to eyes, noses, etc.

The last layers have higher representations: they learn to
recognize full objects, in different shapes and positions.
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Examples

* | have a convolutional layer with 12 4x4 filters that takes an RGB

Image as input.
* Whatelse can we define about this layer?
* Activation function
e Stride
 Padding type
* How many parameters does the layer have?

1\1 2\/\X1\'4’ ;(~2|-‘,X(3~)+ 12,= 588
Number of Sjze of Number of  Biases (one

filters  Filters channelsof  per filter)
prev layer

CS1098B, Protorapras, GLiIckMAN AND TANNER
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Examples

* Let C be a CNN with the following disposition:
* Input: 32x32x3 iImages
* Convl: 8 3x3 filters, stride 1, padding=same
* Conv2:16 5x5 filters, stride 2, padding=same
* Flatten layer
* Densel: 512 nodes
* Dense2:4 nodes

* How many parameters does this network have?
(8x3x3x3+8)+(16 x5x5x8+16)+ (16 x 16 x 16 x 512 + 512) + (512 x 4

Convl Conv?2 Densel Dense?2
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3D visualization of networks in action

http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3J03hYko51Y

CS1098B, ProTtoprapas, GLICKMAN AND TANNER
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http://scs.ryerson.ca/~aharley/vis/conv/
https://www.youtube.com/watch?v=3JQ3hYko51Y

