
CS10B Data Science 2
Javier Zazo

Advanced Section: Reinforcement Learning

Outline
1. Review.

Markov Decision process.
b. Value Functions.
c. Bellman Equation.

2. Optimality.
3. Value Iteration vs. Policy Iteration.
4. Exploration - Exploitation tradeoff
5. Temporal Difference

a. SARSA
b. Q learning

6. Approximate Q Learning
a. Linear functions.
b. Neural Networks.

7. Resources

Problem Setting

● Receive feedback in the form of rewards
● Agent’s utility is defined by the reward function
● Must (learn to) act so as to maximize expected rewards
● Model Free: All learning is based on observed samples of outcomes!

Markov Decision Process
● Mathematical formulation of the RL problem
● Markov property: Current state completely characterises the state of the world

Defined by: - set of possible states
- set of possible actions
- distribution of reward given (state, action) pair
- transition probability i.e. distribution over next

state given (state, action) pair
- discount factor

Objective: reach terminal state
Rewards: -1 for every movement

Markov Decision Process Example
1. At time step t=0, environment samples initial state
2. For t=0 until done:

a. Agent selects action
b. Environment samples reward
c. Environment samples next state
d. Agent receives reward and next state

● A policy is a function from S to A that specifies what
action to take in each state.

● Objective: find policy that maximizes cumulative
discounted reward:

Random policy

Optimal policy

Value function and Q-value function
● Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

← random vs. deterministic →

● The Q-value function at state s and action a, is the expected cumulative
reward from taking action a in state s and then following the policy:

● The value function at state s, is the expected cumulative reward from
following the policy from state s:

Bellman Equation
● State Value function

● State-Action Value Function

● Solution to the Bellman Equation:

(w.r.t. policy)

Conversions

random

deterministic

Optimal Value and Policy Functions

● Optimal value → one which yields maximum value.

● Optimal policy → one which results in optimal value function.

Value Iteration
● Use Bellman equation as an iterative update:

● Qi will converge to Q* as i → infinity.
● Convergence in value means convergence in policy, vice versa not true.

○ REASON : Multiple reward/value structures can cause the same policy.
● Both algorithms (value & policy) have theoretical guarantees of convergence.
● Policy Iteration is expected to be faster.

Model-based Methods
Policy Evaluation & Iteration Value Iteration

Model Free Methods
1. Learning or providing a transition model can be hard in several scenarios.

a. Autonomous Driving
b. ICU Treatments
c. Stock Trading

2. What do we have then ? → episodic realizations
(s,a,r,s’)

3. E.g. Using sensors to understand robot’s new position when it does an
action, Recording new patient vitals when given a drug from a state etc.

Exploration-Exploitation tradeoff
● Exploitation: stick with what you know at risk of missing out.
● Exploration: look for states w/ more reward at risk of wasting time.

- If you need to learn, you can’t exploit all the time;
- if you need to do well, you can’t explore all the time

𝜖-Greedy Algorithm:
● With probability :

a. Return random action a.

● With probability 1- :
a. Return

Greedy Algorithm: ●

Softmax Action Selection: ● Probabilities

Action Selection Algorithms

Input: Q function, current state s

10-Armed Testbed

● n = 10 possible actions
● Each is chosen randomly from a

normal distribution with mean 0 and
variance 1.

● Each r is also normal, with mean Q*(a)
and variance 1.

● 1000 plays.
● repeat the whole thing 2000 times and

average results.
● Use sample average to estimate Q

Optimistic Initial Values
● All methods so far depend on , i.e., they are biased.
● Suppose instead we initialize the action values optimistically:

Temporal Difference (TD) Learning
● Simplest TD method, TD(0):

Target (estimate of return)

“Model-free policy estimation”

Random Walk in Hallway

Values learned by TD(0) after various
numbers of episodes

Advantages of TD Learning
● TD methods do not require a model of the environment, only experience.
● TD methods can be fully incremental

○ You can learn before knowing the final outcome (less memory req., less peak comp.).
○ You can learn without the final outcome.

● TD converges to an optimal policy:
○ For any finite Markov prediction task, under batch updating, TD(0) converges for sufficiently

small α.

➢ How do we learn a policy ?

Evaluating the State-Action Value Function

● Substitute state value function V with Q state-action value function:

Target (estimate of return)

● If we choose , same equation as before, TD(0).

On-Policy vs Off-Policy Learning
● On-Policy Learning

○ Learn on the job.
○ Evaluate policy when sampling experiences from .

● Off-Policy Learning
○ Look over someone’s shoulder.
○ Evaluate policy (target policy) while following a different policy

(behavior policy) in the environment.

Some domains prohibit on-policy learning. For instance, treating a patient in ICUs
you cannot learn about random actions by testing them out.

SARSA: On-policy TD Control
● Learn while following current control policy (e.g., 𝜖-greedy):

Q Learning: Off-policy TD Control
● One-step update: select best action for error update:

Visualization

Cliff-walking

When do we choose SARSA vs. Q Learning ?
1. Q-learning directly learns the optimal policy, whilst SARSA learns a

near-optimal policy whilst exploring.
2. If you want to learn an optimal policy using SARSA, then you will need to

decide on a strategy to decay 𝜖 in 𝜖-greedy action choice.
3. Q-learning (and off-policy learning in general) has higher per-sample variance

than SARSA, and may suffer from problems converging as a result.
4. SARSA will approach convergence allowing for possible penalties from

exploratory moves, whilst Q-learning will ignore them. That makes SARSA
more conservative.

https://stats.stackexchange.com/questions/326788/when-to-choose-sarsa-vs-q-learning

Approximate Q-Learning
1. Basic Q-Learning keeps a table of all q-values.
2. Not scalable → must compute Q(s,a) for every state-action pair.

a. E.g. current game state pixels: computationally infeasible to compute for entire state space!

3. Solution → use a function approximator to estimate Q(s,a).
a. E.g. a neural network!

➢ In standard q-learning, we cannot
extrapolate unexplored states

Parametric Q learning

Linear Combination of Features
● Parametrize value functions using linear estimators:

● Experience is summarized in finite length memory →
○ Continuous state/action values.

● States sharing features may have very different values.

Approximate Q Learning
1. Initialize Q(s, a)=0 for all s,a.
2. Repeat until convergence:

a. s ← current state.
b. a ← choose action (e.g. 𝜖-greedy).
c. st+1, rt+1 ← move using action a.
d. Update estimated Q:

Remark: parametrization of Q depends on w:

Deep Q Learning
● We want to learn optimal policy Q:
● Identify loss function: Iteratively try to make the

Q-value close to the target value
yi it should have, if Q-function
corresponded to optimal Q* (and
optimal policy π*)

● Gradient:

NN backprop

Experience Replay
● Learning from batches of consecutive samples is problematic:

○ Samples are correlated → inefficient learning
○ Current Q-network parameters determines next training samples → bad feedback loops if

diversity of examples is not well balanced.

● Experience replay:
○ Continually update a replay memory of transitions (st, at, rt, st+1) as episodes happen.
○ Train Q-network on random mini-batches from the replay memory, instead of consecutive

samples.

DQN: [Mnih et al. NIPS Workshop 2013; Nature 2015]

Deep RL General Techniques
● DQN requires a discrete set of actions (to retrieve policy).
● How to generalize to continuous action spaces ?

○ Example: a robot grasping an object has a very high-dimensional state → hard to learn exact
value of every (state, action) pair.

○ Define a parametric class of policies (e.g., NN) & Q function.
○ 2xNNs: actor (policy) & critic (Q function).

● Slow learning → duplicate NNs (learner, and target).
● ...

Thank you! Any Questions ?

References & Credits
1. “Reinforcement learning: An Introduction”, Sutton and Barto, 2018.
2. Slides 1, Slides 2, by Richard Sutton, mod by Dan Lizotte.
3. What is the difference between value iteration and policy iteration? link
4. When to choose SARSA vs. Q-learning ? link.
5. Reinforcement Learning: Markov Decision Process: part 1, part 2.
6. TD in Reinforcement Learning: link.
7. Monte Carlo in Reinforcement Learning: link.
8. Deep Reinforcement Learning class from Stanford: link.
9. OpenAI: spinning-up.

http://incompleteideas.net/book/RLbook2018.pdf
http://www.csd.uwo.ca/~dlizotte/teaching/slides/reinforcement_learning_1.pdf
http://www.csd.uwo.ca/~dlizotte/teaching/slides/reinforcement_learning_2.pdf
https://stackoverflow.com/questions/37370015/what-is-the-difference-between-value-iteration-and-policy-iteration
https://stats.stackexchange.com/questions/326788/when-to-choose-sarsa-vs-q-learning
https://towardsdatascience.com/introduction-to-reinforcement-learning-markov-decision-process-44c533ebf8da
https://towardsdatascience.com/reinforcement-learning-markov-decision-process-part-2-96837c936ec3
https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjByIqW7u_oAhVtl3IEHUQkBJ8QFjAAegQIAhAB&url=http%3A%2F%2Fcs231n.stanford.edu%2Fslides%2F2017%2Fcs231n_2017_lecture14.pdf&usg=AOvVaw0MqvV8nQ5-2PjBqgXsq-zi
https://spinningup.openai.com/en/latest/

