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Problem Setting

● Receive feedback in the form of rewards
● Agent’s utility is defined by the reward function
● Must (learn to) act so as to maximize expected rewards
● Model Free: All learning is based on observed samples of outcomes!



Markov Decision Process
● Mathematical formulation of the RL problem
● Markov property: Current state completely characterises the state of the world

Defined by: - set of possible states
- set of possible actions
- distribution of reward given (state, action) pair
- transition probability i.e. distribution over next 

state given (state, action) pair
- discount factor

Objective: reach terminal state
Rewards: -1 for every movement



Markov Decision Process Example
1. At time step t=0, environment samples initial state
2. For t=0 until done:

a. Agent selects action 
b. Environment samples reward
c. Environment samples next state
d. Agent receives reward      and next state 

● A policy is a function from S to A that specifies what 
action to take in each state.

● Objective: find policy      that maximizes cumulative 
discounted reward:

Random policy

Optimal policy



Value function and Q-value function
● Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

← random vs. deterministic →  

● The Q-value function at state s and action a, is the expected cumulative 
reward from taking action a in state s and then following the policy:

● The value function at state s, is the expected cumulative reward from 
following the policy from state s:



Bellman Equation
● State Value function

● State-Action Value Function

● Solution to the Bellman Equation:

(w.r.t. policy    )



Conversions

random

deterministic



Optimal Value and Policy Functions

● Optimal value → one which yields maximum value.

● Optimal policy →  one which results in optimal value function.



Value Iteration
● Use Bellman equation as an iterative update:

● Qi will converge to Q* as i → infinity.
● Convergence in value means convergence in policy, vice versa not true.

○ REASON : Multiple reward/value structures can cause the same policy.
● Both algorithms (value & policy) have theoretical guarantees of convergence.
● Policy Iteration is expected to be faster.



Model-based Methods
Policy Evaluation & Iteration Value Iteration



Model Free Methods
1. Learning or providing a transition model can be hard in several scenarios.

a. Autonomous Driving
b. ICU Treatments
c. Stock Trading

2. What do we have then ? → episodic realizations
(s,a,r,s’)

3. E.g. Using sensors to understand robot’s new position when it does an 
action, Recording new patient vitals when given a drug from a state etc.



Exploration-Exploitation tradeoff
● Exploitation: stick with what you know at risk of missing out.
● Exploration: look for states w/ more reward at risk of wasting time.

- If you need to learn, you can’t exploit all the time;
- if you need to do well, you can’t explore all the time



𝜖-Greedy Algorithm:
● With probability    :

a. Return random action a.

● With probability 1-   :
a. Return 

Greedy Algorithm: ●

Softmax Action Selection: ● Probabilities

Action Selection Algorithms

Input: Q function, current state s



10-Armed Testbed

● n = 10 possible actions
● Each is chosen randomly from a 

normal distribution with mean 0 and 
variance 1.

● Each r is also normal, with mean Q*(a) 
and variance 1.

● 1000 plays.
● repeat the whole thing 2000 times and 

average results.
● Use sample average to estimate Q



Optimistic Initial Values
● All methods so far depend on           , i.e., they are biased.
● Suppose instead we initialize the action values optimistically:



Temporal Difference (TD) Learning
● Simplest TD method, TD(0):

Target (estimate of return)

“Model-free policy estimation”



Random Walk in Hallway

Values learned by TD(0) after various 
numbers of episodes



Advantages of TD Learning
● TD methods do not require a model of the environment, only experience.
● TD methods can be fully incremental

○ You can learn before knowing the final outcome (less memory req., less peak comp.).
○ You can learn without the final outcome.

● TD converges to an optimal policy:
○ For any finite Markov prediction task, under batch updating, TD(0) converges for sufficiently 

small α.

➢ How do we learn a policy ?



Evaluating the State-Action Value Function

● Substitute state value function V with Q state-action value function:

Target (estimate of return)

● If we choose                                     , same equation as before, TD(0). 



On-Policy vs Off-Policy Learning 
● On-Policy Learning 

○ Learn on the job. 
○ Evaluate policy      when sampling experiences from     .

● Off-Policy Learning 
○ Look over someone’s shoulder. 
○ Evaluate policy      (target policy) while following  a different policy  

(behavior policy) in the environment.

Some domains prohibit on-policy learning. For instance, treating a patient in ICUs 
you cannot learn about random actions by testing them out.



SARSA: On-policy TD Control
● Learn while following current control policy (e.g., 𝜖-greedy):



Q Learning: Off-policy TD Control
● One-step update: select best action for error update:



Visualization



Cliff-walking



When do we choose SARSA vs. Q Learning ?
1. Q-learning directly learns the optimal policy, whilst SARSA learns a 

near-optimal policy whilst exploring.
2. If you want to learn an optimal policy using SARSA, then you will need to 

decide on a strategy to decay 𝜖 in 𝜖-greedy action choice.
3. Q-learning (and off-policy learning in general) has higher per-sample variance 

than SARSA, and may suffer from problems converging as a result.
4. SARSA will approach convergence allowing for possible penalties from 

exploratory moves, whilst Q-learning will ignore them. That makes SARSA 
more conservative.

https://stats.stackexchange.com/questions/326788/when-to-choose-sarsa-vs-q-learning



Approximate Q-Learning
1. Basic Q-Learning keeps a table of all q-values.
2. Not scalable →  must compute Q(s,a) for every state-action pair. 

a. E.g. current game state pixels: computationally infeasible to compute for entire state space!

3. Solution → use a function approximator to estimate Q(s,a). 
a. E.g. a neural network!

➢ In standard q-learning, we cannot 
extrapolate unexplored states

Parametric Q learning



Linear Combination of Features
● Parametrize value functions using linear estimators:

● Experience is summarized in finite length memory → 
○ Continuous state/action values.

● States sharing features may have very different values.



Approximate Q Learning
1. Initialize Q(s, a)=0 for all s,a.
2. Repeat until convergence:

a. s ← current state.
b. a ← choose action (e.g. 𝜖-greedy).
c. st+1, rt+1 ← move using action a.
d. Update estimated Q:

Remark: parametrization of Q depends on w:



Deep Q Learning
● We want to learn optimal policy Q:
● Identify loss function: Iteratively try to make the 

Q-value close to the target value 
yi it should have, if Q-function 
corresponded to optimal Q* (and 
optimal policy π*)

● Gradient:

NN backprop



Experience Replay
● Learning from batches of consecutive samples is problematic:

○ Samples are correlated → inefficient learning
○ Current Q-network parameters determines next training samples → bad feedback loops if 

diversity of examples is not well balanced. 

● Experience replay:
○ Continually update a replay memory of transitions (st, at, rt, st+1) as episodes happen.
○ Train Q-network on random mini-batches from the replay memory, instead of consecutive 

samples.



DQN: [Mnih et al. NIPS Workshop 2013; Nature 2015]



Deep RL General Techniques
● DQN requires a discrete set of actions (to retrieve policy).
● How to generalize to continuous action spaces ?

○ Example: a robot grasping an object has a very high-dimensional state → hard to learn exact 
value of every (state, action) pair.

○ Define a parametric class of policies (e.g., NN)  &  Q function.
○ 2xNNs:  actor (policy)  &  critic  (Q function).

● Slow learning → duplicate NNs (learner, and target).
● ...



Thank you! Any Questions ?
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