Advanced Section 1 Transfer Learning

Marios Mattheakis

CS109B Data Science 2 Pavlos Protopapas, Mark Glickman and Chris Tanner

Deep learning & Nature

Very often in deep learning we are inspired by the Nature

Example: The convolution Networks were inspired by the neurons in the visual cortex of animals

Consider a scenario that there is someone who knows how to ride a bike and someone else does not know. They both now want to learn how to drive a motorbike.

Does the former have any advantage in the learning task? Why?

Outline

Motivation for Transfer Learning

The Basic idea for Transfer Learning

MobileNet. A light weight model

Some Coding

Classify Rarest Animals

Number of parameters: 134,268,737 Data Set: Few hundred images

Classify Rarest Animals

Number of parameters: 134,268,737 Data Set: Few hundred images

Classify Cats, Dogs, Chinchillas etc

Number of parameters: 134,268,737 Enough training data. ImageNet approximate 1.2M

Classify Cats, Dogs, Chinchillas etc

Number of parameters: 134,268,737 Enough training data. ImageNet approximate 1.2M

Transfer Learning To The Rescue

How do you build an image classifier that can be trained in a few minutes on a GPU with very little data?

Basic idea of Transfer Learning

Train a ML model M for a task T using a dataset D_s

Use M on a new dataset D_T for the same task T Wikipedia: Transfer learning (TL) is a research problem in machine learning (ML) that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem.^[1]

Use part of M on original dataset D_s for a new task T_n

Use part of M on a new dataset D_T for a new task T_n

Key Idea: Representation Learning

Transfer Learning

Not a new idea!

It has been there in the ML and stats literature for a while.

An example is hierarchical **GLM models** in stats, where information flows from higher data units to the lower data units.

Neural networks **learn hierarchical representations** and thus are suited to this kind of learning.

Representation Learning

Task: classify cars, people, animals and objects

Transfer Learning To The Rescue

How do you make **an image classifier** that can be **trained in** a few minutes on a GPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: Earlier convolution layers learn low level features, which can be adapted to new domains by changing weights at later and fully-connected layers.

Example: Use ImageNet to train a huge deep network. Then retrain it on a few images

Transfer Learning To The Rescue

Train on a big "**source**" data set, with a big model, on one particular downstream tasks and save the parameters. This is called a **pre-trained model**.

Use these parameters for other smaller "**target** " datasets (possibly different **domain**, or training distribution).

Less helpful if you have a large target dataset with many labels.

It will fail if the source domain has nothing in common with target domain.

Machine Learning

Transfer Learning

Applications

Learning from simulations (self driving cars, games)

Domain adaptation: Bikes to bikes with backgrounds, bikes at night, etc

Speech recognition.

Classify speakers with minimal training such that only a few words or sentences are needed to achieve high levels of accuracy.

Cross-lingual adaptation for few shot learning of resource poor languages (english->nepali for example)

Using a pre-trained net

Create a classifier to distinguish dogs and flowers

Use MobileNet previously trained on Imagenet with 1.4 M images and 1000 classes. Very expensive training

Replace the head (classifier) FC layers. Freeze the base (convolution) layers. Train the Network

Fine-Tuning. Unfreeze the convolution layers and train the entire network

Key Takeaways

During the process of transfer learning, the following three important questions must be answered:

- What to transfer: Identify which portion of knowledge is sourcespecific and what is common between the source and the target.
- When to transfer: We need to be careful about when to transfer and when not to. Aim at utilizing transfer learning to improve target task performance/results and not degrade them (negative transfer).
- How to transfer: Identify ways of transferring the knowledge across domains/tasks.

Transfer Learning Strategies

Pan and Yang, A Survey on Transfer Learning

Transfer Learning for Deep Learning

What people thinks

you can't do deep learning unless you have a million labeled examples.

What people can do, instead

- Can learn representations from unlabeled data
- Can transfer learned representations from a relate task.

•

Transfer Learning for Deep Learning

Instead of training a network from scratch:

- Take a network trained on a different domain for a different source task
- Adapt it for your domain and your **target task**

Variations

- Same domain, different task.
- Different domain, same task.

Transfer the Feature Extraction

Representation Extraction

Use representations learned by big net to extract features from new samples, which are then fed to a new classifier:

- Keep (frozen) convolutional **base** from big model
- Throw away **head** FC layers since these have no notion of space, and convolutional base is more generic

• Since there are both dogs and flowers in ImageNet you could use the head FC layers as well but by throwing it away you can learn more from new dog/cat images

Fine-tuning

Up to now we have frozen the entire convolutional base.

Earlier layers learn highly generic feature maps (edges, colors, textures) while later layers learn abstract concepts (dog's ear).

To particularize the model to our task, we can tune the later layers

We must be very careful not to have big gradient updates.

Procedure for Fine-tuning

1. Freeze the convolutional base

2. Train the new fully connected head, keeping the convolutional base fixed. This will get their parameters away from random and in a regime of smaller gradients

- 3. Unfreeze some or all "later" layers in the base net
- 4. Now train the base net and FC net together.

Since you are now in a better part of the loss surface already, gradients won't be terribly high, but we still need to be careful. Thus use a **very low learning rate**.

Transfer Learning for Deep Learning: Differential Learning Rates

Train different layers at different rates

Each "earlier" layer or layer group can be trained at 3x-10x smaller learning rate than the next "later" one.

One could even train the entire network again this way until we overfit and then step back some epochs.

State of the Art Deep Models:

Some of the good pre-trained models for transfer-learning

AlexNet VGGs (16-19) Inception (AKA Google-Net) ResNet MobileNet DenseNet

State of the Art Deep Models:

Some of the good pre-trained models for transfer-learning

AlexNet VGGs (16-19) Inception (AKA Google-Net) ResNet **MobileNet** DenseNet

Mobile Net: A light weight model

Table 1. MobileNet Body Architecture			
Type / Stride	Filter Shape	Input Size	
Conv / s2	$3 \times 3 \times 3 \times 32$	$224\times224\times3$	
Conv dw / s1	$3 \times 3 \times 32$ dw	$112\times112\times32$	
Conv / s1	$1\times1\times32\times64$	$112\times112\times32$	
Conv dw / s2	$3 \times 3 \times 64$ dw	$112\times112\times64$	
Conv / s1	$1\times1\times64\times128$	$56\times 56\times 64$	
Conv dw / s1	3 imes 3 imes 128 dw	$56\times 56\times 128$	
Conv / s1	$1\times1\times128\times128$	$56\times 56\times 128$	
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56\times 56\times 128$	
Conv / s1	$1\times1\times128\times256$	$28\times28\times128$	
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28\times28\times256$	
Conv / s1	$1\times1\times256\times256$	$28\times28\times256$	
Conv dw / s2	3 imes 3 imes 256 dw	$28\times28\times256$	
Conv / s1	$1\times1\times256\times512$	$14\times14\times256$	
5 Conv dw / s1	3 imes 3 imes 512 dw	$14\times14\times512$	
Conv / s1	$1\times1\times512\times512$	$14\times14\times512$	
Conv dw / s2	3 imes 3 imes 512 dw	$14\times14\times512$	
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$	
Conv dw / s2	$3 imes 3 imes 1024 \ \mathrm{dw}$	$7\times7\times1024$	
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$	
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$	
FC/s1	1024×1000	$1 \times 1 \times 1024$	
Softmax / s1	Classifier	$1 \times 1 \times 1000$	

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arXiv.1704.04861) CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Key Idea. Separable Convolution

Simple Convolution

Spatial Separable Convolution

Standard Convolution

A standard convolution filters and combines inputs into a new set of outputs in one step.

Input: 12x12x3Output: 8x8x256Filter: 5x5x3x256(no padding)

MACs: (5x5)x3x256x(12x12) ~ 2.8M Parameters: (5x5x3)x256 + 256 ~ 20K

Depthwise separabe Convolution

The depthwise separable convolution makes 2 steps: A depthwise convolution and a pointwise convolution.

Input: 12x12x3 Filter: 5x5x3

Output: 8x8x3 (no padding)

Input: 8x8x3 Filter: 1x1x3x256 Output: 8x8x256 (no padding)

MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K

Computation Reduction

 $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$

Depthwise Separable Convolution Cost: Depthwise Convolution Cost (Left), Pointwise Convolution Cost

Computation Reduction

M input channels

N output channels.

 $\mathsf{D}_{_{\!\mathsf{K}}}$ the filter (kernel) size

 $D_{_{\rm F}}$ the feature map size

The computation Reduction comparing to standard convolution is

Let's have some Action (coding)

Training the MobileNet

Consider a small data set of 5 groups and totally less than 1K labeled images.

Can we use this small data set to train a deep and very expressive network such as the MobileNet?

Load the un-trained MobileNet

Data Generator

```
: train datagen=ImageDataGenerator(preprocessing_function=preprocess_input,
                                                   horizontal flip=True,
                                                    rotation range=45,
                                                    zoom range=[0.8,1.0]
  #
  test datagen=ImageDataGenerator(preprocessing function=preprocess input)
  # TRAINING set
  pathTrain = pathFolder + 'trainData/'
  listGroupsTrain = os.listdir(pathTrain) # the directory path
  # TESTING set
  pathTest = pathFolder + 'testData/'
  listGroupsTest = os.listdir(pathTest) # the directory path
  # Load the data into the ImageDataGenerator
  train generator=train datagen.flow from directory(pathTrain,
                                                    target size=(IMG SIZE,IMG SIZE),
                                                    color mode='rgb',
                                                    batch size=64,
                                                    class mode='categorical',
                                                    shuffle=True,
                                                    classes=listGroupsTrain)
  test generator=test datagen.flow from directory(pathTest,
                                                    target size=(IMG SIZE,IMG SIZE),
                                                    color mode='rgb',
                                                    batch size=64,
                                                    class mode='categorical',
                                                    shuffle=False,
                                                    classes=listGroupsTest)
```


Found 843 images belonging to 5 classes. Found 104 images belonging to 5 classes.

Compile and train the MobileNet

Transfer Learning with MobileNet

Loading the pre-trained MobileNet network

Choose the weights pretrained in the imagenet dataset
mobile = tf.keras.applications.mobilenet.MobileNet(weights='imagenet')

mobile.summary()

Model: "mobilenet_1.00_224"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
<pre>conv1_pad (ZeroPadding2D)</pre>	(None, 225, 225, 3)	0
conv1 (Conv2D)	(None, 112, 112, 32)	864
<pre>conv1_bn (BatchNormalization</pre>	(None, 112, 112, 32)	128

Helper functions

This function prepares the images for the MobileNet: input shape: (1, 224, 224, 3)

```
def prepare_image(img_path, img_size = IMG_SIZE):
    img = image.load_img(img_path, target_size=(img_size, img_size))
    img_array = image.img_to_array(img)
    img_array_expanded_dims = np.expand_dims(img_array, axis=0)
    return keras.applications.mobilenet.preprocess_input(img_array_expanded_dims)
```

Another helper function for doing the classification

```
def mobileClassifier(imagePath, pathFolder=pathFolder, mobile=mobile):
    imagePathFull = pathFolder + imagePath
    preprocessed_image = prepare_image(imagePathFull)
    # Use mobileNet to classify the image
    predictions = mobile.predict(preprocessed_image)
    results = imagenet_utils.decode_predictions(predictions)
    return results
```


Classify on a new dataset

```
mobileClassifier('pcaData/labrador/5.labrador_retriever.jpg')
[[('n02099712', 'Labrador_retriever', 0.9703214),
   ('n02099601', 'golden_retriever', 0.014126321),
   ('n02104029', 'kuvasz', 0.0036305177),
   ('n02099849', 'Chesapeake_Bay_retriever', 0.0017487509),
   ('n02108422', 'bull mastiff', 0.0011949409)]]
```

mobileClassifier('trainData/tulipsTrain/100930342_92e8746431_n.jpg')

```
[[('n03930313', 'picket_fence', 0.29128855),
  ('n02280649', 'cabbage_butterfly', 0.123460084),
  ('n12057211', "yellow_lady's_slipper", 0.09701885),
  ('n11939491', 'daisy', 0.088766344),
  ('n02281406', 'sulphur_butterfly', 0.07786752)]]
```

Is there any problem? Where is it? Detecting the problem we know what to transfer and what to train

Classify on a new dataset

Classify on a new dataset

That's it

For the homework you should use GPUs to accelerate the training. You can use the **JupyterHub** at Canvas

Thank you!

References

- <u>https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299</u>
- https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
- <u>https://www.alibabacloud.com/blog/part-3-image-classification-using-features-extracted-by-transfer-learning-in-keras_595291</u>
- https://www.tensorflow.org/tutorials/images/transfer_learning
- <u>https://arxiv.org/abs/1704.04861</u>

Supplementary Material

Strategies

There are different transfer learning strategies and techniques, which can be applied **based on the domain, task** at hand, **and the availability of data:**

- Inductive Transfer learning: The source and target have same domains, yet the they have different tasks (e.g. documents written in the same language, but unbalanced labels).
- Unsupervised Transfer Learning: The source and target have same domains, with a focus on unsupervised tasks in the target domain. The source and target domains are similar, but the tasks are different. In this scenario, labeled data is unavailable in either of the domains.
- **Transductive Transfer Learning:** There are similarities between the source and target tasks, but the corresponding domains are different. The source domain has a lot of labeled data, while the target domain has none.

Strategies

A few categories of the approaches for Transfer Learning

- Instance transfer: Reusing knowledge from the source domain to the target task (ideal scenario). In most cases, the source domain data cannot be reused directly.
- Feature-representation transfer: Minimize domain divergence and reduce error rates by identifying good feature representations
- Parameter transfer: This approach works on the assumption that the models for related tasks share some parameters or prior distribution of hyperparameters.

