The Roadmap:

a recap of where we've been, where we're heading, and how it's all related

Harvard IACS

CS109B
Chris Tanner, Pavlos Protopapas, Mark Glickman

Learning Objectives

Recap models from CS109A and CS109B
Understand the different categories of models
Discern similarities/differences between models
Feel comfortable choosing which model to use
—Understand the limitations of our models thus far
Feel prepared tackling the remaining course content

D®\}る Science VMorld

- 1 player

2 players

- 226 players

Your Data X

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column

Age Play Rainy Temp

22	N	Y	91
29	Y	N	89
31	N	N	56
23	Y	N	71
37	N	Y	72
41	Y	N	83
29	Y	Y	97
21	N	N	64
30	Y	N	68

Your Data X

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column

Age Play Rainy Temp

22	N	Y	91
29	Y	N	89
31	N	N	56
23	Y	N	71
37	N	Y	72
41	Y	N	83
29	Y	Y	97
21	N	N	64
30	Y	N	68

Your Data X

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column

Age Play Rainy Temp

22	N	Y	91
29	Y	N	89
31	N	N	56
23	Y	N	71
37	N	Y	72
41	Y	N	83
29	Y	Y	97
21	N	N	64
30	Y	N	68

Your Data X

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column

Age Play Rainy Temp

22	N	Y	91
29	Y	N	89
31	N	N	56
23	Y	N	71
37	N	Y	72
41	Y	N	83
29	Y	Y	97
21	N	N	64
30	Y	N	68

Your Data X

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column (e.g. Temp)

Age	Play	Rainy	Temp
22	N	Y	91
29	Y	N	89
31	N	N	56
23	Y	N	71
37	N	Y	72
41	Y	N	83
29	Y	Y	97
21	N	N	64
30	Y	N	68

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column (e.g. Temp)
- Let's divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}
- Assert that: $Y=f(X)+\varepsilon$

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column (e.g. Temp)
- Let's divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}
- Assert that: $Y=f(X)+\varepsilon$
- Want a model f that is:
- Supervised

Given some data such that each row corresponds to a distinct i.i.d. observation

You may be interested in a
particular column (e.g. Temp)
Let's divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}

Assert that: $\quad Y=f(X)+\varepsilon$
Want a model f that is:

- Supervised

- Given some data such that each row corresponds to a distinct i.i.d. observation
- You may be interested in a particular column (e.g. Temp)
- Let's divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}
- Assert that: $\quad Y=f(X)+\varepsilon$
- Want a model f that is:
- Supervised
- Predicts real numbers (regression model)

X		Y
Def:	Rainy	Temp
Regression models are supervised models, whereby \mathbf{Y} are continuous values.	Y	91
	N	89
	N	56
	N	71
	Y	72
	N	83
	Y	97
21 N	N	64
Predicts real numbers (regression model)	N	68

- Let's say this this is our data
- Want a model that is:
- Supervised
- Predicts real numbers (regression model)
- Q: What model could we use?

Playgrouncd off Models

Playgurounc of Models

Linear
Regression

Linear Regression

Y
 $$
f(X)
$$
 $$
4
$$

High-level

Linear Regression

Linear Regression

Supervised Models

IMPORTANT

When training any supervised model, be mindful of what you select for:

1. Our loss function (aka cost function)

Measures how bad our current
parameters $\boldsymbol{\theta}$ are
2. Our optimization algorithm?

Determines how we update our parameters $\boldsymbol{\theta}$
so that our model better fits our training data

Supervised Models

IMPORTANT

When training any supervised model, be mindful of what you select for:

1. Our loss function (aka cost function)

Measures how bad our current parameters $\boldsymbol{\theta}$ are

When testing our model's predictions, be mindful of what you select for:

3. Our evaluation metric

Determines our model's performance (e.g., Mean Squared Error (MSE), R2, F1 score, etc.)
2. Our optimization algorithm?

Determines how we update our parameters $\boldsymbol{\theta}$ so that our model better fits our training data

Linear Regression

Q1
When training our model, how do we measure its m predictions \widehat{y} ?

Cost function $\mathrm{J}(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{i=1}^{m}(\hat{y}-y)^{2}}$
"Least Squares"

Mathematically

Linear Regression

Q1
When training our model, how do we measure its m predictions $\widehat{\boldsymbol{y}}$?
A1

Cost function $\mathrm{J}(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{i=1}^{m}(\hat{y}-y)^{2}}$
"Least Squares"
How do we find the optimal $\boldsymbol{\theta}$ so that we yield the best predictions?

Mathematically

Linear Regression

Q1
When training our model, how do we measure its m predictions $\widehat{\boldsymbol{y}}$?
A1
Cost function $\quad \mathrm{J}(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{i=1}^{m}(\hat{y}-y)^{2}}$
"Least Squares"
Q2
How do we find the optimal $\boldsymbol{\theta}$ so that we yield the best predictions?

A2 Two optimization algorithm options:

- Gradient Descent (iteratively search)
- Directly (closed-form solution)

$$
\boldsymbol{\theta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Mathematically

Linear Regression

Fitted model example

The plane is chosen to minimize the sum of the squared vertical distances (per our loss function, least squares) between each observation (red dots) and the plane.

Linear Regression

PROS

CONS

- Simple and fast approach to model linear relationships
- Interpretable results via $\boldsymbol{\theta}$ ($\boldsymbol{\beta}$ coefficients)
- Can't model non-linear relationships
- Vulnerable to outliers
- Vulnerable to collinearity
- Assumes error terms are uncorrelated*
- Returning to our data, let's model Play instead of Temp
- Again, we divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}
- Again, assert: $Y=f(X)+\varepsilon$

- Returning to our data, let's model Play instead of Temp
- Again, we divide our data and learn how data \mathbf{X} is related to data \mathbf{Y}
- Again, assert: $Y=f(X)+\varepsilon$
- Want a model that is:
- Supervised
- Predicts categories/classes (classification model)
- Q: What model could we use?

Playgurounc of Models

Linear
Regression

Pleyguround of Models

Logistic
Regression

Age Temp Play
Linear
Regression

Logistic Regression

Y
 $f(X)$
 2

High-level

Logistic Regression

Logistic Regression

This is a non-linear activation function, called a sigmoid.
Yet, our overall model is still considered linear w.r.t. the β coefficients. It's a generalized linear model.

Logistic Regression

Q1
When training our model, how do we measure its m predictions \widehat{y} ?
A1

Cost function
 $$
\mathrm{J}(\boldsymbol{\theta})=\underbrace{-[y \log \hat{y}+(1-y) \log (1-\hat{y})]}_{\text {"Cross-Entropy" aka "Log loss" }}
$$

Mathematically

Logistic Regression

Q1
When training our model, how do we measure its m predictions \widehat{y} ?

A1

Cost function

$$
\mathrm{J}(\boldsymbol{\theta})=\underbrace{-[y \log \hat{y}+(1-y) \log (1-\hat{y})]}_{\text {"Cross-Entropy" aka "Log loss" }}
$$

Q2
How do we find the optimal $\boldsymbol{\theta}$ so that we yield the best predictions?

A2
Scikits has many optimization solvers:

Mathematically

Logistic Regression

Fitted model example

The plane is chosen to minimize the error of our class probabilities (per our loss function, crossentropy) and the true labels (mapped to $\mathbf{0}$ or $\mathbf{1}$)

- So far, we've assumed our data \mathbf{X} and \mathbf{Y} can be represented by an underlying model \boldsymbol{f} (i.e., $\boldsymbol{Y}=\boldsymbol{f}(\boldsymbol{X})+\varepsilon$) that has a particular form (e.g., a linear relationship, hence our using a linear model)
- Next, we aimed to fit the model \boldsymbol{f} by estimating its parameters $\boldsymbol{\theta}$ (we did so in a supervised manner)
- So far, we've assumed our data \mathbf{X} and \mathbf{Y} can be represented by an underlying model \boldsymbol{f} (i.e., $\boldsymbol{Y}=\boldsymbol{f}(\boldsymbol{X})+\varepsilon$) that has a particular form (e.g., a linear relationship, hence our using a linear model)
- Next, we aimed to fit the model \boldsymbol{f} by estimating its parameters $\boldsymbol{\theta}$ (we did so in a supervised manner)
- Parametric models make the above assumptions. Namely, that there exists an underlying model \boldsymbol{f} that has a fixed number of parameters.

Regression vs Classification

Linear Regression	Supervised	Regression	Parametric
Logistic Regression	Supervised	Classification	Parametric

Alternatively, what if we make no assumptions about the underlying model \boldsymbol{f} ? Specifically, let's not assume \boldsymbol{f} :

- has any particular distribution/shape
(e.g., Gaussian, linear relationship, etc.)
- can be represented by a finite number of parameters.

Alternatively, what if we make no assumptions about the underlying model \boldsymbol{f} ? Specifically, let's not assume \boldsymbol{f} :

- has any particular distribution/shape
(e.g., Gaussian, linear relationship, etc.)
- can be represented by a finite number of parameters.

This would constitute a non-parametric model.

- Non-parametric models are allowed to have parameters; in fact, oftentimes the \# of parameters grows as our amount of training data increases
- Since they make no strong assumptions about the form of the function/model, they are free to learn any functional form from the training data - infinitely complex.
- Returning to our data, let's again predict if a person will Play
- If we do not want to assume anything about how \mathbf{X} and \mathbf{Y} relate, we could use a different supervised model
- Suppose we do not care to build a decision boundary but merely want to make predictions based on similar data that we saw during training

Pleyguround of Models

Logistic
Regression

Linear
Regression

Age Temp Play

~~~

\section*{Pleyguround of Models}

\author{
Logistic \\ Regression
}

Linear
Regression
k-NN

\section*{k-NN}

\section*{Refresher:}
- k-NN doesn't train a model
- One merely specifies a \(\boldsymbol{k}\) value
- At test time, a new piece of data \(\boldsymbol{a}\) :

- must be compared to all other training data \(\boldsymbol{b}\), to determine its \(\underline{\text { k-nearest neighbors, }}\) per some distance metric \(\boldsymbol{d}(\boldsymbol{a}, \boldsymbol{b})\)
- is classified as being the majority class (if categorical) or average (if quantitative) of its k-neighbors

\section*{k-NN}

\section*{Conclusion:}
- k-NN makes no assumptions about the data \(X\) or the form of \(f(X)\)
- \(k-N N\) is a non-parametric model


\section*{PROS}
- Intuitive and simple approach
- Can model any type of data / places no assumptions on the data
- Fairly robust to missing data
- Good for highly sparse data (e.g., user data, where the columns are thousands of potential items of interest)

\section*{CONS}
- Can be very computationally expensive if the data is large or high-dimensional
- Should carefully think about features, including scaling them
- Mixing quantitative and categorical data can be tricky
- Interpretation isn't meaningful
- Often, regression models are better, especially with little data

Supervised vs
Unsupervised

Regression vs Classification

Parametric vs
Non-Parametric
\begin{tabular}{l|ccc} 
Linear Regression & Supervised & Regression & Parametric \\
Logistic Regression & Supervised & Classification & Parametric \\
k-NN & Supervised & either & Non-Parametric
\end{tabular}
- Returning to our data yet again, let's predict if a person will Play
- If we do not want to assume anything about how \(\mathbf{X}\) and \(\mathbf{Y}\) relate, believing that no single equation can model the possibly non-linear relationship
- Suppose we just want our model to have robust decision boundaries with interpretable results


\section*{Pleygurouncl of Models}

\author{
Logistic \\ Regression
}

Linear
Regression
k-NN
Age Temp Play

\section*{Playgrouncd of Models}

\author{
Logistic \\ Regression
}


Decision Tree

\section*{Decision Tree}

\section*{Refresher:}
- A Decision Tree iteratively determines how to split our data by the best feature value so as to minimize the entropy (uncertainty) of our resulting sets.
- Must specify the:
- Splitting criterion (e.g., Gini index, Information Gain)
- Stopping criterion (e.g., tree depth, Information Gain Threshold)

\section*{Decision Tree}

Refresher: Each comparison and branching represents splitting a region in the feature space on a single feature. Typically, at each iteration, we split once along one dimension (one predictor).


Supervised vs
Unsupervised

Regression vs Classification

Parametric vs Non-Parametric
\begin{tabular}{c|ccc} 
Linear Regression & Supervised & Regression & Parametric \\
Logistic Regression & Supervised & Classification & Parametric \\
k-NN & Supervised & either & Non-Parametric \\
Decision Tree & \(?\) & \(?\) & \(?\)
\end{tabular}

\section*{Decision Tree}
- A Decision Tree makes no distributional assumptions about the data.
- The number of parameters / shape of the tree depends entirely on the data (i.e., imagine data that is perfectly separable into disjoint sections by features, vs data that is highly complex with overlapping values)
- Decision Trees make use of the full data ( \(\mathbf{X}\) and \(\mathbf{Y}\) ) and can handle \(\mathbf{Y}\) values that are categorical or quantitative

Supervised vs
Unsupervised

Regression vs Classification

Parametric vs
Non-Parametric
\begin{tabular}{r|ccc} 
Linear Regression & Supervised & Regression & Parametric \\
Logistic Regression & Supervised & Classification & Parametric \\
L-NN & Supervised & either & Non-Parametric \\
Decision Tree & Supervised & either & Non-Parametric
\end{tabular}

Your Data X
- Returning to our full dataset \(\boldsymbol{X}\), imagine we do not wish to leverage any particular column \(Y\), but merely wish to transform the data into a smaller, useful representation \(\dot{X}=f(X)\)
\begin{tabular}{|cccc|}
\hline Age & Play & Rainy & Temp \\
\hline 22 & N & Y & 91 \\
29 & Y & N & 89 \\
31 & N & N & 56 \\
23 & Y & N & 71 \\
37 & N & Y & 72 \\
41 & Y & N & 83 \\
29 & Y & Y & 97 \\
21 & N & N & 64 \\
30 & Y & N & 68 \\
\hline
\end{tabular}

\section*{Playgrouncd of Models}

\author{
Logistic \\ Regression
}


Decision Tree

\section*{Pleyguround of Models}


\section*{Principal Component Analysis (PCA)}

\section*{Refresher:}
- PCA isn't a model per se but is a procedure/technique to transform data, which may have correlated features, into a new, smaller set of uncorrelated features
- These new features, by design, are a linear combination of the original features so as to capture the most variance
- Often useful to perform PCA on data before using models that explicitly use data values and distances between them (e.g., clustering)

Supervised vs
Unsupervised

Regression vs Classification

Parametric vs
Non-Parametric
\begin{tabular}{r|ccc} 
Linear Regression & Supervised & Regression & Parametric \\
Logistic Regression & Supervised & Classification & Parametric \\
k-NN & Supervised & either & Non-Parametric \\
Decision Tree & Supervised & either & Non-Parametric \\
PCA & Unsupervised & neither & Non-Parametric
\end{tabular}

Your Data X
- Returning to our full dataset \(\boldsymbol{X}\) yet again, imagine we do not wish to leverage any particular column \(Y\), but merely wish to discern patterns/groups of similar observations
\begin{tabular}{|cccc|}
\hline Age & Play & Rainy & Temp \\
\hline 22 & N & Y & 91 \\
29 & Y & N & 89 \\
31 & N & N & 56 \\
23 & Y & N & 71 \\
37 & N & Y & 72 \\
41 & Y & N & 83 \\
29 & Y & Y & 97 \\
21 & N & N & 64 \\
30 & Y & N & 68
\end{tabular}

\section*{Pleyguround of Models}


\section*{Playgurounc of Models}


\section*{Clustering}

\section*{Refresher:}
- There are many approaches to clustering (e.g., k-Means, hierarchical, DBScan)
- Regardless of the approach, we need to specify a distance metric (e.g., Euclidean, Manhattan)
- Performance: we can measure the intra-cluster and outer-cluster fit (i.e., silhouette score), along with an estimate that compares our clustering to the situation had our data been randomly generated (gap statistic)

\section*{Clustering}

\section*{k-Means example:}
- Although we are not explicitly using any column \(Y\), one could imagine that the 3 resulting cluster labels are our \(Y^{\prime}\) s (labels being class 1, 2, and 3)
- Of course, we do not know these class labels ahead of time, as clustering is an unsupervised model


Visual Representation

\section*{Clustering}

\section*{k-Means example:}
- Although we are not explicitly using any column \(Y\), one could imagine that the 3 resulting cluster labels are our \(Y^{\prime}\) s (labels being class 1, 2, and 3)
- Of course, we do not know these class labels ahead of time, as clustering is an unsupervised model
- Yet, one could imagine a narrative whereby our data points were generated by these 3 classes.


Visual Representation

\section*{Clustering}

\section*{k-Means example:}
- That is, we are flipping the modelling process on its head; instead of doing our traditional supervised modelling approach of trying to estimate \(\mathrm{P}(Y \mid X)\) :
- Imagine centroids for each of the 3 clusters \(Y_{i}\).

We assert that the data \(X\) were generated from \(Y\).
- We can estimate the joint probability of \(\mathrm{P}(Y, X)\)


Visual Representation

\section*{Clustering}

\section*{k-Means example:}

Assuming our data was generated from Gaussians centered at 3 centroids, we can estimate the probability of the current situationthat the data \(X\) exists and has the following class labels \(Y\). This is a generative model.
- We can estimate the joint probability of \(\mathrm{P}(Y, X)\)


Visual Representation

\section*{Clustering}

\section*{k-Means example:}

Generative models explicitly model the actual distribution of each class (e.g., data and its cluster assignments).
- We can estimate the joint probability of \(\mathrm{P}(Y, X)\)


Visual Representation

\section*{Clustering}

\section*{k-Means example:}
- That is, we are flipping the modelling process on its head; instead of doing our traditional supervised modelling approach of trying to estimate \(\mathrm{P}(Y \mid X)\) :
- Imagine centroids for each of the 3 clusters \(Y_{i}\).

We assert that the data \(X\) were generated from \(Y\).
- We can estimate the joint probability of \(\mathrm{P}(Y, X)\)


Visual Representation

\section*{Clustering}

\section*{k-Means example:}
- That is, we are flipping the modelling process on its head; instead of doing our traditional supervised modelling approach of trying to estimate \(\mathrm{P}(\underset{Y}{Y} \mid X)\) :

Supervised models are given some data \(X\) and want to calculate the probability of \(Y\).

They learn to discriminate between different values of possible \(Y^{\prime}\) s (learns a decision boundary).


Visual Representation

\section*{Generative vs Discriminative Models}

\section*{To recap:}

By definition, a generative model is concerned with estimating the joint probability of \(\mathrm{P}(\boldsymbol{Y}, \boldsymbol{X})\)

By definition, a discriminative model is concerned with estimating the conditional probability \(\mathrm{P}(Y \mid X)\)
\begin{tabular}{|c|c|c|c|c|}
\hline & Supervised vs Unsupervised & Regression vs Classification & Parametric vs Non-Parametric & Generative vs Discriminative \\
\hline Linear Regression & Supervised & Regression & Parametric & Discriminative \\
\hline Logistic Regression & Supervised & Classification & Parametric & Discriminative \\
\hline k-NN & Supervised & either & Non-Parametric & Discriminative \\
\hline Decision Tree & Supervised & either & Non-Parametric & Discriminative \\
\hline PCA & Unsupervised & neither & Non-Parametric & neither \\
\hline Clustering & Unsupervised & neither & Non-Parametric & Generative \\
\hline
\end{tabular}

\section*{Supervised}


Particularly, k-Means is as a special case of Gaussian Mixture Models

Parametric vs Non-Parametric

Generative vs Discriminative

Linear Regression

Logistic Regression


Parametric

Parametric generative, as it can be seen

Discriminative

Discriminative
Discriminative

Discriminative

\section*{neither}

Generative

Linear Regression

Logistic Regression

Decision Tree

Clustering

Given training \(X\), learns to discriminate between possible
\(Y\) values (quantitative)

Unsupervised

Unsupervised
neither
neither

Discriminative

Discriminative

Discriminative

Discriminative
neither

Generative

Parametric vs Non-Parametric

\section*{Supervised}
 Classification

Regression
|

Parametric

nember

Unsupervised

Linear Regression

Logistic Regression

Generative vs Discriminative

Supervised vs Unsupervised

Regression vs Classification

Parametric vs Non-Parametric

Generative vs Discriminative

Linear Regression

Logistic Regression k-NN

Decision Tree

Supervised

Supervised

Regression

Classification

Parametric

Parametric

Given training \(X\), learns to discriminate between possible \(Y\) values (quantitative or categorical)

Discriminative

Discriminative

Discriminative Discriminative


Supervised vs Unsupervised

Supervised

Supervised

Supervised

Supervised

Regression vs Classification

Parametric

Parametric

Non-Parametric

Non-Parametric

Generative vs

Discriminative

Linear Regression

Logistic Regression
k-NN

Decision Tree

PCA

Regression

Classification
either
either

Parametric vs Non-Parametric

Discriminative

Discriminative

Discriminative

PCA is a process, not a model, so it doesn't make sense to consider it as a
\begin{tabular}{|c|c|c|c|c|}
\hline & Supervised vs Unsupervised & Regression vs Classification & Parametric vs Non-Parametric & Generative vs Discriminative \\
\hline Linear Regression & Supervised & Regression & Parametric & Discriminative \\
\hline Logistic Regression & Supervised & Classification & Parametric & Discriminative \\
\hline k-NN & Supervised & either & Non-Parametric & Discriminative \\
\hline Decision Tree & Supervised & either & Non-Parametric & Discriminative \\
\hline PCA & Unsupervised & neither & Non-Parametric & neither \\
\hline Clustering & Unsupervised & neither & Non-Parametric & Generative \\
\hline
\end{tabular}
- Returning our data yet again, perhaps we've plotted our data \(\mathbf{X}\) and see it's non-linear
- Knowing how unnatural and finnicky polynomial regression can be, we prefer to let our model learn how to make its own non-linear functions for each feature \(\boldsymbol{x}_{\boldsymbol{i}}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{X} & Y \\
\hline Age & Play & Rainy & Temp \\
\hline 22 & N & Y & 91 \\
\hline 29 & Y & N & 89 \\
\hline 31 & N & N & 56 \\
\hline 23 & Y & N & 71 \\
\hline 37 & N & Y & 72 \\
\hline 41 & Y & N & 83 \\
\hline 29 & Y & Y & 97 \\
\hline 21 & N & N & 64 \\
\hline 30 & Y & N & 68 \\
\hline
\end{tabular}

\section*{Playgurounc of Models}


\section*{Playgurounc of Models}


\section*{Generalized Additive Models (GAMs)}

\section*{Refresher:}


\section*{Generalized Additive Models (GAMs)}

\section*{Refresher:}
- We can make the line smoother by using a cubic spline or "B-spline"
- Imagine having 3 of these models:
- \(f_{1}(\) age \()\)
- \(f_{2}\) (play)
- \(f_{3}(\) rainy \()\)
- We can model Temp as:

Temp \(=\beta_{0}+f_{1}(\) age \()+f_{2}(\) play \()+f_{3}(\) rainy \()\)

Not our data, but imagine it's plotting age vs Temp:

Piecewise linear spline with knots at \(x=2,5\), and 8 plus a starting slope and intercept


Generalized Additive Models (GAMs)


\section*{Generalized Additive Models (GAMs)}

It is called an additive model because we calculate a separate \(\boldsymbol{f}_{\boldsymbol{i}}\) for each \(\boldsymbol{x}_{\boldsymbol{i}}\), and then add together all of their contributions.
\[
y=\beta_{0}+f_{1}(\text { age })+f_{2}(\text { play })+f_{3}(\text { rainy })
\]


\section*{Generalized Additive Models (GAMs)}

It is called an additive model because we calculate a separate \(\boldsymbol{f}_{\boldsymbol{i}}\) for each \(\boldsymbol{x}_{\boldsymbol{i}}\), and then add together all of their contributions.
\[
y=\beta_{0}+f_{1}(\text { age })+f_{2}(\text { play })+f_{3}(\text { rainy })
\]
\(f_{i}\) doesn't have to be a spline; can be any regression model

\section*{Generalized Additive Models (GAMs)}

\section*{PROS}
- Fits a non-linear function \(f_{i}\) to each feature \(x_{i}\)
- Much easier than guessing polynomial terms and multinomial interaction terms.
- Model is additive, allowing us to exam the effects of each \(x_{i}\) on \(y\) by holding the other features \(x_{j \neq i}\) constant
- The smoothness is easy to adjust

\section*{CONS}
- Restricted to being additive; important interactions may not be captured
- Providing interactions via \(\boldsymbol{f}_{1}\) (age, rainy) can only capture so much, a la multinomial interaction terms
\begin{tabular}{r|cccc} 
& \begin{tabular}{c} 
Supervised vs \\
Unsupervised
\end{tabular} & \begin{tabular}{c} 
Regression vs \\
Classification
\end{tabular} & \begin{tabular}{c} 
Parametric vs \\
Non-Parametric
\end{tabular} & \begin{tabular}{c} 
Generative vs \\
Discriminative
\end{tabular} \\
Linear Regression & Supervised & Regression & Parametric & Discriminative \\
K-NN & Supervised & either & Non-Parametric & Discriminative \\
Decision Tree & Supervised & either & Non-Parametric & Discriminative \\
PCA & Unsupervised & neither & Non-Parametric & neither \\
Clustering & Unsupervised & neither & Non-Parametric & Generative \\
GAMs & Supervised & either & Parametric & Discriminative
\end{tabular}
- Returning our data yet again, perhaps we've plotted our data \(\mathbf{X}\) and see it's non-linear
- We further suspect that there are complex interactions that cannot be represented by polynomial regression and GAMs
- We just want great results and don't care about interpretability
\begin{tabular}{|cc|c|}
\hline Age & Temp & Rainy \\
\hline 22 & 91 & Y \\
29 & 89 & N \\
31 & 56 & N \\
23 & 71 & N \\
37 & 72 & Y \\
41 & 83 & N \\
29 & 97 & Y \\
21 & 64 & N \\
30 & 68 & N \\
\hline
\end{tabular}\(|\)\begin{tabular}{c} 
Play \\
\hline Y \\
N \\
Y \\
N \\
Y \\
Y \\
N \\
Y \\
\hline
\end{tabular}

\section*{Playgurounc of Models}


\section*{Playgurounc of Models}


\section*{Feed-Forward Neural Network}


\section*{Feed-Forward Neural Network}

\[
\begin{aligned}
y & =\frac{1}{1+e^{-\left(b_{0}+b_{1} h_{1}+b_{2} h_{2}\right)}}=\sigma\left(\beta^{2} H\right) \\
h_{i} & =\frac{1}{1+e^{-\left(b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)}}=\sigma\left(\beta^{1} X\right)
\end{aligned}
\]

NOTE: a Neural Network can be viewed as a function \(f(X)\), just like all of our past models

\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is multiplied by its input
- Every \(\square\) is a scalar value
- Parameters \(\theta=\{\beta, O\}\) (weights)


\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is multiplied by its input
- Every \(\square\) is a scalar value
- Parameters \(\theta=\{\beta, O\}\) (weights)


\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is
- Every

- Parameters \(\theta=\{\beta, O\}\) (weights)

\[
h_{2} \sigma(\mathbf{\Sigma})
\]

Graphically
(NN format)

\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is

- Every \(\square\)
- Parameters \(\theta=\{\beta, O\}\) (weights)
\[
h_{1} \sigma(\boldsymbol{\Sigma})
\]
\[
h_{2} \sigma(\boldsymbol{\Sigma})
\]

Graphically
(NN format)

\section*{Feed-Forward Neural Network}

\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is multiplied by its input
- Every \(\square\) is a scalar value
- Parameters \(\theta=\{\beta, 0\}\) (weights)

\section*{Output layer \\ \(y \sigma(\Sigma)\)}


Graphically
(NN format)

\section*{General Notes:}
- It's a fully connected network
- Every \(\longrightarrow\) is a weight, which is multiplied by its input
- Every \(\square\) is a scalar value
- Parameters \(\theta=\{\beta, O\}\) (weights)


\section*{General Notes:}
- It's a fully connected network
- Ev Every \(\square\), except for
- Ev
the input layer's, is called an activation function.
- Pa They take input(s), apply some aggregate operation(s) -- often a non-linear transformation -- and yield a scalar value.

\section*{General Notes:}
- It's a fully connected network
- Ev Every \(\square\), except for
- Ev
the input layer's, is called an
activation function.
- Pa

The sigmoid function \(\boldsymbol{\sigma}\) is a
common choice and is equivalent
to performing logistic
regression on its given inputs.


\section*{General Notes:}
- It's a fully connected network
- Ev Every \(\square\), except for
- Ev the input layer's, is called an activation function.
- Pa Thus, neural nets can be viewed as being a fully-connected set of logistic regressions, oftentimes stacked (multiple hidden layers)


\section*{Feed-Forward Neural Network}

\section*{Training:}
- Q1 How do we train a neural network?

\section*{Feed-Forward Neural Network}

\section*{Training:}
- Q1 How do we train a neural network?

A1 First, specify a cost function and an optimization algorithm, just like we did for our other supervised, parametric models


\section*{Feed-Forward Neural Network}

\section*{Training:}

Cost function
\[
\mathrm{J}(\boldsymbol{\theta})=\underbrace{-[y \log \hat{y}+(1-y) \log (1-\hat{y})]}_{\text {"Cross-Entropy" aka "Log loss" }}
\]

Update the \(\boldsymbol{\theta}\) via gradient descent


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
4. Calculate gradients via backpropagation
5. Update the weights (aka \(\boldsymbol{\theta}\) ) via gradient descent


\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values


\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network


\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values
Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
\[
\mathrm{J}(\boldsymbol{\theta})=-[y \log \hat{y}+(1-y) \log (1-\hat{y})]
\]


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
4. Calculate gradients via backpropagation


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values
Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
4. Calculate gradients via backpropagation


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values
Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
4. Calculate gradients via backpropagation
5. Update the weights (aka \(\boldsymbol{\theta}\) ) via gradient descent


\section*{Feed-Forward Neural Network}

\section*{Training:}

Initialize \(\boldsymbol{\theta}\) with random values

Repeat until convergence:
1. Provide input \(\boldsymbol{x}_{\boldsymbol{i}}\) to the network
2. Propagate the values through the network
3. Calculate the cost/loss
4. Calculate gradients via backpropagation
5. Update the weights (aka \(\boldsymbol{\theta}\) ) via gradient descent


\section*{Feed-Forward Neural Network}

\section*{PROS}
- Fits many linear or non-linear activation functions \(f_{i}\) to combinations of input \(X\)
- Can model highly complex behavior
- When designed well, can provide state-of-the-art results on most tasks
- Incredible resources, libraries, and support

\section*{CONS}
- Sensitive to architecture choices and hyperparameters
- Tricky to debug
- Can be computationally expensive
- Poor interpretability
\begin{tabular}{r|cccc} 
& \begin{tabular}{c} 
Supervised vs \\
Unsupervised
\end{tabular} & \begin{tabular}{c} 
Regression vs \\
Classification
\end{tabular} & \begin{tabular}{c} 
Parametric vs \\
Non-Parametric
\end{tabular} & \begin{tabular}{c} 
Generative vs \\
Discriminative
\end{tabular} \\
Logistic Regression & Supervised & Classification & Parametric & Discriminative \\
k-NN & Supervised & either & Non-Parametric & Discriminative \\
Decision Tree & Supervised & either & Non-Parametric & Discriminative \\
PCA & Unsupervised & neither & Non-Parametric & neither \\
Clustering & Unsupervised & neither & Non-Parametric & Generative \\
GAMs & Supervised & either & Parametric & Discriminative
\end{tabular}

\section*{Supervised Models}

\section*{IMPORTANT}

When training any supervised model, be careful of overfitting your model A good model should generalize well to unseen (i.e., testing) data

Consider adding regularization term \(R(\theta)\) to your cost function Imposes a penalty based on your parameter values \(\boldsymbol{\theta}\)

L1 regularization: \(\quad R(\theta)=\sum_{i=1}^{n}\left|\theta_{i}\right| \quad\) Prefers sparse weights (many 0's)
\(\mathbf{L 2}\) regularization: \(\quad R(\theta)=\sum_{i=1}^{n} \theta_{i}^{2} \quad\) Prefers many small-weight values

\section*{Supervised Models}

\section*{IMPORTANT}

When training any supervised model, wisely use your training data A good model should generalize well to unseen (i.e., testing) data
a. Shuffle your training data and optionally bootstrap samples
b. Perform cross-validation

So far, whenever we've discussed training a model, we've assumed our data was i.i.d. and we framed the problem as maximizing the similarity of the predictions and the gold truth by adjusting the parameters \(\boldsymbol{\theta}\)
e.g.

Q1
When training our model, how do we measure its \(m\) predictions \(\widehat{\boldsymbol{y}}\) ?
A1 Cost function \(\mathrm{J}(\boldsymbol{\theta})=\underbrace{\frac{1}{2} \sum_{i=1}^{m}(\hat{y}-y)^{2}}\)
"Least Squares"

We were performing the maximum likelihood estimate

\section*{Def:}
maximum likelihood estimate (MLE) asserts that we should choose \(\boldsymbol{\theta}\) so as to maximize the probability of the observed data (i.e., our \(\hat{y}\) should become as close to \(y\) as possible)

In other words, we were searching for \(\hat{\theta}_{M L E}\)

Say we have the likelihood function \(P(D \mid \theta)\)
\[
\hat{\theta}_{M L E}=\operatorname{argmax}_{\theta} P(D \mid \theta)
\]

MAP stands for maximum a posteriori and is interested in calculating \(P(\theta \mid D)\)

If we have knowledge about the prior distribution \(P(\theta)\), we can calculate:
\[
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(X)}=\propto P(D \mid \theta) P(\theta)
\]

MAP stands for maximum a posteriori and is interested in calculating \(P(\theta \mid D)\)

If we have knowledge about the prior distribution \(P(\theta)\), we can calculate:
\[
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(X)}=\propto P(D \mid \theta) P(\theta)
\]
\[
\hat{\theta}_{M A P}=\operatorname{argmax}_{\theta} P(D \mid \theta) P(\theta)
\]

MAP stands for maximum a posteriori and is interested in calculating \(P(\theta \mid D)\)

NOTE: If the prior \(P(\theta)\) is uniform (i.e., not Gaussian or any other distribution), then \(\hat{\theta}_{M A P}=\hat{\theta}_{M L E}\)

\section*{Thus, MLE is a special case of MAP!}
\[
\hat{\theta}_{M A P}=\operatorname{argmax}_{\theta} P(D \mid \theta) P(\theta)
\]

\section*{CS109B: What's next}

We have a learned a lot so far, with the assumption that our data is "flat" (each feature/column is independent of the others)

\section*{But what if our data is different?}

Scenario: imagine having picture data, whereby each pixel is a feature. Obviously, pixels near one another in 2D space (both vertically and horizontally) are highly correlated.


Detecting lung cancer

A flattened vector wouldn't work well.

\section*{CS109B: What's next}

Solution: CNNs

\section*{CS109B: What's next}

We have a learned a lot so far, with the assumption that our data is i.i.d. (each row is independent from one another)

\section*{But what if our data is different?}

\section*{CS109B: What's next}

Scenario: imagine having data that is sequential in nature (e.g., natural text, speech, video frames, time series data)
"Today, I went to the \(\qquad\) "


\title{
UNDERESTANDING \\ LANGUAGE
}

PREDICTING
EARTHQUAKES

\section*{CS109B: What's next}

Solution: RNNs / LSTMs

We have learned that PCA can transform our data while maintaining variance. However, it's unsupervised. Can we learn a better representation of our data?

Perhaps, we can learn how the data was "generated"?

\section*{CS109B: What's next}

Can we generate realistic, synthetic data, and do so in such a realistic way that it increases the performance of our classifiers?

\section*{Solution: GANs (not GAMs)}

DeepFake is an example that uses GANs

Instead of making just 1 prediction per preset input, sometimes we may want to get real-time feedback as to what our prediction's effects were. For example, navigating through an environment or game (Mars or Chess Board)

We need to represent the updated environment, possible actions to take, risks of those actions, etc.

Solution: Reinforcement Learning

Questions?~~~

