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Deep learning & Nature

Very often in deep learning we are inspired by the Nature

Example: The convolution Networks were inspired by the neurons
In the visual cortex of animals

Consider a scenario that there iIs someone who knows how to
ride a bike and someone else does not know.
They both now want to learn how to drive a motorbike.

Does the former have any advantage in the learning task?
Why?
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Motivation for Transfer Learning
The Basic idea for Transfer Learning
MobileNet. A light weight model

Some Coding
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Classify Rarest Animals

convl VG G 1 6

conv2

// convi
convd .
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@ convolution4+ReLU
@ max pooling

@ fully connected+ReLU

L1

224 x 224 x 64

Number of parameters: 134,268,737
Data Set: Few hundred images
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Classify Rarest Animals

VGG16

conv2

NOT ENOUGH ~

DATA

Number of parameters: 134,268,737
Data Set: Few hundred images
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Classify Cats, Dogs, Chinchillas etc

convl VGG16

conv2

// 77
convd
convs - . s
14 x 14 x 512 1x1x4096 1x1x1000
28 x 28 x 512
n

56 x 56 x 256 7% 7 %512

LA

1174 112 x 128

@ convolution4+ ReLLU

@ max pooling

@ fully connected+Rel.U

M
224 x 224 x 64

Number of parameters: 134,268,737
Enough training data. ImageNet approximate
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Classify Cats, Dogs, Chinchillas etc

convl VGG16

conv2

TAKES TOO .-

LU
@ max pooling
@ fully connected+ReL.U

224 x 224 x 64

Number of parameters: 134,268,737
Enough training data. ImageNet approximate
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Transfer Learning To The Rescue

How do you build an image classifier that can be trained
in a few minutes on a GPU with very little data?
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Basic idea of Transfer Learning

Train a ML model M for a

task T using a dataset Dy

Use M on a new dataset D
for the sametask T

Wikipedia:

Transfer learning (TL) is a
research problem in

machine learning (ML) that
focuses on storing knowledge
gained while solving one problem
and applying it to a different but
related problem.!

Use part of M on original
dataset D for a new task T;,
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https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1

Key Ildea: Representation Learning

Relatively difficult task

Cartesian Coordinates
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Polar Coordinates




Transfer Learning

Not a new idea!
It has been there in the ML and
stats literature for a while.

An example is hierarchical GLM
models in stats, where
information flows from higher 0, 0, 04
data units to the lower data
units.

Neural networks learn

hierarchical representations I TR
and thus are suited to this kind i ¥v2 3
of learning.
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Representation Learning

Task: classify cars, people, animals and objects

| CNN Layer B CNN Layer
1 2
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Transfer Learning To The Rescue

How do you make an image classifier that can be trained in a
few minutes on a GPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: Earlier convolution layers learn low level features,
which can be adapted to new domains by changing weights at
later and fully-connected layers.

Example: Use ImageNet to train a huge deep network. Then
retrain it on a few images
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Transfer Learning To The Rescue

Train on a big "source" data set, with a big model, on one

particular downstream tasks and save the parameters. This is
called a pre-trained model.

Use these parameters for other smaller "target " datasets
(possibly different domain, or training distribution).

Less helpful if you have a large target dataset with many labels.

It will fail if the source domain has nothing in common with target
domain.
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Machine Learning

Traditional ML

Task / domain B [

Training and
evaluation on the same
task or domain.
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Transfer Learning

Transfer learning

Source task /
domain Target task /
domain

Storing knowledge gained solving
one problem and applying it to a
different but related problem.

Knowledge
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Applications

Learning from simulations (self driving cars, games)

Domain adaptation:
Bikes to bikes with backgrounds, bikes at night, etc

Speech recognition.
Classify speakers with minimal training such that only a few words

or sentences are needed to achieve high levels of accuracy.

Cross-lingual adaptation for few shot learning of resource poor
languages (english->nepali for example)
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Using a pre-trained net

Create a classifier to distinguish dogs and flowers

Use MobileNet previously trained on Imagenet with 1.4 M
iImages and 1000 classes. Very expensive training

Replace the head (classifier) FC layers. Freeze the base
(convolution) layers. Train the Network

Fine-Tuning. Unfreeze the convolution layers and train the entire
network
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Key Takeaways

During the process of transfer learning, the following three
iImportant questions must be answered:

« What to transfer: Identify which portion of knowledge is source-
specific and what is common between the source and the target.

* When to transfer: We need to be careful about when to transfer
and when not to. Aim at utilizing transfer learning to improve target
task performance/results and not degrade them (negative transfer).

* How to transfer: Identify ways of transferring the knowledge
across domains/tasks.
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Transfer Learning Strategies

Case 1 > Self-taught
/’ < Learning

No labeled data in a source domain :

Inductive Transfer /
Learning \

Labei.e-:ti- P av:'-z-i-i.l-able Labeled data are available in a source domain § . _. _
in a target domain \ Source ind Multi-task
----------- Case 2 — targettasksare > 3
et Learning
i simultaneously
Transfer \‘\\4 Labeled data are -A151;11p-}10;-“
Leammg : available only in a Transductive TRt 3 Domain

source domain

Transfer Learning <— d‘?”“;“‘: bl‘:‘ i— Adaptation
single task

N = e | s |

No labeled data in o
Assumption: single

both source and  :
target domain

...... — _ . - fpp———. ._...\
Unsupervised

) Sample Selection Bias
! Transfer Learning Covariance Shift

FLCTIT LI

Pan and Yang, A Survey on Transfer Learning
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Transfer Learning for Deep Learning

What people thinks

you can’t do deep learning unless you have a million labeled
examples.

What people can do, instead

 Can learn representations from unlabeled data

 Can transfer learned representations from a relate task.
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Transfer Learning for Deep Learning

Instead of training a network from scratch:

 Take a network trained on a different domain for a different
source task

 Adapt it for your domain and your target task

Target |

Variations /_’__%urcenabgn%____ | tabels
* Same domain, different task. ..~ el
- Different domain, same task. Y o eeemd /

Source data ~eocidan |
~ E.g.ImageNet | Eppascar |
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Representation Extraction

Use representations learned by big net to extract features from new
samples, which are then fed to a new classifier:

 Keep (frozen) convolutional base from big model

e Throw away head FC layers since these have no notion of space,
and convolutional base is more generic

e Since there are both dogs and flowers in ImageNet you could use
the head FC layers as well but by throwing it away you can learn
more from new dog/cat images
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Fine-tuning

Up to now we have frozen the entire
convolutional base.

Earlier layers learn highly generic feature maps
(edges, colors, textures) while later layers learn
abstract concepts (dog’s ear).

To particularize the model to our task, we can
tune the later layers

We must be very careful not to have big gradient
updates.
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frozen

Corw block 4:
frozen

Wi fine-tuna
Conv block 5.

We fing-tune
our own fully
connected
classifier.



NAVLY/
Do
v»"g;é‘i
o

VE[g]<) [@ris]

Procedure for Fine-tuning

1. Freeze the convolutional base

2. Train the new fully connected head, keeping the
convolutional base fixed. This will get their parameters away
from random and in a regime of smaller gradients

3. Unfreeze some or all "later" layers in the base net
4. Now train the base net and FC net together.
Since you are now in a better part of the loss surface already,

gradients won't be terribly high, but we still need to be
careful. Thus use a very low learning rate.
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Transfer Learning for Deep Learning: Differential Learning Rates

Train different layers at different rates

Each "earlier" layer or layer group can be trained at 3x-10x smaller learning rate
than the next "later" one.

One could even train the entire network again this way until we overfit and then step
back some epochs.

smaller relatively Iarg est

learning Iarggr 'f'm'”.‘a'

rate learning learning
rate : rate

Y

c—>c—>cC §=c c+c—:~r—n+n+n

C - ConvolutionLayers
D - Dense Layers
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State of the Art Deep Models:

Some of the good pre-trained models for transfer-learning

AlexNet

VGGs (16-19)

Inception (AKA Google-Net)
ResNet

MobileNet

DenseNet
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State of the Art Deep Models:

Some of the good pre-trained models for transfer-learning

AlexNet

VGGs (16-19)

Inception (AKA Google-Net)
ResNet

MobileNet

DenseNet

DO
K CS109B, PROTOPAPAS, GLICKMAN AND TANNER




75
70
65
60
29
50

45

ImageNet Top-1 Accuracy (%)
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10°
MACs: Multiply-Accumulates (#operations)
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Mobile Net: A light weight model

10°

CS109B, PROTOPAPAS, GLICKMAN AND TANNER

MobileNet
AlexNet
GoogleNet
VGG 16

104

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / 52 Ix3x3x32 224 » 224 % 3
Conv dw / sl 3% 3 x32dw 112 > 112 = 32
Conv / sl 11 x32x64 112 % 112 = 32
Conv dw / s2 3 x 3 x 64 dw 112 = 112 x 64
Conv / sl 1x1x64x128 66 = 56 = 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 = 128
Conv / sl 121 %128 x 128 B6 x 56 x 128
Conv dw / s2 3 3 x 128 dw 56 » 56 »x 128
Conv / sl 1 =1 x 128 x 256 28 x 28 =« 128
Conv dw / sl 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 1 x 1 x 256 = 256 28 x 28 x 256
Conv dw / 82 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 121 %256 x 512 14 x 14 x 256

. Conv dw / sl
" Conv/ sl

3% 3 x512dw
1x1x512x512

14 x 14 x 512
14 x 14 x 512

Conv dw / s2

3% 3 x512dw

14 x 14 x 512

Conv / sl 1x1x512x 1024 TxTx512

Conv dw / 82 3 x 3 x 1024 dw TxTx1024
Conv / sl 111024 % 1024 | 7 x 7 x 1024
Avg Pool / 51 Pool 7 x 7 T x 7T x1024
FC /sl 1024 » 1000 1x1x 1024
Softmax / s1 Classifier 1 =1 = 1000

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
(arXiv.1704.04861)



Key ldea. Separable Convolution

Simple Convolution

Convolution with 3x3 kernel

T 6 9 Qutput Image
I4 8 12]
5 10 15

Spatial Separable Convolution

Convolution with Convolution with

3x1 kernel 1x3 kernel

—- _h'
3 Intermediate Image Qutput Image
H [1 2 3]
5

ACS |maes
avy
KX

A

CS109B, PROTOPAPAS, GLICKMAN AND TANNER



Standard Convolution

A standard convolution filters and combines inputs into a new set of outputs

In one step.
) Input: 12x12x3 Output: 8x8x256
Filter: 5x5x3x256 (no padding)
” : MACs:  (5x5)x3x256x(12x12) ~ 2.8M
Input: 12x12x3 Output: Parameters: (5x5x3)x256 + 256 ~ 20K
Filter: 8x8x256
5x5x3x256 (no padding)
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Depthwise separabe Convolution

The depthwise separable convolution makes 2 steps: A depthwise
convolution and a pointwise convolution.

12

12
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Input: 12x12x3 :> Output: 8x8x3

Filter: 5x5x3 (no padding)
Input: 8x8x3 Output: 8x8x256
Filter: 1x1x3x256 (no padding)

MACSs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K
Parameters: (5x5x3 + 3) + (1x1x3x256+256) ~ 1K
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Computation

Reduction

Depthwise Convolution

H@
4

Dyx Dy conv

A,

Vo P Y

=

Pointwise Convolution

M input channels

1x1 conv

b
[

N output channels.

D, the filter (kernel) size

D_ the feature map size

Dk -Dk-M-N-Dp-Dp

Dg-Dgk-M-Dp-Dp+M-N-Dp-Dp

Depthwise Separable Convolution Cost: Depthwise Convolution Cost (Left), Pointwise Convolution Cost

IACS |52 Em g

svavy
w5y

(Right)



N

Computation

Reduction

Depthwise Convolution

Ve Ve,

Dyx Dy conv

||e=

-/ )/

=

N\

Pointwise Convolution

=

M input channels

1x1 conv

=)

N output channels.

D, the filter (kernel) size

D_ the feature map size

The computation Reduction comparing to standard convolution is
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Let’s have some Action (coding)
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Training the MobileNet

Consider a small data set of 5 groups and totally less than 1K labeled
Images.

Can we use this small data set to train a deep and very expressive network
such as the MobileNet?

Load the un-trained MobileNet

# Loading the un-trained weights model
mobile from scratch = tf.keras.applications.mobilenet.MobileNet(input shape=IMG SHAPE, weights=None,
classes=len(listGroupsTrain))

e
oy CS109B, PROTOPAPAS, GLICKMAN AND TANNER

g



Data Generator

train datagen=ImageDataGenerator(preprocessing function=preprocess input,
horizontal flip=True,
rotation_ range=45,
= zoom range=[0.8,1.0]
)

test datagen=ImageDataGenerator(preprocessing function=preprocess input)

# TRAINING set
pathTrain = pathFolder + 'trainData/'
listGroupsTrain = os.listdir(pathTrain) # the directory path

# TESTING set
pathTest = pathFolder + 'testData/'
listGroupsTest = os.listdir(pathTest) # the directory path

# Load the data into the ImageDataGenerator

train generator=train datagen.flow from directory(pathTrain,
target size=(IMG SIZE,IMG SIZE),
color mode='rgb',
batch size=64,
class _mode='categorical',
shuffle=True,
classes=1listGroupsTrain)

test generator=test datagen.flow from directory(pathTest,
target size=(IMG SIZE,IMG SIZE),
color_mode='rgb"',
batch size=64,
class mode='categorical’,
shuffle=False,
classes=1listGroupsTest)

vy . .
%%ﬂ? Found 843 images belonging to 5 classes.
w Found 104 images belonging to 5 classes.



Compile and train the MobileNet

Training and Validation Loss

= — = Training Loss
1
axf Validation Loss
78x 107!
-
[=8
=
o 7.6x 10!
o
L
74 =101
7.2x 101
0.0 05 10 15 20 25 30 35 40
epoch

W
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Transfer Learning with MobileNet

Loading the pre-trained MobileNet network

# Choose the weights pretrained in the imagenet dataset
mobile = tf.keras.applications.mobilenet.MobileNet(weights="'1imagenet')

mobile.summary()

Model: "mobilenet 1.00 224"

Layer (type) Output Shape Param #
input 1 (InputLayer) [ (None, 224, 224, 3)] 0

convl pad (ZeroPadding2D) (None, 225, 225, 3) ¢

convl (Conv2D) (None, 112, 112, 32) 864
convl bn (BatchNormalization (None, 112, 112, 32) 128
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Helper functions

This function prepares the images for the MobileNet: input shape: (1, 224, 224, 3)

def prepare image(img path, img size = IMG SIZE):
img = image.load img(img path, target size=(img size, img size))
img array = image.img to array(img)
img array expanded dims = np.expand dims(img array, axis=0)
return keras.applications.mobilenet.preprocess input(img array expanded dims)

Another helper function for doing the classification

def mobileClassifier(imagePath, pathFolder=pathFolder, mobile=mobile):
imagePathFull = pathFolder + imagePath
preprocessed image = prepare image(imagePathFull)
# Use mobileNet to classify the image
predictions = mobile.predict(preprocessed image)
results = imagenet utils.decode predictions(predictions)
return results

e
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Classify on a new dataset

mobileClassifier('pcaData/labrador/5.labrador retriever.jpg')

[[('nO02099712', 'Labrador retriever', 0.9703214),
('nG2099601', 'golden retriever', 0.014126321),
('n02104029', 'kuvasz', 0.0036305177),

('n02099849"', 'Chesapeake Bay retriever', 0.0017487509),
('n062108422', 'bull mastiff', 0.0011949409)]]

mobileClassifier('trainData/tulipsTrain/100930342 92e8746431 n.jpg"')

[[('nG3930313"', 'picket fence', 0.29128855),
('n02280649', 'cabbage butterfly', 0.123460084),
('nl12057211', "yellow lady's slipper", 0.09701885),
('nl11939491', 'daisy', 0.088766344),

('n02281406', 'sulphur butterfly', 0.07786752)]]

Is there any problem? Where is it? Detecting the problem we know what to
transfer and what to train
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Define the base model

#your code here
transferModel base
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Classify on a new dataset

1

Trained
convolutional
base

tf.keras.applications.MobileNet(input shape=IMG SHAPE, weights='imagenet'<

include top=False)

CS109B, PROTOPAPAS, GLICKMAN AND TANNER




Classify on a new dataset

I .

S
__~ctassifier__

Trained
convolutional

Add a AveragePooling base
and then
add one or more new FC layers

Define the base model

#your code here

transferModel base = tf.keras.applications.MobileNet(input shape=IMG SHAPE, weights='imagenet'<, include top=False)
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That’s it

For the homework you should use GPUs to accelerate the training. You can use the
JupyterHub at Canvas

Thank youl
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Supplementary Material
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Strategies

There are different transfer learning strategies and techniques, which can be
applied based on the domain, task at hand, and the availability of data:

* Inductive Transfer learning: The source and target have same
domains, yet the they have different tasks (e.g. documents written in
the same language, but unbalanced labels).

 Unsupervised Transfer Learning: The source and target have same
domains, with a focus on unsupervised tasks in the target domain.
The source and target domains are similar, but the tasks are different. In
this scenario, labeled data is unavailable in either of the domains.

* Transductive Transfer Learning: There are similarities between the
source and target tasks, but the corresponding domains are different. The
source domain has a lot of labeled data, while the target domain has none.
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Strategies

A few categories of the approaches for Transfer Learning

 Instance transfer: Reusing knowledge from the source domain to
the target task (ideal scenario). In most cases, the source domain
data cannot be reused directly.

* Feature-representation transfer: Minimize domain divergence
and reduce error rates by identifying good feature representations

 Parameter transfer: This approach works on the assumption that

the models for related tasks share some parameters or prior
distribution of hyperparameters.

CS109B, PROTOPAPAS, GLICKMAN AND TANNER



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

