Lecture 36: Review
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Simple Prediction Model (KNN)

Sales in $1000

175 = J Y,
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What is y,at some

I?
xq.

Find distances to
all other points
D(xg4,x;)

Find the nearest
neighbor, (x,, y,)

Predicty, =y,



Simple Prediction Model

Do the same for “all” x's

Sales in $1000

175 — X
|
150 = ,
25- Py
—x | \ |
I 5 ' " — —
100 = ; \
I'x" VP
5.0=| %
i i i i i
0 50 100 150 200

TV budget in $1000

CS109A, PROTOPAPAS, RADER, TANNER




Extend the Prediction Model
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What is y,at some
Xq?

Find distances to
all other points

D(xq,x;)

Find the k-nearest

neighbors, Xgyr 1 Xqp
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Simple Prediction Models
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Simple Prediction Models

We can try different k-models on more data
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Estimate of the regression coefficients

For a given data set
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Estimate of the regression coefficients (cont)

Is this line good?
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o
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Estimate of the regression coefficients (cont)

Maybe this one?
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Estimate of the regression coefficients (cont)

Or this one?
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Estimate of the regression coefficients (cont)

Question: Which line is the best?
First calculate the residuals

175 =
e X  data T

Sales in $1000
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Estimate of the regression coefficients (cont)

Again we use MSE as our loss function,

n

L(Bo, B1) = %Z (yi — )" = %Z [y; — (B1X + Bo)]”.

2=1 =1

We choose f;and [, in order to minimize the predictive errors made by
our model, i.e. minimize our loss function.

Then the optimal values for 8, and 3; should be:

Bo, B1 = axégnginL(Bo, B1).
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Estimate of the regression coefficients: brute force

A way to estimate is to calculate the loss function for every
possible beta_0 and beta_1.Then select the betas where
the loss function is at the minimum.

E.g. the loss function for different beta_1s when beta_0O is

fixed to be 6:
Minimum at 81 = 0.044
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Estimate of the regression coefficients: exact method

Take the partial derivatives of L with respect to f, and 4, set to zero, and
find the solution to that equation. This procedure will give us explicit

formulae for ﬁo and ,5’1:

where ¥ and X are sample means.

The line: ~ ~ ~
Y =061 X + Bo
is called the regression line.
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Confidence intervals for the predictors estimates (cont)

In our magical realisms, we can now.sample multiple times

25 = 2b=
x  data

f(x) = 6.55 +0.05 x

20 =
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Confidence intervals for the predictors estimates (cont)

Another sample

25 = 25=
x  data
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Confidence intervals for the predictors estimates (cont)

Another sample

25 = 2=
x  data y
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Confidence intervals for the predictors estimates (cont)

And another sample
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Confidence intervals for the predictors estimates (cont)

Repeat this for 100 times

25= 2b=
X  data
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Confidence intervals for the predictors estimates (cont)

We can now estimate the mean and standard deviation of all the estimates

p1.

| -
320~ ~
€
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0= ] 1 1 1 1
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Confidence intervals for the predictors estimates (cont)

Finally we can calculate the confidence intervals, which are the ranges
of values such that the true value of is contained in this interval with n
percent probability.

¢ * 95%
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How well do we know f?

Below we show all regression lines for a thousand of such bootstrapped
samples.

For a given x, we examine the distribution of £, and determine the mean

and standard deviation. bensity
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How well do we know f?

Below we show all regression lines for a thousand of such sub-samples.

For each one of those “realizations”, we could fit a model and estimate

Bo and . Density
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How well do we know f?

Below we show all regression lines for a thousand of such sub-samples.

For each one of those “realizations”, we could fit a model and estimate

Bo and . Density
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How well do we know f?

For every x, we calculate the mean of the models, f (shown with dotted
line) and the 95% CI of those models (shaded area).
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Confidence in predicting y
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------ Estimated f
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Confidence in predicting y

 for a given x, we have a distribution of models
« for each of these the prediction for
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Confidence in predicting y

 for a given x, we have a distribution of models f(x)
 for each of these f(x), the prediction for y~N(f, c.)
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Cross Validation
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Cross Validation
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Cross Validation

Sales in $1000

Polynomial Regression degree=1
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Cross Validation

Sales in $1000

Polynomial Regression degree=5
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Validation

1]

(4N

MS

25=

20 -

15 =

10 -

-l

— train MSE
—— validation MSE

¥

2.5 5.0

C
7.5

1
10.0 12.5 15.0

polynomial degree

CS109A, PROTOPAPAS, RADER, TANNER

42



Cross Validation
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Error

Total Error
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Optimum Model Complexily
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Model Complexity
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Bias vs Variance

16 Linear Model
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Bias vs Variance

Linear Model

10=
—— True Model //

b

08= — f from different samples
sample data 2
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Bias vs Variance

Linear Model

10=
—— True Model , /

08= — f from different samples
sample data 3
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Linear models: 20 data points per line 2000 simulations

Linear Model
10-
—— True Model
0.8 = f from different samples
0.6=
>
04-=
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Bias vs Variance

Polynomial Model degree=20

1.0-
sample data 1 /
0.8=| —— True Model
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Bias vs Variance

Polynomial Model degree=20

1.0-
sample data 2
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Bias vs Variance

€
8
B

Polynomial Model degree=20

10-
sample data 3

0.8=| —— True Model

—— ffrom sample 3
0.6 =

0.4-

0.2=

0.0 0.2 0.4 0.6 0.8 1.0

CS109A, PROTOPAPAS, RADER, TANNER

56



Poly 10 degree models : 20 data points per line 2000 simulations

Polynomial Model degree=10

10=-
—— True Model

08 = f from all samples
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Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point
training set.

Right: Best-fit models using degree 10 polynomial

16 Linear Model 16 Polynomial Model degree=10
—— True Model —— True Model
08 = f from different samples 0.8 = f from all samples
0.6= 0.6=
>~ >~
0.4-=- 0.4-
02= 02=
0.0=— 1 i 1 1 1 0.0=— 1 1 1 1
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
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Regularization: An Overview

The idea of regularization revolves around modifying the loss function L;
In particular, we add a regularization term that penalizes some specified
properties of the model parameters

Lyeq(B) = L(B) + AR(S)

CS109A, PROTOPAPAS, RADER, TANNER
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LASSO Regression

Since we wish to discourage extreme values in model parameter, we need
to choose a regularization term that penalizes parameter magnitudes. For

our loss function, we will again use MSE.

Together our regularized loss function is:
1 n J
Lrasso(B) = n Z yi — ,BTiBz'\Q T AZ 155l-
i=1 j=1
Note that i 16; is the I, norm of the vector 8

j=1 ;
> 18l =18l
j=1
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the

squares of the parameter magnitudes. Then, our regularized loss function
IS:

n J
1
Lpiage(B) = — ) |yi =B zil* + X} 5}
| =1

J
Note that ) "|s;* is the I norm of the vector 8

J=1

J
> B =183
J=1

£
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[0)]
€€
=]
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Ridge regularization with validation only: step by step

Fitting data with polynomial deg=10

0.06 =
0.05=
1 1 1 1 1 1 i
20 -15 10 -5 0 5 10
logA
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Ridge regularization with validation only: step by step

Fitting data with polynomial deg=10 with 5-Fold

S Fold 1
0.08 - Fold 2

Fold 3
0.07 = Fold 4

Fold
Mean MSE . k-Folds

1 1 1 1
-20 -15 -10 -5 0 5 10
logA
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The Intuition Behind PCA

Top PCA components capture the most of amount of variation
(interesting features) of the data.

Each component is a linear combination of the original
predictors - we visualize them as vectors in the feature space.
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The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our
dataset onto the space defined by the top m PCA components,
these components are our new predictors.
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A Framework For Dimensionality Reduction

One way to reduce the dimensions of the feature space is to create a
new, smaller set of predictors by taking linear combinations of the
original predictors.

We choose Z, Z,,..., Z,,, where m < p and where each Z;is a linear
combination of the original p predictors

p
Zi = 2 bjiXj
=1

for fixed constants ¢j;. Then we can build a linear regression regression
model using the new predictors

Y'=pFo+ 12y + -+ pmim + €

Notice that this model has a smaller number (m+1< p+1) of parameters.
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The Math behind PCA

PCA is a well-known result from linear algebra. Let Z be the n x
p matrix consisting of columns z,,..., Z,(the resulting PCA

vectors), X be the nx p matrix of X,,..., X, of the original data
variables (each standardized to have mean zero and variance

one, and without the intercept), and let W be the p x p matrix
whose columns are the eigenvectors of the square matrix XX,

then:
ZnXp — XnXprXp

oy CS109A, PROTOPAPAS, RADER, TANNER




Cross

Uncertainty in B
y validation

model and
prediction

Statistical
Learning

Methods of
regularization:
Lasso and
Ridge

Regression

Linear

Trees

IACS

e
w

Overfitting:
Variance &
Bias

PCA &
dimensionality
reduction

Y%
(0

Classification

Neural
Networks

CS109A, PROTOPAPAS, RADER, TANNER

Computing
Tools

Matplotlib



Cross

Uncertainty in B
y validation

model and
prediction

Statistical
Learning

Methods of
regularization:
Lasso and
Ridge

Regression

Linear

Trees

o
()

2
&
€
Lol
B

Overfitting:
Variance &
Bias

PCA &
dimensionality
reduction

Y%
(0

Classification

Neural
Networks

CS109A, PROTOPAPAS, RADER, TANNER

Computing
Tools

Matplotlib



Cross

Uncertainty in B
y validation

model and
prediction

Statistical
Learning

Methods of
regularization:
Lasso and
Ridge

Regression

Linear

Trees

o>
| (0

o
. =

Overfitting:
Variance &
Bias

PCA &
dimensionality
reduction

Y%
(0

Classification

Neural
Networks

CS109A, PROTOPAPAS, RADER, TANNER

Computing
Tools

Matplotlib

72



Cross

Uncertainty in B
y validation

model and
prediction

Statistical
Learning

Methods of
regularization:
Lasso and
Ridge

Regression

Linear

Trees

>
o]
4

e
S
€
8
B

Overfitting:
Variance &
Bias

PCA &
dimensionality
reduction

Y%
(0

Classification

Neural
Networks

CS109A, PROTOPAPAS, RADER, TANNER

Computing
Tools

Matplotlib

73



Even Simpler Classification Problem: Binary Response (cont)

What could go wrong with this linear regression model?
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Pavlos Game #45

Think of a function that would do this for us

100 = y=X 10= y=f(x) (
50 - Y =f(x) °8
0.6 =
> O= >

04-
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-100 = 00~- J
1 1 1 1 1 1 | 1 1 1
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Logistic Regression
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Estimation in Logistic Regression

Probability Mass Function (PMF):
PY=1)=p
PY=0)=1-p

P(Y=y)=p”(1-p)*+

where:

1
1 + e~ (Bot+B1X)

p=PY =1]X=x) =

and therefore p depends on X.

Thus not every p; is the same for each individual measurement.
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Likelihood

The likelihood of a single observation for p given xandy is:
L(pilY) = P(Y; = y;) = p]'(1 = p)* ™

Given the observations are independent, what is the likelihood function
for p?

Lo = | [Poi=y =] [ -por>

[(p]Y) = —logL(plY) = — zyi logp; + (1 —y;) log(1 — p;)
L
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Loss Function

. 1
Helr) = _Z {y 108 T a1~ i) log (1 14 e—<ﬂo+ﬁlxi))‘i
l

How do we minimize this?
Differentiate, equate to zero and solve for it!

But jeeze does this look messy?! It will not necessarily have a closed form
solution.

So how do we determine the parameter estimates? Through an iterative
approach (we will talk about this at length in future lectures).
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Classifier with two predictors

How can we estimate a classifier, based on logistic regression, for the following
plot?




Multiple Logistic Regression

Earlier we saw the general form of simple logistic regression, meaning
when there is just one predictor used in the model. What was the model
statement (in terms of linear predictors)?

1og(1f(PY(;i)1)> =bo+Hx

Multiple logistic regression is a generalization to multiple predictors.
More specifically we can define a multiple logistic regression model to
predict P(Y = 1) as such:

log (1 —P(P);Y:i)l)) — BO - ﬁle =+ 52X2 . ... T 5po
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Regularization in Logistic Regression

A penalty factor can then be added to this loss function and

results in a new loss function that penalizes large values of the
parameters:

n p _
argmin |— Z(Yi In(p;) + (1 —y;) In(1 —py)) + Az 'BJ'Z
BO’ﬁl""'ﬁp i=1 ]=1

The resultis just like in linear regression: shrink the parameter
estimates towards zero.

In practice, the intercept is usually not part of the penalty factor.

Note: the sklearn package uses a different tuning parameter:

Instead of A they use a constant that is essentially C = /11
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Diagnostic Testing in Classification (cont.)

Bayes’ theorem can be rewritten for classification:
" P(y =1y =1P(y = 1)
Py=1y=1 =57—-2 - S — 1o = -
PG =1y=DPy=1)+PH =1ly=0)P(y = 0)
These probability quantities can then be defined as:
* Sensitivity: P(y = 1|y = 1)

« Specificity: P(y = 0|y = 0)

* Prevalence: P(y = 1)

* Positive Predictive Value: P(y = 1|y = 1)

* Negative Predictive Value: P(y = 0|y = 0)

How do positive and negative predictive values relate? Be careful..
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ROC Curve Example

The Radio Operator Characteristics (ROC) curve
illustrates the trade-off for all possible thresholds
ROC Curve for Predicting AHD in a Logistic Regression Modelchosen for the two types of error (OI" correct
10 - classification).

(=
(s}
A

The vertical axis displays the true positive predictive
value and the horizontal axis depicts the true
negative predictive value.

o
(=2}
A

o
=
'S

True Positive Rate

The overall performance of a classifier, calculated
over all possible thresholds, is given by the area
under the ROC curve (AUC).

=
N

b
o
A

00 02 04 0.6 08 10
False Positive Rate

An ideal ROC curve will hug the top left corner, so the
larger the AUC the better the classifier.
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Multinomial Logistic Regression: the model

To predict K classes (K> 2) from a set of predictors X, a
multinomial logistic regression can be fit:

P(Y = 1)

In (P(Y — K)) — 180,1 + ﬁl,lxl + ,82,1X2 + oo+ ﬁp,lXp
P(Y = 2)

11’1 (P(Y _ K)) — ﬁo’z ~+ ﬁl,le -+ ﬁ2,2X2 + .-+ ﬁp,ZXp

P(Y =K — 1)
( P(Y = K) ) = Pox-1 T Prx-1X1 + Pox-1X2 + -+ Bpx-1Xp

Each separate model can be fit as independent standard
logistic regression models!
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One vs. Rest (OVR) Logistic Regression: the model

To predict K classes (K> 2) from a set of predictors X, a
multinomial logistic regression can be fit:

P(Y = 1)

In (P(Y ” 1)) = Lo + B11X1 + B2 Xy + -+ Bp Xy
P(Y = 2)

In (P(Y ” 2)) = Bo2 + B12X1 + Lo X5 + -+ [, 2Xp

P(Y = K)
In (P(Y ” K)) = Pox T B1xX1 + Box Xy + -+ BprXp

Again, each separate model can be fit as independent standard
logistic regression models!
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Softmax

So how do we convert a set of probability estimates from separate
models to one set of probability estimates?

The softmax function is used. That is, the weights are just
normalized for each predicted probability. AKA, predict the 3 class
probabilities from each of the 3 models, and just rescale so they
add up to 1.

Mathematically that is: S
y xTﬁk

Py =klx) = — 5

x "

j=1€" "

where X is the vector of predictors for that observation and Ek are
the associated logistic regression.coefficient estimates.



Estimation and Regularization in multiclass settings

There is no difference in the approach to estimating the
coefficients in the multiclass setting: we maximize the log-
likelihood (or minimize negative log-likelihood).

This combined negative log-likelihood of all K classes is

sometimes called the multiclass cross-entropy:
n K

1 . ~
== Y A0 = I (3 = k) + 10 # k) In(1 = P (y; = k)
i=1 k=1
And regularization can be done like always: add on a penalty term
to this loss function based on L1 (sum of the absolute values) or
L2 (sum of squares) norms.
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k-NN for Classification: formal definition

The k-NN classifier first identifies the k points in the training
data that are closest to x,, represented by NN,. It then
estimates the conditional probability for class j as the
fraction of points in Ny whose response values equal j:

1
POV =jIX =x0) =% ) 10 =)
=

Then, the k-NN classifier predicts this new observation, x,, to
be in the class with largest estimated probability.
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Estimated Probabilities in k-NN Classification
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Classification: Concept Checks

What is the interpretation of 5; in a multiple logistic regression
problem?

How is the loss function minimized in logistic regression?
What happens in logistic regression when there is perfect separation?

Why are the logistic regression classification boundaries linear? How
can this be adapted to be non-linear?

What is the loss function that is penalized in regularized multiple
logistic regression?

wy CS109A, PROTOPAPAS, RADER, TANNER
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Classification: Concept Checks (cont.)

Should predictors be standardized in k-NN? How can categorical predictors be
handled?

How can probability predictions be made in k-NN classification?
When is PCA used most commonly in practice?

Is the first PCA component going to be the best predictor in a PCR regression?
Why?

How many PCA components should be used in a PCR egression?

can the coefficient estimates be interpreted in a regression fit on PCA

CS109A, PROTOPAPAS, RADER, TANNER 92
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Types of Missingness

There are 3 major types of missingness to be concerned
about:

1. Missing Completely at Random (MCAR) - the probability
of missingness in a variable is the same for all units. Like
randomly poking holes in a data set.

2. Missing at Random (MAR) - the probability of
missingness in a variable depends only on available
information (in other predictors).

3. Missing Not at Random (MNAR) - the probability of
missingness depends on information that has not been

recorded and this information also predicts the missing
values.
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Imputation Methods

There are several different approaches to imputing missing values:

1. Impute the mean or median (quantitative) or most common class
(categorical) for all missing values in a variable.

2. Create a new variable that is an indicator of missingness, and
include it in any model to predict the response (also plug in zero or
the mean in the actual variable).

3. Hot deck imputation: for each missing entry, randomly select an
observed entry in the variable and plug it in.

4. Model the imputation: plug in predicted values (§) from a model
based on the other observed predictors.

5. Model the imputation with uncertainty: plug in predicted values

plus randomness (J + €) from a model based on the other observed
predictors.

@WPWhat are the advantages and disadvantages of each approach?




Schematic: imputation through modeling

How do we use models to fill in missing data? Using k-NN for k
=27 Y
1

?=(1+05)/2

0.5

0.1

0000

?2=(0.1+10)/2

10

® .
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Python For Data Science Cheat Sheet = :

p>> help(pd:Series loc) >>> s.drop(['a' 'c']) Drop values from rows (axis=0)
Pandas Basics eree ’ P

Selection Also see NumPy Arrays >>> df.drop('Country', axis=1) |Drop values from columns(axis=1)
Learn Python for Data Science Interactively at www.DataCamp.com =
Getting

>>> s['b'] Get one element Sort & Rank
pandas -5 >>> df.sort_index() Sort by labels along an axis
. . . . >>> df[1:] Get subset of a DataFrame >>> df.sort_values (by='Country')| Sort by the values a[ong an axis
The Pandas library is built on NumPy and provides easy-to-use Country Capital Population >>> df.rank() Assign ranks to entries
data structures and data analysis tools for the Python ; BInd%i Ngw Dgeiltbi ;33;2;;225 R .
programming language. pandas et reste Retrieving Series/DataFrame Information
Vit = B + i+ < Selecting, Boolean Indexing & Setting Basic Information
Use the following import convention: By Position ~>> df.shape (rows,columns)
>>> import pandas as pd >>> df.iloc[[0], [0]] Select single value by row & >>> df.index Describe index
"Belgium' column >>> df.columns Describe DataFrame columns
. >>> df.info () Info on DataFrame
Pandas Data St b >>> df.iat ([0],[0]) >>> df.count () Number of non-NA values
Series ‘Belgium! Summary
A one-dimensional labeled array By Label . e = e
capable of holding any data type >>> df.loc[[0], ['Country'll] Select single value by fow.& v B cums el Cummulativesurn of valires
/ 'Belgium! column labels >>> df.min () /df.max () Minimum/maximum values
Index >>> df.at ([0], ['Country'l]) >>> df.idxmin ()/df.idxmax () |Minimum/Maximum index value
'Belgium' >>> df.describe () Summary statistics
| . >>> df.mean () Mean of values
e e h e i bt ene ery an) By Label/Position ) >>> df.median () Median of values
>>> df.ix[2] Select single row of
DataFrame Country Brazil subset of rows 215 .
Capital Brasilia
Columns Population 207847528 >>> f = lambda x: x*2
S [Countv] Capial IPopuiation] A two-dimensional labeled >>> df.ix[:, 'Capital'] Select a single column of ;;i gg . gggizn(\i)a (£) AAES:;’ :::g::g: slerstniss
—_ Brussel I data structure with columns 9 DEgssets subset of columns
elgium russels | 11190846 £ ally diff 1 New Delhi
G India JNew De]hil1303171035 Data Allgnment
ndex >>> df.ix[1, "Capital"'] Select rows and columns :
Brazil || Brasilia [ 207847528 e Internal Data Alignment
. NA values are introduced in the indices that don’t overlap:
>>> data = {'Country': ['Belgium', 'India', 'Brazil'], S>> s[~(s > 1)1 Series s where value is not >1 >>> s3 = pd.Series([7, -2, 3], index=['a', 'c', 'd'l)
'Capital': ['Brussels', 'New Delhi', 'Brasilia'l, >>> s[(s < —-1) | (s > 2)] s where value is <-1 or >2 >>> s + s3
'Population': [11190846, 1303171035, 207847528]} >>> df [df['Population']>1200000000] |Use filter to adjust DataFrame a 10.-0
. b NaN
>>> df = pd.DataFrame (data, Settlng . g
columns=['Country', 'Capital', 'Population']) >>> s['a'] = 6 Set index a of Series s to 6 a 4 . N

Arithmetic Operations with Fill Methods
You can also do the internal data alignment yourself with
the help of the fill methods:

>>> pd.read_csv ('file.csv', header=None, nrows=5) >>> from sglalchemy import create_engine >>> s.add(s3, fill value=0)
>>> df.to_csv('myDataFrame.csv"') >>> engine = create_ engine('sglite:///:memory:"') a 10.0
e e e e E L SIS Y

>>> pd.read sql_table('my_ table', engine) a 7.0
>>> pd.read_sqgl_gquery ("SELECT * FROM my_table;", engine) >>> s.sub(s3, fill value=2)
>>> s.div(s3, fill value=4)
>>> s.mul (s3, fill value=3)

Read and Write to CSV Read and Write to SQL Query or Database Table

>>> pd.read_excel ('file.x1sx")
>>> pd.to_excel ('dir/myDataFrame.xlsx', sheet_ name='Sheetl')
Read multiple sheets from the same file

>>> x1sx = pd.ExcelFile('file.x1ls")
>>> df = pd.read_excel (xlsx, 'Sheetl')

read sqgl ()is aconvenience wrapper around read sgl table () and
read_sgl_gquery ()

>>> pd.to_sqgl('myDf', engine) DataCamp

Learn Python for Data Science Interactively




Python For Data Science Cheat Sheet Subsetting, Slicing, Indexi Also see Lists

N P B ) >>> a.shape Array dimensions Subsetting
>>> len(a) Length of array :
umry basics S Number of array dimensions >>> al2] Select the element at the 2nd index
Learn Python for Data Science Interactively at ::; E cslt;:e g::;l:;;:t;::g;;l:lgqne:‘:t:ts o> b[1,2] =1 I N I Seleertheelementatronocomne
@ >>> b.dtype.name Name of data type 8.0 : (equivalentto 11 2])
>>> b.astype (int) Convert an array to a different type Slicing
>>> a[0:2] Select items at index 0 and 1

Asking For Help A

The NumPy library is the core library for scientific computing in - >>> b[0:2,1] L Selectitems at rows 0 and 1in column 1
>>> np.info(np.ndarray.dtype) array([ 2., 5.1) 4 ﬂ

Python. It provides a high-performance multidimensional array

. . z = >>> b[:1] Select all items at row O
object, and tools for working with these arrays. Array Mathematics 50 L2lsls] | (equivalentto nro:1, :1)

array([[1.5, 2.,
) ) ) - - . >>> c[1l,...] Sameas (1, :, :]
Use the following import convention: 'NumPy Arithmetic Operations L
>>> import numpy as np >>> g = a - b Subtraction -r 5., 6.111)
arra _0.5, 0. 0. >>> al : :-1] Reversed array a
y(LL ’ . 1.
NumPy Arrays =3. . -3. . -3. 11 array([3, 2, 1])
>>> np.subtract (a,b) Subtraction Boolean Indexing
1D array 2D array 3D array Lo bp+ o Addition >>> ala<2] [> |5 ] | Select elements from =z less than 2
axis 1 axis 2 array([[ 2.5, 4. , €. 1, array([1]) .
axis 1 {s., 7., 9.1 Fancy Indexing
axiso —p 30 213 . ~a >>> np.add (b, a) Addition >>> b[[l, 0, 1, 01, [0, 1, 2, 01] Select elements (1,0), ©0,1), (1,2) and (0,0)
7 4 sle axis O —» >>> a / b Division array([ 4., 2. , 6., 1.5])
array([[ 0.66666667, 1. , 1. 1, >>> b[[l, 0, 1, 0]11([:,[0,1,2,0]] Select a subset of the matrix’s rows
[0.25 . 0.4 » 0.5 m array([[4; .5, § . 4.1 and columns
= >>> np.divide(a,b) Division %.S, g ’ 2. , %.5 .
Creating Arrays >>> a * b Multiplication Fdsr 30 82 4]y
array([[ 1.5, 4. , S. 1,
>>> a = np.array([1,2,3]) [ 4. , i0. , 18. 11) _ ”
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float) >>> np.multiply (a,b) Multiplication Array Manipulation
>>> ¢ = np.array([[(1.5,2,3), (4,5,6)]1, [(3,2,1), (4,5,6)]1]1, >>> np.exp (b) Exponentiation -
dtype = float) >>> np.sqrt (b) Square root Transposing Array
. >>> np.sin(a) Print sines of an array >>> i = np.transpose (b) Permute array dimensions
Initial Placeholders >>> np.cos (b) Element-wise cosine >>> i.T Permute array dimensions
>>> np.log(a) Element-wise natural logarithm -
>>> np.zeros ((3,4)) Create an array of zeros 55> e.dot (£) Dot product Changing Array Shape
>>> np.ones((2,3,4),dtype=np.int16) Create an array of ones array([[ 7., 7.1, >>> b.ravel () Flatten the array
>>> d = np.arange(10,25,5) Create an array of evenly L 7., 7.11) >>> g.reshape (3, -2) Reshape, but don’t change data

spaced values (step value)

>>> np.linspace(0,2,9) Create an array of evenly Comparison Adding/Removing Elements

spaced values (number of s lec) >>> h.resize ((2,86)) Return a new array with shape (2,6)
>>> e = np.full((2,2),7) Create a constant array >>> a == Element-wise comparison >>> np.append (h, g) Append items to an array
>>> f = np.eye (2) Create a 2X2 identity matrix array([[ . . 1, >>> np.insert(a, 1, 5) Insert |§ems in an array
>>> np.random.random((2,2)) Create an array with random values [ . . 11, dtype=bool) £l : . >>> np.delete(a, [1]) Delete items from an array
>>> a < 2 ement-wise comparison S
>>> np.empty((3,2)) Create an empty array acray(( . . 1. dtype=bool) P Combining Arrays '
>>> np.array equal(a, b) Array-wise comparison >>> np.concatenate ((a,d),axis=0)| Concatenate arrays
|/o = array([ 1, 2, 3, 10, 15, 20])
. . . Adagreqate Functions >>> np.vstack((a,b)) Stack arrays vertically (row-wise)
Saving & Loading On Disk 2900 - S fo0 Ho o S0 do
= = >>> a.sum() Array-wise sum [ 4., 5., 6. 11
>>> np.save ( my_array', a) >>> a.min () Array-wise minimum value >>> np.r_[e, f] Stack arrays vertically (row-wise)
>>> np.savez('array.npz', a, b) >>> b.max (axis=0) Maximum value of an array row >>> np.hstack( (e, £)) Stack arrays horizontally (column-wise)
>>> np.load('my array.npy') >>> b.cumsum (axis=1) Cumulative sum of the elements array(([ 7., 7., 1., 0.1,
= = 5 >>> a.mean () Mean t7.., 7., 0., 1.11)
Savmg & Load|ng Text Files >>> b.median () Median >>> np.column_stack((a,d)) Create stacked column-wise arrays
" ; " >>> a.corrcoef () Correlation coefficient array([[ 1, 10],
>>> np.loadtxt ("myfile.txt") s 2t [ 2, 15],
>>> np.genfromtxt ("my_file.csv", delimiter=',") p>> np.std(b) Standard deviation [ 3, 2011)
>>> np.savetxt ("myarray.txt", a, delimiter=" ") >>> np.c_[a,d] Create stacked column-wise arrays
Copying Arrays Splitting Arrays
Data Types >>> h = a.view() Create a view of the array with the same data >>[: nf ) F[slpl’il:r(aa' 3:2] )y,array([3])] iSnF:;:xthe array horizontally at the 3rd
s A P . Create a copy of the array rray rarray sarray
>>> np.int64 Signed 64-bit integer types >>> np.copy(a) >>> np.vsplit (c,2) Split the array vertically at the 2nd index
>>> np.float32 Standard double-precision floating point >>> h = a.copy() Create a deep copy of the array larcayiilll.s, 250 1.1, P Y 4
>>> np.complex Complex numbers represented by 128 floats [ 43 . g . 35 <1110,
>>> np.object Python object type
>>> np.string_ Fixed-length string type >>> a.sort () Sort an array
>>> np.unicode_ Fixed-length unicode type >>> c.sort (axis=0) Sort the elements of an array's axis




Python For Data Science Cheat Sheet

You’ll use the 1inalg and sparse modules. Note that scipy.linalgcontains and expands on numpy.linalg.

SciPy - Linear Algebra I Matrix Functions )

Learn More Python for Data Science at www.datacamp.com = = —
Creating Matrices Addition )
@ 4 = 2.2 >>> np.add (A, D) Addition
>>> A = np.matrix (np.random.random( (2, )) -
( Scipy _Nicdatinrihnpeie Subtraction .
>>> C = np.mat (np.random.random( (10,5))) >>> np.subtract (A, D) Subtraction
The SciPy library is one of the core packages for >>> D = np.mat ([[3,4], [5,61]1) Division o
% 2 = o 2 . , , , >>> np.divide (A, D) Division
scientific computing that provides mathematical Sci Py Basic Matrix Routines Multiplication
algorithms and convenience functions built on the Inverse >>> A @ D Multiplication operator
NumPy extension of Python. >>> ALT Inverse . (Python3)
L5 linalg.inv(a) Inverse >>> np.multiply(D,A) ll\)llutltlpllgatlfn
= . >>> np.dot (A, D) ot produc
Interacting With NumP Also see NumPy Transposition . . >>> np.vdot (A, D) Vector dot product
3 >>> A.T ranpose matrix >>> np.inner (&, D) Inner product
>>> import numpy as np - p.i ’ p
5> a — np.array([1,2,3]) >>> A.H Conjugate transposition >>> np.outer (A, D) Outer product
>>> b = np.array([(1+53,23,33), (43,53,63)1) Trace >>> np.tensordot (&, D) Tensor dot product
>>> ¢ = np.array([[(1.5,2,3), (4,5,6)1, [(3,2,1), (4,5,6)11) >>> np.trace (A) Trace >>> np.kron (A, D) Kronecker product
i Norm Exponential Functions _ _

Index Tricks . >> 1inalg.norm(A) Frobenius norm >>> linalg.expm (A) Matrix exponential _
>>> np.mgrid[0:5,0:5] Create a dense meshgrid >>> linalg.norm(A, 1) L1 norm (max column sum) zzz i?”aig : e"pmi “I;) mgg:i :ipg:g:g:: (Taylor Sle"es)
>>> np.ogrid[0:2,0:2] _Create an open meshgrid >>> linalg.norm(A,np.inf) L inf norm (max row sum) inalg.expm3 (D) decompositiopn) (elgenvalue
>>> np.r_ [3,[0]*5,-1:1:107] Stack arrays vertically (row-wise) Rank L ithm F .
>>> np.c_[b,c] Create stacked column-wise arrays i ogarithm Function . i

— >>> np.linalg.matrix_rank (C) Matrix rank >>> linalg.logm(A) Matrix logarithm

Shape Manipulation Determinant Trigonometric Functions

. N ®) P . di - >>> linalg.det (&) Determinant >>> linalg.sinm(D) Matrix sine

np.transpose ermute array dimensions - . i i i
>~ b.flatten() Fiatten the array Solving linear problems >>> Linalg.cosm (D) Matrix cosine
>>> np.hstack ((b,c)) Stack arrays horizontally (column-wise) >>> linalg.solve (A&,b) Solver for dense matrices ina g'. tan.m (R) . . g
>>> np.vstack((a,b)) Stack arrays vertically (row-wise) >>> E = np.mat(a).T Solver for dense matrices Hyperbolic Trigonometric Functions . o
>>> np.hsplit (c,2) Split the array horizontally at the 2nd index >>> linalg.lstsq(F,E) Least-squares solution to linear matrix >>> linalg.sinhm (D) Hypberbolic matrix sine
>>> np.vpslit(d,2) Split the array vertically at the 2nd index equation >>> linalg.coshm (D) Hyperbolgc matrix cosine

Generalized inverse >>> linalg.tanhm (A) Hyperbolic matrix tangent
Polynomials >>> linalg.pinv(C) Compute the pseudo-inverse of a matrix Matrix Sign Function
P p . A
S>> from numpy Import polyld T (MasbsquamssoWeﬂ >>> np.signm (&) Nhtnxsgnfuncnon
5> p = polyld([3,4,51) Create a polynomial object w >>> linalg.pinv2(C) Compute the pseudo-inverse of a matrix Matrix Square Root )
— . (SVD) >>> linalg.sqgrtm (&) Matrix square root
Vectorizing Functions Creating Sparse Matrices Arbitrary Functions ) )
>>> def myfunc(a) : >>> linalg.funm(A, lambda x: x*x) Evaluate matrix function
if a < 0: >>> F = np.eye (3, k=1) Create a 2X2 identity matrix .
return a*2 >>> G = np.mat (np.identity(2)) Create a2x2 identity matrix Decomposmons
eli:Luzn a/2 >>> C[C > 0.5] = O . .
. ize f . >>> H = sparse.csr_matrix(C) Compressed Sparse Row matrix Elgenvalues and Eigenvectors . i
>>> np.vectorize (myfunc) Vectorize functions >>> I = sparse.csc_matrix (D) Compressed Sparse Column matrix >>> la, v = linalg.eig(A) Splve ordinary or generalized .
= >>> J = sparse.dok_matrix (&) Dictionary Of Keys matrix elgenvalu_e problem for square matrix
Type Handhng >>> E.todense () Sparse matrix to full matrix >>> 11, 12 = 1la L{npaqk eigenvalues
>>> sparse.isspmatrix_csc (A) Identify sparse matrix >>> w[:,0] First eigenvector
>>> np.real (b) se:urn tze real part ofthreé a;rtaﬁ/ elemenlts . S>> vi:, 1] Second eigenvector
>>> np.real if close (¢,tol=1000) |Return areal array if complex parts close to o Sparse Matrix Routines Si lar Val D sition P g
>>> np.cast['£'] (np.pi) Cast object to a data type Inverse ingular ue, ecomposi . .
>>> U,s,Vh = linalg.svd(B) Singular Value Decomposition (SVD)
Other Useful Functions >>> sparse.linalg.inv(I) Inverse >>> M,N = B.shape
Norm >>> Sig = linalg.diagsvd(s,M,N) Construct sigma matrix in SVD
>>> np.angle (b, deg= ) Return the angle of the complex argument >>> sparse.linalg.norm(I) Norm LU Decomposition
>>> g = np.linspace(0,np.pi,nur=5) Create an array of evenly spaced values Solving |inear problems >>> P,L,U = linalg.lu(C) LU Decomposition
>>> g [3:] += np.pi (number of samples) >>> sparse.linalg.spsolve (H,1) |Solverforsparse matrices = ==
>>> np.unwrap (g) Unwrap Sparse Matrix Decompositions

>>> np.logspace (0,10, 3) Create an array of evenly spaced values (ogscale) Sparse Matrix Functions

>>> np.select ([c<4], [c*2]) |Return values from a list of arrays depending on >>> la, v = sparse.linalg.eigs(F,1) | Eigenvaluesand eigenvectors
conditions [>>> sparse.linalg.expm(I) | Sparse matrix exponential >>> sparse.linalg.svds (4, 2) SVD

>>> misc.factorial (a) Factorial

>>> misc.comb(10,3,exact= ) |Combine N things taken at k time

>>> mise.central diff weights(3) |Weights for Np-point central derivative
>>> misc.derivative (myfune,1.0) |Find the n-th derivative of a function at a point

DataCamp

>>> help (scipy. lina;g .diagsvd)

>>> np.info(np.matrix) Learn Python for Data Science Interactively




Plot Anatomy & W

The basic steps to creating plots with matplotlib are:
1 Preparedata - Createplot 3 Plot /| Customizeplot 5 Saveplot © Show plot

>>> import matplotlib.pyplot as plt
>>> x = [1,2,3,4]
>>> y = [10,20,25,30]
>>> fig = plt.figure() ﬂm
>>> ax = fig.add subplot (111) @ETED
>>> ax.plot(x, y, color='lightblue', linewidth=3)dSTEN)
>>> ax.scatter([2,4,6],

[5,15,25],

color="'darkgreen',

marker='"")
>>> ax.set_x1lim(l, 6.5)
oot an >>> plt.savefig('foo.png')

>>> plt.show() L Step 6 |
a Prepare The Data Also see Lists & NumPy plt.show
1D Data 9 Customize Plot
235 «"20np. Tinspace (0 [Colors, ColorBars&ColorMaps ________________ HNMathtext
S :p.l;lnlsogace(o? 10, 100) Colors, Color Bars & Color Maps Mathtext

>>> y np.cos (x) >>> plt.plot(x, x, x, x**2, x, x**3) I>>> plt.title(r'$sigma i=15%', fontsize=20) I
>>> z np.sin(x) >>> ax.plot(x, y, alpha = 0.4) —

>>> ax.plot(x, y, c='k') Limits, Legends & Layouts
2D Data or Images >>> fig.colorbar (im, orientation='horizontal')
>>> im = ax.imshow (img, Limits & Autoscalin
>>> data = 2 * np.random.random( (10, 10)) cmap="seismic’ i g i
o> data2 = 3 * np.random. random( (10, 10)) P ismic') >>> ax.marglns(x=0.0,y=0.l) Add padding to a plot

D3> ¥R o mg TSI STIGR], a5 00s Ve Jea R St thesspect st o sheplt o
P>> ¥, x = '_’pr?;1+[¥ 3, 31 Markers >>> ax.set (xlim=[0,10. 51,y11m—[ 1.5,1.5])

Python For Data Science Cheat Sheet
Matplotlib

Learn Python Interactively at www.DataCamp.com

@

( Matplotlib |
Matplotlib is a Python 2D plotting library which produces
publication-quality figures in a variety of hardcopy formats

and interactive environments across * matp|0t| ' b

platforms.

U = - Set limits for x-and y-axis

S>> VW o= 1 + X = Y**2 >>> fig, ax = plt.subplots () >>> ax.set_x1im(0,10. Set limits for x-axis

>>> from matplotlib.cbook import get_sample_data >>> ax.scatter(x,y,marker=".") Legends

>>> img = np.load(get_sample data('axes grid/bivariate normal.npy')) >>> ax.plot(x,y,marker="o") >>> ax.set (title='An Example Axes', Set a title and x-and y-axis labels

ylabel='Y-Axis"',
Linestyles xlabel='X-Axis')

>>> ax.legend(loc='best") No overlapping plot elements

9 Create Plot >>> plt.plot(x,y, linewidth=4.0) Ticks

>>> plt.plot(x,y,ls="solid") : . _ .
>>> - =
| import matplotlib.pyplot as plt e lt.plot(x:y: Ta=to—7) >>> ax.xaxis.set (ticks=range(1,5), Manually set x-ticks

ticklabels=[3,100,-12,"foo"])
Figure >>> plt.plot(x,y,'——"', x**2,y**2,'-.") >>> ax.tick_params (axis='y', ’ ’ ’ Make y-ticks longer and go in and out

>>> plt.setp(lines,color="r"',linewidth=4.0) 3 3 —r g '
|>>> fig = plt.figure() ‘ direction='inout",

- length=10
>>> fig2 = plt.figure (figsize=plt.figaspect (2.0)) Text & Annotations . g !

Subplot Spacing

Axes ———— S>> e text (L >>> fig3 subpiots_adjust (rspace=g.s, Adjust the spacing between subplots
. . . -2.1 hspace=0.3
All plotting is done with respect to an Axes. In most cases, a "Example Graph', left=0.125,
= o - style="italic"' i =
subplot will fit your needs. A subplot is an axes on a grid system. . >> ax.annopore nsioar c ) i;gi‘g S
-9,
>>> fig.add axes () xy=(8, oll_ . . bottom=0.1)
>>> axl = fig.add_subplot (221) # row-col-num ggg;ggs(godgtao; >>> fig.tight_layout () Fit subplot(s) in to the figure area
>>> ax3 = fig.add_subplot (212) textcoords—'datar , Axis Spines
>>> fig3, axes = plt.subplots(nrows=2,ncols=2) arrowprops=dict (arrowstyle="->", >>> axl.spines['top'].set_visible(false) Make the top axis line for a plot invisible
>>> figd, axes2 = plt.subplots(ncols=3) connectionstyle="arc3"),) >>> axl.spines|['bottom'].set position(('outward',10) ) Move the bottom axis line outward

9 Plotting Routines @ Save Plot
Save figures

9 g >>> plt.savefig('foo.png')
>>> fig, ax = plt.subplots() . o . >>> axes[0,1].arrow(0,0,0.5,0.5) Add an arrow to the axes fi
>>> lines = ax.plot (x,y) Draw points with lines or markers connecting them >>> axes[1,1].quiver (y,z) Plot a 2D field of arrows Save transpar'ent gures
>>> ax.scatter(x,y) Draw unconnected points, scaled or colored >>> axes[0,1)].streamplot (X,Y,U,V)  Plota2D field of arrows >>> plt.savefig('foo.png', transparent=Iruc)
>>> axes[0,0].bar([1,2,3]1,[3,4,5]1) I;:ot;ertical r:actanglels (c?nstantw:..dth)ht)
27 sxea(d o) mern (16:23, 8 16,1, 20) | Plotherionial ectangies Gontant hes
>>> axes[l,1l].axhline(0.45) Draw a horizontal line across axes Data Distributions
>>> axes[0,1].axvline(0.65) Draw a vertical line across axes >>> axl.hist (y) Plot a histogram
>>> ax.fill (x,y,color="blue") Draw filled polygons >>> ax3.boxplot (y) Make a box and whisker plot >>> plt.show ()
>>> ax.fill between (x,y,color="yellow') | Fill between y-values and o >>> ax3.violinplot (z) Make a violin plot
2D Data or Images Close & Clear
i — . Clear an axis
>>> fig, ax = plt.subplots () >>> axes2[0].pcolor (data2) Pseudocolor plot of 2D arra P>> plt.cla)
>>> im = ax.imshow (é—;nng, mtgist earth® Colormapped or RGB arrays >>> axes2 [0} .gcolormesh (data) Pseudocolor glot of 2D arra; ;:; giﬁ . gigs()e O Elg:;ghﬁ,ﬁ,’}}:{:,ﬁg“'e
1nteprpoglatlon='nearest' >>> CS = plt.contour (Y,X,U) Plot contours
vmin——2 ' >>> axes2[2] .contourf (datal) Plot filled contours C
L >>> axes2[2]= ax.clabel (CS) Label a contour plot Data amp
vmax=2) arn Python for Data Science
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SIMPLE DECISION
TREE

IACS
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latitude

12

satellite image 3

10}

08

06}

04}

02

00

-0.2

e®e vegetation

©o%o non vegetation ||

Although regression models with linear
boundaries are intuitive to interpret, it’s harder
to interpret non-linear decision boundaries.

Trees:
1. Allow for complex decision boundaries

2. Are easy to interpret

-0.2

0.2 04 06 08 10
longitude

12
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The Geometry of Flow Charts

Each comparison and branching represents splitting a region
In the feature space on a single feature.

The prediction is based on the most common class
(or mean value).

E/vidth > 6.5cm? ]

Yes | No

helght >9.5cm? ‘ [helght > 6.0cm?

A I\
- @ e @

height (cm)

® oranges

A |emons

4 6 8 10
width (cm)
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Considerations

0.5

0.4

1. Splitting Criterion. e.g.,
* GiniIndex

0.3

. misclassification error

0.2

. Entropy

0.1

0.0
1

2. Stopping Criterion. e.g,, 2 g ! x £ X
*  Minimum MSE
* Uniformity of the data samples’ labels
 Size of tree, such as maximum depth
* The “gain” converges
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Considerations

Shallow trees have: high bias and low variance

Deep trees have: low bias and high variance

Simple decision trees often:
* Overfit

* Underperform when compared to other classification
and regression methods Q )

X))

CS109A, PROTOPAPAS, RADER, TANNER
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BAGGING
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Bootstrap Aggregating

Bootstrap = generate data via sampling w/ replacement

Aggregating = return the average (regression) or majority class (classification)
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Combine them? 2 magic realisms

/ Depth 3 / Depth 5 A - Depth 100
2 = 2 = 2 =
Q)
L
=
§0- 0 - 0 -
S
2 - 2 - 2 -
-4 1 1 1 1 1 -4 i 1 1 1 1 -4 "1 1 1
-4 2 0 2 4 -4 -2 0 2 4 -4 -2 0
Latitude Latitude Latitude
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Combine them? 20 magic realisms

Depth 3 Depth 5 Depth 100

Longitude

_4 | 1 | 1 _4 | 1 1 1 _4 1 1 1 |
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Latitude Latitude Latitude
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Combine them? 100 magic realisms

Depth 3 Depth 5 Depth 100

Longitude
o

Latitude Latitude Latitude
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Bagging (regression)

The resulting tree is
the average of all tree
(estimators).

g
3
—
©
—
Q
Q
g
=

~
o

Train Data
e TestData
Prediction of Individual Estimators
~ Model Prediction

75 100 125 150 175
Ozone
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Bagging (classification)

Diabetes Diabetes.

= [ty =X For each

Glucose

| bootstrap, we
= B build a decision

I I, W P i
B HIHIQJ;H::::.:_
: Bl ; koo e T . 80734 2.420 O or adeo B .
10850 BloodPressure Glucose DiabetesPedigreeFunction e Glucose plabetestadlgreerunction = t r e e e r e S u t S I S
Glucose o
- ’ N -
P~ / b L[] t o
‘}(;ﬂ'a ' = a CO l I I I a I O
( . . t ) f t | I

C—INo 1No

0 m— 1 o Yes T Yes

S predictions from

< =

[ N | Pibis . all trees.

0
212d%0 Ml

Diabetes Diabetes

Age

v

) IFHJH:!:. |

o 0 D=E=E=E—=El=‘3===——
1

'
0.0 2655 67 28750 Age 1

9 A
0.078 0.72 2.420
DiabetesPedigreeFunction
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Bootstrap Aggregating

BENEFITS ISSUES

* More expressive

interpretability ("majority")

* Helps prevent overfitting solution: variable importance via the avg Gini/MSE

« Decreases variance

(less sensitive to different data) for each feature

e can still underfit or overfit

solution: validation via out-of-bag error

* Trees tend to be highly correlated
(split the same at the beginning)

solution: random forests
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Random Forests

Random Forest is a modified form of bagging that creates ensembles of
Independent decision trees.

To de-correlate the trees, we:

1. train each tree on a separate bootstrap sample of the full training
set (same as in bagging)

2. foreach tree, at each split, we randomly select a set of /' predictors
from the full set of predictors.

Fromm amongst the /' predictors, we select the optimal predictor and the
optimal corresponding threshold for the split.
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Random Forests

SPECIFY

* Number of trees (n_estimators)

* Number of predictors (max features)

CONSIDERATIONS

* Becareful w/ the # of predictors. If you select a small %, you’ll have an ensemble of
weak models

 Alot of hyperparameters. Vary all of them together.
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BOOSTING
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Motivation for Boosting

Question: Could we address the shortcomings of single decision trees
models in some other way?

For example, rather than performing variance reduction on complex
trees, can we decrease the bias of simple trees - make them more
expressive?

Can we learn from our mistakes?

A solution to this problem, making an expressive model from simple
trees, is another class of ensemble methods called boosting.
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Gradient Boosting

The key intuition behind boosting is that one can take an ensemble of

simple models {T;},c,and additively combine them into a single, more
complex model.

Each model T, might be a poor fit for the data, but a linear combination
of the ensemble:

can be expressive/flexible.

CS109A, PROTOPAPAS, RADER, TANNER
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Gradient Boosting: the algorithm

Gradient boosting is a method for iteratively building a complex
regression model 7 by adding simple models.

Each new simple model added to the ensemble compensates for
the weaknesses of the current ensemble.

CS109A, PROTOPAPAS, RADER, TANNER
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Gradient Boosting: the algorithm

1. Fit a simple model T(® on the training data

{(X1, yl)! ey (xN' yN)}

SetT « T,
Compute the residuals {r,,..., ry) forT.
2. Fit a simple model, T, to the current residuals, i.e. train using
{Gx1, 7)), e, Cony i) }
3.5etT « T+ ATW
4. Compute residuals, setr, « 1, — AT'(x,), n=1,..,N
5. Repeat steps 2-4 until stopping condition met.

where A4 is a constant called the learning rate.
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Gradient Boosting: illustration

10

data

3 4
X
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Gradient Boosting: illustration

10 - e data
first tree
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Gradient Boosting: illustration

10 - data
first tree
residuals
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Gradient Boosting: illustration

10 = data
first tree
residuals

—— fitted residuals

o
1
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Gradient Boosting: illustration

10 - data
8 - first tree
residuals
6 = fitted residuals
4 - - second tree
> 2 =
0 - A\
2
4 =
A -
0 1 2 3 4 5 6 7 8
X
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Gradient Boosting: illustration

10

data
previous residuals
first tree

—— second tree

—e— current residuals
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Gradient Boosting: illustration

10 - data
3 - first tree
—— second tree
6 = »— current residuals
—— fitted res
4 - \
/|
> 2 -
4 ° | \re0®, ] ‘® \9o |/ e
oy Mt |
2 =
4 =
6 =
| | 1 1 | | | 1 |
0 1 2 3 4 5 6 7 8
X
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Gradient Boosting: illustration

10

data
first tree

—— second tree
current residuals
fitted res

—— third tree
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Regression Classification
Linear ‘ (

Neural
Trees Networks
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Computing
Tools

Matplotlib
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Build our first ANN

1
1+e

\
|

“Sigmoid activation” o
- . .
Single Neuron Network

Very similar to Perceptron

n
X —| Affine |— h=XW »| Loss Fun ———'L(W)=Z£i(W)
7

<<
[l

Activation |—™
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Combining neurons allows us to model interesting functions
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Different weights change the shape and position

10m m . .- 0.80 = W
iy
‘|: 079 =
0.8 = i
f 0.78 =
. A 0.7 =
> il N

04 = ,:E NL

|

!

||

1!

02m= ||
||

1!

1)
\

074 =

)| oo oooooooos’ LSooDooCoDoooOoo = 073 =

-100 -75 -50 -25 0.0 25 5.0 75 10.0 -100 -75 -50 -25 0.0 25 5.0 75 10.0

CS109A, PROTOPAPAS, RADER, TANNER 136




Neural networks can model any reasonable function

0.8] = /"\ H
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Adding layers allows us to model increasingly complex functions

NI 0.840
0.830 = 1 8
i1
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Learning Multiple Components

Rule-based
systems

Classic
machine
learning

Representation
learning

Next: Artificial general

Hand If x>0:
Input » designed »  Output return sqrt(x)
program else:
return ‘x must be positive’
Hand rf = RandomForestRegressor (
Input » designed »  Output n_estimators = 1000,
features random_state = 42
rf.fit(x_train, y train);
Mapping model =
Input Features fe:z::‘es > Output tf.keras.Sequential()
model.add(tf.keras.layers.
Flatten(input_shape=(28,
28)))
2 model.add(tf.keras.layers.
5 Simple Repping Dense(1$4,
L Input from »  Output activation='relu'))
Q features e tres
§ features

intelligence ??
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Anatomy of artificial neural network (ANN)

input layer output layer

hidden layer 1 hidden layer 2




Depth = Repeated Compositions

Visible layer 1st hidden layer
(input pixels) (edges)

2nd hidden layer
(corners and
contours)

CS109A, PROTOPAPAS, RADER, TANNER

3rd hidden layer
(object parts)

Output
(object identity)



Gradient Descent (cont.)

If the step is proportional to the slope then you avoid overshooting the
minimum. How?
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Hyperparameter tuning

Random search, grid search, developer tools such as ‘weights and biases’, Bayesian optimization, expertise

Groups accuracy distribution

r in fault val tartin int
X mean Groups using default values as a starting po
Expert - }—IEI—| __70-
X
< 601
g
& 501
()]
Medium o —  a — °
240
B
=}
9 301
C
S
'S 20 -
Novice 1 A — B
©
8- 104
10 20 30 40 50 60 70 80 0-
Accuracy (%) Novice Medium Expert

Anand, Kanav, Wang, Ziqi, Loog, Marco, & Van Gemert, Jan. (2020). Black Magic in Deep Learning: How Human Skill Impacts Network Training
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Data Augmentation

flip-Ir

i

CS |mim s

s
€

crop-and-pan
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Dropout

 Randomly set some neurons and their connections to zero (i.e. “dropped”)

* Prevent overfitting by reducing co-adaptation of neurons

* Like training many random sub-networks

S
BORK~BAKA
(RS ks )
% #0\' & }0» %
@

VA

(b) After applying dropout.

a) Standard Neural Net

145
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Dropout

* Widely used and highly effective
* Proposed as an alternative to ensembling, which is too expensive for neural

nets

Classification Error %

With dropout

200000

400000 600000 800000
Number of weight updates

1000000

Test error for different
architectures with and
without dropout. The
networks have 2 to 4
hidden layers each with
1024 to 2048 units.

cs109A, Privttpd fimtriorgy papers/volumel5/srivastaval4a/srivastaval4a.pdf



http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

WA,

rTitting:
Variance &
Bias

Uncertainty in
model and

predic

Methods of
egularization:
Lasso and
Ridge

\NURE

Pandas

7

PCA &
dimensionality
reduction

Statistical
Learning

Computing
Tools

AIRN

Regression Classification

T Neural
‘ Networks
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The Tyranny of Algorithmic Bias,
and How to End It

A Work In Progress

Matthew Finney — Harvard University IACS |18 {0 o8t

AV
CS109a, Fall 2020 DR
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All opinions are my own w




Al In the 2010s

THE WALL STREET JOURNAL. Q

Amazon Wants to Ship Your Package
Before You Buy It

By Greg Bensinger
Jan.17,2014 312 pm ET

D SAVE @SHARE AATEXT

Amazon.com knows you so well it
wants to ship your next package
before you order it.

The Seattle retailer in December
gained a patent for what it calls
"anticipatory shipping,” a method to

start delivering packages even before
BLOOMBERG customers click "buy.”




Amazon Wants to Ship Your Package
Bef()re Y(\Il Ruv It

Al in the 2010s
THE WALL STREET JOURNAL, Q

By Greg Bensinger yri171/14 / ESHEVINJ cArRFNDER-  REVIEWS - BEST~ NEWS-  PRICES MORE >

Jan.17,2014 3112 pm ET

u SAVE [ SHARE

BLOOMBERG

Tesla's full self-driving
Autopilot beta coming in 'a
month or so'

Tesla's CEO shared that its engineers have fully
overhauled the Autopilot software stack and are
almost ready to share a dramatic upgrade.

&= Antuan Goodwin
g Sept. 23,2020 7:53 a.m. PT ~ Y \_ P LISTEN - 01:42 )
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u SAVE (= SHARE () WIKIPEDIA
Tes‘a s fl The Free Encyclopedia
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Current events
Random article

month o

About Wikipedia
Contact us
, Donate
Tesla's CEO sha
Contribute
overhauled the rer

Learn to edit
Community portal
Recent changes
Upload file

almost ready to

BLOOMBERG
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& Not logged in Talk Contributions Create account Login

Article Talk Search Wikipedia Q

Elon Musk's Tesla Roadster o

From Wikipedia, the free encyclopedia

Read Edit View history

"SpaceX Roadster" redirects here. For a planned "SpaceX option package"
using cold gas thrusters, see Tesla Roadster (2020).

Elon Musk's Tesla
Roadster is an electric
sports car that served as the
dummy payload for the
February 2018 Falcon
Heavy test flight and
became an artificial satellite
of the Sun. "Starman", a
mannequin dressed in a
spacesuit, occupies the

Elon Musk's Tesla Roadster

Roadster car mounted on Falcon Heavy upper-stage;
Earth in the background

Antuan Goodwin !’
Sept. 23, 2020 7:53 am. PT

e
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Elon Musk's Tesla
Roadster is an electric
sports car that served a:
dummy payload for the
February 2018 Falcon
Heavy test flight and
became an artificial sate
of the Sun. "Starman", a
mannequin dressed in a
spacesuit, occupies the

Ehe New York Times
A.L Is Learning to Read Mammograms

Computers that are trained to recognize patterns and interpret
images may outperform humans at finding cancer on X-rays.

A yellow box indicates where an A.I. system found cancer hiding inside breast tissue. Six previous
radiologists failed to find the cancer in routine mammograms. Northwestern University

By Denise Grady

Jan. 1,2020 f v = A H
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08 WATCH

AHUD is reviewing Twitter’s and Google’s ad
Bpractices as part of housing discrimination pro

Facebook charged with housing discrimination by HUD
=

& PR3 \'Lo(\ A |

/

produced racist results |

!

The Dept. of

s and Urban Development charged Facebook March 28 with violating the Fair Housing Act. (Reuters)
By Tracy Jan and Elizabeth Dwoskin sto ry
March 28, 2019 at 6:59 p.m. EDT

The Trump administration delivered its first sanction of a tech giant Thursday, charging Facebook with By N / COI as Kay ser -Br// ‘n k b @a/g ori th mwatc

housing discrimination in a move that could threaten the way the industry makes its profits.

TEnE= " T A Google service that automatically labels i
There is a saying in computer science: garbag starkly different results depending on skin
garbage out. When we feed machinesdatatl  image. The company fixed the issue, but th
our prejudices, they mimic them - fromantit ~ much broader.

chatbots to racially biased software. Doesa i _
future await people forced to live at the mercy of Bcesuit, occupies the

algorithms? r

BLOOMBERG

)% Antuan Goodwin |’ ‘
Q Sept. 23, 2020 7:53 a.m. PT ~> L P e

Google apologizes after its Visi

Ehe New York Times

A.L Is Learning to Read Mammograms

Computers that are trained to recognize patterns and interpret

thumans at finding cancer on X-rays.

€he New Pork Times

n

Surveillance cameras have been deployed across Detroit as part of Project Green Light, which is meant to
deter crime. Brittany Greeson for The New York Times

As Cameras Track Detroit’s Residents,

a Debate Ensues Over Racial Bias

Studies have shown that facial recognition software can return more
false matches for African-Americans than for white people, a sign of
what experts call “algorithmic bias.”

By Amy Harmon

July 8, 2019 f v = » H

T L




The Socially Conscious Data Scientist’s Agenda

. We can define and measure
algorithmic bias

. We can isolate the root cause of
(poor) algorithmic behavior

. We can take action to make g *
algorithms more fair 2

] 9




What is
algorithmic
bias?



| | Case Studg,
In the U.S., kidney function measurements are adjusted by race

e The eGFR is the standard-of-care for
measuring kidney function

* It’s calculated by measuring the level of
creatinine in a blood sample

* Because “African Americans” have higher
muscle mass, the CKD-EPI algorithm increases
their scores

>r
- Nt

* A higher score indicates higher kidney function




The CKD-EPI eGFR equation is racially biased

HAS

HAUTE AUTORITE DE SANTE

EXIRA

n ephrOﬂi P - [220125 Karger AG.Basel 2o

versio of the aice oy istibution o o commercal prposes anly.

Original Paper

Race Adjustment for Estimating
Glomerular Filtration Rate Is Not
Always Necessary

Juliana A. Zanocco  Sonia K. Nishida Michelle Tiveron Passos

Amélia Rodrigues Pereira Marcelo S. Silva
Aparecido B. Pereira Gianna Mastroianni Kirsztajn

o »
TEXTE COURT DU RAPPORT D'EVALUATION TECHNOLOGIQUE of S30 Paulo (UNIFESP), S50 Paulo, Brazi

du débit de filtration gl

et du dosage de la créatininémie
dans le diagnostic de la maladie rénale chronique
chez I'adulte

ftration rate - Glomerulonephritis

European Journal of Obstetrics &

Gynecology and Reproductive Biology
Volume 176, May 2014, Pages 200-201

le (eGFR) is very important in clinical practice,
Jopulations. We aimed at establishing the best
iphasis on the need for race correction. Meth-
idney disease (CKD) and 42 without previously
ed by urinalysis. Serum creatinine and plasma
5FR was estimated by the Mayo Clinic, abbrevi-
D) and Chronic Kidney Disease Epidemiology
e clearance was estimated by the Cockcroft-
jas used as the gold standard for GFR determi-
LETTER TO THE EDITOR rmula (BreGFR). Results: Measured and esti-
7% female, with a mean age of 41 years (range
ients among the plasma clearance of iohexol

. M M M and corresponded to the following scores: CG

J ustment for race 1in the estimation o 4 MDRD 0548 MDRD! (thout oce adst

glomerular filtration rate (GFR) is T
inappropriate in the British postnatal
population

ELSEVIER

KARGER

Anna L. Roberts & X, Alastair Ferraro, Amanda Green, Pam Loughna, Fiona Broughton-Pipkin

Many people see this as unfair. Can you think of any reasons why?




What is fairness?
Two definitions used in the algorithmic community

* Group Fairness * Individual Fairness

e |dentifiable groups should be treated similarly e Similar individuals should be treated similarly
to the population as a whole

Adapted from Sahil Verma and Julia Rubin. 2018. Fairness Definitions Explained.
https://fairware.cs.umass.edu/papers/Verma.pdf.



https://fairware.cs.umass.edu/papers/Verma.pdf

Is the CKD-EPI algorithm Group Fair?

Group Fairness Definition

Protected groups should be treated similarly
to

non-protected groups and the population as a
whole

Median Days on the Waiting List

Caucasian

Source: Taber et al., Twenty years of evolving trends in racial disparities for adult
kidney transplant recipients. Kidney Int. 2016.



Is the CKD-EPI algorithm Individually Fair?

Individual Fairness Definition
Similar individuals should be treated similarly

VIEWPOINT

Nwamaka Denise

Eneanya, MD, MPH
Renal-Electrolyte and

Opinion

Reconsidering the Consequences of Using Race
to Estimate Kidney Function

Clinicians estimate kidney function to guide impor-
tant medical decisions across a wide range of settings,
including assessing the safety of radiology studies,

Perelman School of
Medicine, University

choosingc theuseof com-

mutations like sickle cell trait or cystic fibrosis. How-
ever, eGFR equations are distinct because they instead
assert that existing organ function is different between
individuals who are otherwise identical except for race.

mon nonprescription medications such

of Pennsylvania, anti-inflammatory drugs. Because direct measure-
Philadelphia; and ment of kidney function s infeasible at the bedside, the
Pallative and - . .

Research Center, y reatinine.

Perelman School of estimated glomerular filtration rate (eGFR) to patients
Medicine, University of \vt0 2o identified as black. Yet ical andso-

Pennsylvania,
Philadelphia

Wei Yang, PhD

Department of
Biostatistics,
Epidemiology, and
Informatics, Perelman
School of Medicine,

Philadelphia.

Peter Philip Reese,

MD, MSC
Renal-Electrolyte and
Hypertension Division,
Perelman School of
Medicine, University
of Pennsylvania,
Philadelphia; and

School of Medicine,
University of
Pennsylvania,
Philadelphia

Corresponding
Author: Peter Philip
Reese, MD, MSCE.
Center for Clnical
Epidemiology and
Biostatistics, University
of Pennsylvania,

423 Guardian Dr,

917 Blockley Hall,
Philadelphia, PA 19104
(peter reese@uphs.
upenn.edu).

jama.com

cial science disciplines, a consensus has emerged that

race s a social construct rather than a biological one.' In

this Viewpoint, we argue that the use of kidney func-
3 o " il "

studies reveal only small differences in
gene distributions between racial groups while show-
ing greater variation between individuals of the same
race. Meanwhile, the history of medicine offers abun-
dant evidence that racial categories were often gener-
ated arbitrarily and at times implemented to reinforce
social inequality.®

Racial categorization s often used inanonstandard-
ized way. Consider a hypothetical 50-year-old woman
withacr 20mg/dLand

iaidedbloct .

Estimated GFR equations are distinct
because they assert that existing organ
function is different between individuals
who are identical except for race.

equation, were generated in large cohorts of individu-
als who underwent gold-standard measurement of
“true” GFR by infusing iothalamate or another chemical
into the blood and quantifying its urine clearance.
Investigators found that black race was independently
associated with a slightly higher GFR at the same serum
creatinine level. This association has been justified by
the assertion that black individuals release more creati-
nine into the blood, perhaps because of more muscle
mass, although data remain inconclusive.># The CKD-
EPI equation includes a race coefficient that increases
the eGFR in black patients by about 16%. Estimated
GFR equations also include age and sex because older
individuals and women, on average, have less muscle
than younger individuals and men, respectively: these
generalizations have a stronger empirical basis than
that for race.

Classifying patients according to ancestry (rather
than race or ethnicity) has legitimate purposes to iden-
tify individuals at risk of complications from rare gene

consequences. Many essential medications including
antibiotics are withheld from patients with a low eGFR
or are administered at reduced doses. The authorita-
tive Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines recommend nephrology referral
if a patient's eGFR is less than 30 mL/min/1.73 m?
If the patient in the above example were considered
to be black, her eGFR would be 33 mL/min/1.73 m?,
but if she were considered to be white, her eGFR
would be 28 mL/min/1.73 m? with the CKD-EPI equa-
tion (ie, below the threshold for referral). In addition,
clinical trials commonly exclude patients with reduced
kidney function. If this patient were considered to
be black, she could enter some trials that would
exclude her if she were considered to be white
Perhaps the most concerning implication of race
in eGFR is that it has the potential to reduce access
to kidney transplantation, for which racial disparities
are substantial. In the United States, being wait-listed
for a kidney transplant requires an eGFR of less than

JAMA July9,2019 Volume 322, Number 2

© 2019 American Medical Association. Al rights reserved.

Downloaded From: https://jamanetwork.com/ by a Harvard University User on 09/23/2020
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@he Washington Post

HUD is reviewing Twitter’s and Google’s ad R
practices as part of housing discrimination probe

. -
| A, ALGORITHM
1ality
Google apologizes after its’\(ai e of the racist robots - how Al is
produced racist results | | &0 rning all our worst impulses
y — is a saying in computer science: garbage in,

3e out. When we feed machines data that reflects
‘ejudices, they mimic them - from antisemitic
bts to racially biased software. Does a horrifving

story

By Nicola BEE[E O Home News Sport Reel More

A Google N EWS

starkly di Technolo
image. Tt —=chnolody

much brc 'Racist' Al art warns against bad training
data

By Alli Shultes
Technology reporter

s Detroit as part of Project Green Light, which is meant to
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As Cameras Track Detroit’s Residents,
a Debate Ensues Over Racial Bias

Studies have shown that facial recognition software can return more
false matches for African-Americans than for white people, a sign of
what experts call “algorithmic bias.”

By Amy Harmon

sy, 2019 f v = »[]
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Why isn’t fairness part of our process?

We have good intentions

Use your

POWERS

... but need mechanisms for action

CHALLENGES

Hard to define

Fairness is context-

specific
Hard to measure

(LACK OF) INCENTIVES

Lack of

transparency No hard business reason

Lack of to prioritize fairness

accountability



°
How will we end 3 %554 3V 5
: ‘ v ! vl
) Who is willing to take responsibility
? for the decisions of the algorithms?
° —

30 years later




Ingredients of an algorithmic decision

-

TECHNOLOGY

Data
Algorithm

X X <

PEOPLE PROCESS
Data Analyst/Scientist * Model Training
Business Owner » Evaluation
End User » Application

B How can we change these to mitigate algorithmic bias?

Icons by Font Awesome license d under CC BY 4.0



. ~ Process
What mechanisms can help us build fair models?

CHALLENGES PROPOSED APPROACH

Fairness Statement

Hard to define , ,
A commitment to defined

and measurable fairness

objectives
Hard to measure
Lack of Algorithmic Practice Audit
transparency An independent, third party
review of processes and
Lack of outcomes

accountability




What will you do to create fair algorithms?

Are you following existing
TECHNOLOGY technical best practices, and
using classes of fair algorithms?

Are your data and tech teams
PEOPLE representative of your
customers and stakeholders?

PROCESS Do you have.mec.han!sms to
ensure algorithmic fairness?




Uncertainty in
model and

prediction

CS109A, PROTOPAPAS, RADER, TANNER




| finally remember what Zoom
meetings remind me of.

168



T THINK WE SHOULD
GIVE IT ANOTHER £HOT.

UE SHOULD BREAK
UR ANDI (AN
PQ?VE T

Wﬁ

OUR RELATIONSHIP

MAYRE YOURE RIGHT.
[ T KNEW DATA WD CONVINCE YOU.

NO, T JUST THINK L CAN DO
BEMER THAN monfmo
DOESN'T LABELHER AXES,

il

R%0.06

REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
T GLESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON IT.

When you realize k-Fold Cross Validation can only

validate your h_ypgrarametgrg, not yourself..

CS109A, PROTOPAPAS, RADER, TANNER
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GE'I"I'ING VALUES FROM PANDAS

When people ask how |
Iearned to Code

ik f
&

] ]ust keep GOOGUMING WSt ff@mand
1itIKE DS MW.O TaKaLIN G R

The secret is stackoverflow

170



5

ROBBIE, STOP MISBEHAVING
OR | WILL SEND YOU BACK

70 DATA CLEANING! MACKHINE
LEARNING

S

Q

LELGED 0

P 66.6K views 0:01 / 1:295 | )i pp” S
3

¥

If a binary tree wore pants would he o

wear them

L "/’( 0l

; ; 10007 O"7*

like this - like this? 11 |[ :

|IACS |58 18 0%

o
%‘ég,* CS109A, PROTOPAPAS, RADER, TANNER 171




R, TANNER

_Qoh‘_ ﬂwe ég‘lq lmle } 4
T wander whats AL‘@ there. . N&(}bq%g(\i" +he

What society thinks I do What my friends think | do What other computer
scientists think | do

In [1]:
import keras

Using TensorFlow backend.

What mathematicians think | do What I think 1 do What | actually do



P——
—————— —
e

219% of the boys and 3086 of the girl_s_
support me; therefore I'll get 51%

of the vote.

-_——

.’ \'40




OH, HEY, YOU ORGANIZED
OUR PHOTO ARCHIVE!

YEAH, T TRAINED A NEURAL
NET TO SORT THE UNLABELED
PHOTOS INTO CATEGORIES.

WHOA! NICE ORK! }

.

O

ENGINEERING TiP:
WHEN YOU DO A TASK BY HAND
YOU CAN TECHNICALLY SAY YOU
TRAINED A NEURAL NET To DO IT.

- ))
—

-

!
e f, .

How to bully machine learning
training

CS109A, PROTOPAPAS, RADER, TANNER 174



Courses Related to Data Science

« CS 109B: Advanced Topics in Data Science
 https://harvard-iacs.github.io/2020-CS109B/

 CS171: Visualizations

« (CS181/281: Machine Learning

* (€S 182: Artificial Intelligence (Al)

 CS 205: Distributive Computing

* Stat 110/210: Probability Theory

« Stat 111/211: Statistical Inference

 Stat139: Linear Models

* Stat149: Generalized Linear Models

e Stat195: Intro to Statistical Machine Learning

This list is not exhaustive!

CS109A, PROTOPAPAS, RADER, TANNER 175




State of Machine Learning and Data Science 2020

Kaggle enterprise executive summary report

Kaggle surveyed its community of data enthusiasts to share
trends within a quickly growing field.

Based on responses from 20,036 Kaggle members, they’'ve
created a report focused on the 13% (2,675 respondents) who
are currently employed as data scientists.

CS109A, PROTOPAPAS, RADER, TANNER 176



https://storage.googleapis.com/kaggle-media/surveys/Kaggle%20State%20of%20Machine%20Learning%20and%20Data%20Science%202020.pdf

Key findings: Gender

GENDER IDENTITY OF DATA SCIENTISTS

Man 81.9%

Woman 16.4%

Nonbinary 0.3%

Prefer not
to say 11%
Prefer to
self-describe 0.4%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

00 10 8
CS109A, PROTOPAPAS, RADER, TANNER 177




Key findings: Age

AGE RANGES OF DATA SCIENTISTS

0-17

18-21 6.9%

22-24 13.7%

25-29

25.2%

30-34 20.1%

35-39 13.4%

40-44 8.7%

45-49

50-54 . 31%

55-59 I 1.5%

5%

60-69 I 1.8%

79+ | 0.6%

o

% 10% 20% 30% 40%

00 10 8
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Key findings: Nationalities

MOST COMMON NATIONALITIES

21.8%
20%

15% 14.5%

6.7%

10%

5% 28% 2.8%

0, 0, 26%
1.4% 15% 18% 21% 24/o . l
S 7.
2
%>
(S

0% @ e wmmm N
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Key findings: Education

EDUCATION LEVEL OF KAGGLE DATA SCIENTISTS

No formal
education past
high school

Some
college/university
study without earning
a bachelor’s degree

Bachelor’s
degree

Master’s
degree

Doctoral
degree

Professional degree

| prefer
not to
answer

0.6%

2.4%

24.2%

17.2%

3.2%

1.3%

o

% 10% 20% 30% 40%
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Key findings: Salary

CS

s

22 1 19

SALARY DISTRIBUTION FOR US-BASED DATA SCIENTISTS

> $500,000
300,000-500,000
250,000-299,999
200,000-249,999
150,000-199,999
125,000-149,999
100,000-124,999
90,000-99,999
80,000-89,999
70,000-79,999
60,000-69,999
50,000-59,999
40,000-49,999
30,000-39,999
20,000-24,999
15,000-19,999
10,000-14,999
5,000-7,499
4,000-4,999
3,000-3,999
1,000-1,999
$0-999

B os8%

s 9%

1%
I 8.9%

— 21.3%

_ 18%

_ 18.6%

I, 6.9%
N 5.3%
I 47%
B os%

B o6%

I

Il o3%

Il o3%

Il o3%

P o.s%

Il o3

I o3

B o03%

Il o3
I 5%

0% 5% 10%

15%

20%

181



Key findings: Salary by Country

MEDIAN SALARY FOR DATA SCIENTISTS BY COUNTRY

USA

Germany

Japan

Russia

Brazil

India

$0-999

1,000-
1,999

5,000-
7,499

10,000~
14,999

10,000-14,999

10,000-14,999

7,500-9,999

15,000~
19,999

20,000~
24,999

50,000~
59,999

149,999

70,000-79,999

40,000-49,999

100,000~
124,999

125,000~
149,999

125,000~

150,000~
199,999
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Key findings: Methods and Algorithms

METHODS AND ALGORITHMS USAGE

Linear or Logistic
Regression

Decision Trees or
Random Forests

Gradient Boosting
Machines (xgboost,
lightgbm, etc.)

Convolutional Neural
Networks

ayesian Approaches

Recurrent Neural
Networks

Neural Networks
(MLPs, etc.)

Transformer Networks
(BERT, gpt-3, etc.)

Generative Adversial
Networks

Evolutionary
Approaches

Other

None

CS [smman|

s

- 7.3%

- 6.5%

- 4.5%

I 1.7%

0% 10% 20% 30% 40%

43.2%

50%

60%

61.4%

70%

78.1%

80%

83.7%

90%

100%
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Key findings: ML Frameworks

MACHINE LEARNING FRAMEWORK USAGE

LightGBM _ 26.1%
Caret - 141%
Catboost - 13.7%
Prophet - 10%
Fast.ai - 7.5%
Tidymodels - 7.2%
H20 3 - 6%
MXNet I 2%
Other I 3.7%
None I 3.2%
JAX I 0.7%
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Thank You!
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