
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 36: Review
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Simple Prediction Model (KNN)
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Simple Prediction Model
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Extend the Prediction Model
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Simple Prediction Models 
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Simple Prediction Models 

9

We can try different k-models on more data
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Estimate of the regression coefficients
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For a given data set
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Estimate of the regression coefficients (cont)
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Is this line good?
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Estimate of the regression coefficients (cont) 
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Maybe this one?
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Estimate of the regression coefficients (cont) 
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Or this one?
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Estimate of the regression coefficients (cont) 
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Question: Which line is the best? 
First calculate the residuals 
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Estimate of the regression coefficients (cont) 
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Estimate of the regression coefficients: brute force

18

A way to estimate is to calculate the loss function for every 
possible beta_0 and beta_1 . Then select the betas where 
the loss function is at the minimum.

E.g. the loss function for different beta_1s when beta_0 is 
fixed to be 6:
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Estimate of the regression coefficients: exact method 
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Confidence intervals for the predictors estimates (cont)
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In our magical realisms, we can now sample multiple times 
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Confidence intervals for the predictors estimates (cont)
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Another sample 
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Confidence intervals for the predictors estimates (cont)

24

Another sample 
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Confidence intervals for the predictors estimates (cont)
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And another sample 
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Confidence intervals for the predictors estimates (cont)
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Repeat this for 100 times 
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Confidence intervals for the predictors estimates (cont)
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Confidence intervals for the predictors estimates (cont)

Finally we can calculate the confidence intervals, which are the ranges 
of values such that the true value of is contained in this interval with n 
percent probability.

28

68%
95%
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Below we show all regression lines for a thousand of such bootstrapped 
samples. 
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Below we show all regression lines for a thousand of such sub-samples.  
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Below we show all regression lines for a thousand of such sub-samples.  
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation

41



CS109A, PROTOPAPAS, RADER, TANNER

Validation
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Cross Validation
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Linear models: 20 data points per line 2000 simulations
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Bias vs Variance
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Bias vs Variance

55



CS109A, PROTOPAPAS, RADER, TANNER

Bias vs Variance
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Poly 10 degree models : 20 data points per line 2000 simulations

57



CS109A, PROTOPAPAS, RADER, TANNER

Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point 
training set. 

Right: Best-fit models using degree 10 polynomial
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Regularization: An Overview
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LASSO Regression

Since we wish to discourage extreme values in model parameter, we need 
to choose a regularization term that penalizes parameter magnitudes. For 
our loss function, we will again use MSE.

Together our regularized loss function is:

Note that              is the l1 norm of the vector β

60
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the 
squares of the parameter magnitudes. Then, our regularized loss function 
is:

Note that               is the l2 norm of the vector β
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Ridge regularization with validation only: step by step
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Ridge regularization with validation only: step by step
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Experimenta
l Design & 

Causal 
Inference
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The Intuition Behind PCA

Top PCA components capture the most of amount of variation 
(interesting features) of the data. 

Each component is a linear combination of the original 
predictors - we visualize them as vectors in the feature space.
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The Intuition Behind PCA (cont.)

Transforming our observed data means projecting our 
dataset onto the space defined by the top m PCA components, 
these components are our new predictors.
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A Framework For Dimensionality Reduction

One way to reduce the dimensions of the feature space is to create a 
new, smaller set of predictors by taking linear combinations of the 
original predictors.

We choose Z1, Z2,…, Zm, where 𝑚 ≤ 𝑝 and where each Zi is a linear 
combination of the original p predictors

𝑍! =&
"#$

%

𝜙"!𝑋"

for fixed constants 𝜙"! .  Then we can build a linear regression regression 
model using the new predictors

𝑌 = 𝛽& + 𝛽$𝑍$ +⋯+ 𝛽'𝑍' + 𝜀

Notice that this model has a smaller number (m+1 < p+1) of parameters.
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The Math behind PCA

PCA is a well-known result from linear algebra.  Let Z be the n x
p matrix consisting of columns Z1,…, Zp (the resulting PCA 
vectors), X be the n x p matrix of X1,…, Xpof the original data 
variables (each standardized to have mean zero and variance 
one, and without the intercept), and let W be the p x p matrix 
whose columns are the eigenvectors of the square matrix X𝑇X, 
then:
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Even Simpler Classification Problem: Binary Response (cont)

What could go wrong with this linear regression model? 

.
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Pavlos Game #45

𝑌 = 𝑓(𝑥)

Think of a function that would do this for us
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Logistic Regression

76

−
𝛽!
𝛽"

2𝛽"

𝛽"
4
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Estimation in Logistic Regression

Probability Mass Function (PMF):
𝑃(𝑌 = 1) = 𝑝

𝑃(𝑌 = 0) = 1 − 𝑝

𝑃 𝑌 = 𝑦 = 𝑝!(1 − 𝑝)(#$!)

where:

𝑝 = 𝑃 𝑌 = 1 𝑋 = 𝑥 =
1

1 + 𝑒$(&!'&"()
and therefore 𝑝 depends on X.

Thus not every 𝑝! is the same for each individual measurement. 



CS109A, PROTOPAPAS, RADER, TANNER

Likelihood

The likelihood of a single observation for p given x and y is:

Given the observations are independent, what is the likelihood function 
for p?

𝐿 𝑝! 𝑌! = 𝑃 𝑌! = 𝑦! = 𝑝!
"# 1 − 𝑝! #$"#

𝐿 𝑝 𝑌 =%
!

𝑃 𝑌! = 𝑦! =%
!

𝑝!
"" 1 − 𝑝! #$""

𝑙 𝑝 𝑌 = − log 𝐿 𝑝 𝑌 = −.
!

𝑦! log 𝑝! + 1 − 𝑦! log(1 − 𝑝!)
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Loss Function

How do we minimize this?

Differentiate, equate to zero and solve for it! 

But jeeze does this look messy?!  It will not necessarily have a closed form 
solution.

So how do we determine the parameter estimates?  Through an iterative 
approach (we will talk about this at length in future lectures).  

𝑙 𝑝 𝑌 = −&
#

𝑦# log
1

1 + 𝑒$(&!'&"(#)
+ 1 − 𝑦# log 1 −

1
1 + 𝑒$(&!'&"(#) #
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Classifier with two predictors

How can we estimate a classifier, based on logistic regression, for the following 
plot?
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Multiple Logistic Regression

Earlier we saw the general form of simple logistic regression, meaning 
when there is just one predictor used in the model. What was the model 
statement (in terms of linear predictors)? 

Multiple logistic regression is a generalization to multiple predictors.  
More specifically we can define a multiple logistic regression model to 
predict 𝑃(𝑌 = 1) as such:

log

✓
P (Y = 1)

1� P (Y = 1)

◆
= �0 + �1X

log

✓
P (Y = 1)

1� P (Y = 1)

◆
= �0 + �1X1 + �2X2 + ...+ �pXp
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Regularization in Logistic Regression

A penalty factor can then be added to this loss function and 
results in a new loss function that penalizes large values of the 
parameters: 

The result is just like in linear regression: shrink the parameter 
estimates towards zero. 

In practice, the intercept is usually not part of the penalty factor.

Note: the sklearn package uses a different tuning parameter: 

instead of 𝜆 they use a constant that is essentially 𝐶 = *
+
. 

argmin
2!,2",…,2#

−&
!#$

5

𝑦! ln 𝑝! + 1 − 𝑦! ln 1 − 𝑝! + 𝜆&
"#$

%

𝛽"6
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Diagnostic Testing in Classification (cont.) 

Bayes’ theorem can be rewritten for classification:

𝑃 𝑦 = 1 1𝑦 = 1 =
𝑃 1𝑦 = 1 𝑦 = 1 𝑃(𝑦 = 1)

𝑃 1𝑦 = 1 𝑦 = 1 𝑃(𝑦 = 1) + 𝑃 1𝑦 = 1 𝑦 = 0 𝑃(𝑦 = 0)
These probability quantities can then be defined as: 

• Sensitivity: 𝑃 1𝑦 = 1 𝑦 = 1
• Specificity: 𝑃 1𝑦 = 0 𝑦 = 0
• Prevalence: 𝑃(𝑦 = 1)
• Positive Predictive Value: 𝑃(𝑦 = 1| 1𝑦 = 1)
• Negative Predictive Value: 𝑃(𝑦 = 0| 1𝑦 = 0)
How do positive and negative predictive values relate? Be careful... 
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ROC Curve Example 

The Radio Operator Characteristics (ROC) curve 
illustrates the trade-off for all possible thresholds 
chosen for the two types of error (or correct 
classification). 

The vertical axis displays the true positive predictive 
value and the horizontal axis depicts the true 
negative predictive value. 

The overall performance of a classifier, calculated 
over all possible thresholds, is given by the area 
under the ROC curve (AUC). 

An ideal ROC curve will hug the top left corner, so the 
larger the AUC the better the classifier. 
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Multinomial Logistic Regression: the model

To predict K classes (K > 2) from a set of predictors X, a 
multinomial logistic regression can be fit:

ln
𝑃(𝑌 = 1)
𝑃(𝑌 = 𝐾)

= 𝛽),# + 𝛽#,#𝑋# + 𝛽+,#𝑋+ +⋯+ 𝛽,,#𝑋,

ln
𝑃(𝑌 = 2)
𝑃(𝑌 = 𝐾)

= 𝛽),+ + 𝛽#,+𝑋# + 𝛽+,+𝑋+ +⋯+ 𝛽,,+𝑋,
⋮

ln
𝑃(𝑌 = 𝐾 − 1)
𝑃(𝑌 = 𝐾)

= 𝛽),-$# + 𝛽#,-$#𝑋# + 𝛽+,-$#𝑋+ +⋯+ 𝛽,,-$#𝑋,

Each separate model can be fit as independent standard 
logistic regression models!  
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One vs. Rest (OvR) Logistic Regression: the model

To predict K classes (K > 2) from a set of predictors X, a 
multinomial logistic regression can be fit:

ln
𝑃(𝑌 = 1)
𝑃(𝑌 ≠ 1)

= 𝛽),# + 𝛽#,#𝑋# + 𝛽+,#𝑋+ +⋯+ 𝛽,,#𝑋,

ln
𝑃(𝑌 = 2)
𝑃(𝑌 ≠ 2)

= 𝛽),+ + 𝛽#,+𝑋# + 𝛽+,+𝑋+ +⋯+ 𝛽,,+𝑋,
⋮

ln
𝑃(𝑌 = 𝐾)
𝑃(𝑌 ≠ 𝐾)

= 𝛽),- + 𝛽#,-𝑋# + 𝛽+,-𝑋+ +⋯+ 𝛽,,-𝑋,

Again, each separate model can be fit as independent standard 
logistic regression models!  
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Softmax

So how do we convert a set of probability estimates from separate 
models to one set of probability estimates?

The softmax function is used.  That is, the weights are just 
normalized for each predicted probability.  AKA, predict the 3 class 
probabilities from each of the 3 models, and just rescale so they 
add up to 1.

Mathematically that is:

where 𝑥⃗ is the vector of predictors for that observation and 8⃗𝛽, are 
the associated logistic regression coefficient estimates.

87

𝑃 𝑦 = 𝑘 𝑥⃗ =
𝑒 "⃗7

#$8

∑%&'( 𝑒 "⃗7
#$9
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Estimation and Regularization in multiclass settings

There is no difference in the approach to estimating the 
coefficients in the multiclass setting: we maximize the log-
likelihood (or minimize negative log-likelihood).

This combined negative log-likelihood of all K classes is 
sometimes called the multiclass cross-entropy:

ℓ =
1
𝑛
9
./#

0

9
1/#

-

𝟙 𝑦. = 𝑘 ln( <𝑃 (𝑦. = 𝑘)) + 𝟙 𝑦. ≠ 𝑘 ln(1 − <𝑃 (𝑦. = 𝑘))

And regularization can be done like always: add on a penalty term 
to this loss function based on L1 (sum of the absolute values) or 
L2 (sum of squares) norms.
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k-NN for Classification: formal definition 

The k-NN classifier first identifies the k points in the training 
data that are closest to x0, represented by 𝒩). It then 
estimates the conditional probability for class j as the 
fraction of points in 𝒩) whose response values equal j: 

Then, the k-NN classifier predicts this new observation, x0, to 
be in the class with largest estimated probability. 

𝑃 𝑌 = 𝑗 𝑋 = 𝑥- =
1
𝑘
&
#∈𝒩!

𝐼(𝑦# = 𝑗)
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Estimated Probabilities in k-NN Classification
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Classification: Concept Checks

What is the interpretation of @𝛽$ in a multiple logistic regression 
problem?

How is the loss function minimized in logistic regression?

What happens in logistic regression when there is perfect separation?

Why are the logistic regression classification boundaries linear?  How 
can this be adapted to be non-linear?

What is the loss function that is penalized in regularized multiple 
logistic regression? 
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Classification: Concept Checks (cont.)

Should predictors be standardized in k-NN?  How can categorical predictors be 
handled?

How can probability predictions be made in k-NN classification?

When is PCA used most commonly in practice?

Is the first PCA component going to be the best predictor in a PCR regression?  
Why?

How many PCA components should be used in a PCR egression?

How can the coefficient estimates be interpreted in a regression fit on PCA 
component vectors?
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Types of Missingness

There are 3 major types of missingness to be concerned 
about:

1. Missing Completely at Random (MCAR) - the probability 
of missingness in a variable is the same for all units.  Like 
randomly poking holes in a data set.

2. Missing at Random (MAR) - the probability of 
missingness in a variable depends only on available 
information (in other predictors).

3. Missing Not at Random (MNAR) - the probability of 
missingness depends on information that has not been 
recorded and this information also predicts the missing 
values.

What are examples of each these 3 types?
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Imputation Methods

There are several different approaches to imputing missing values:

1. Impute the mean or median (quantitative) or most common class 
(categorical) for all missing values in a variable.

2. Create a new variable that is an indicator of missingness, and 
include it in any model to predict the response (also plug in zero or 
the mean in the actual variable).

3. Hot deck imputation: for each missing entry, randomly select an 
observed entry in the variable and plug it in.

4. Model the imputation: plug in predicted values ( A𝑦) from a model 
based on the other observed predictors.

5. Model the imputation with uncertainty: plug in predicted values 
plus randomness ( A𝑦 + 𝜖) from a model based on the other observed 
predictors.

What are the advantages and disadvantages of each approach?
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Schematic: imputation through modeling 

How do we use models to fill in missing data? Using k-NN for k
= 2? 
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Imputation through modeling with uncertainty: an 
illustration 
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SIMPLE   DECISION 
TREE
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Although regression models with linear 
boundaries are intuitive to interpret, it’s harder 
to interpret non-linear decision boundaries.

Trees:

1. Allow for complex decision boundaries

2. Are easy to interpret
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The Geometry of Flow Charts

Each comparison and branching represents splitting a region 
in the feature space on a single feature.

The prediction is based on the most common class
(or mean value).
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Considerations

1. Splitting Criterion. e.g.,
• Gini Index

• misclassification error

• Entropy

2. Stopping Criterion. e.g.,
• Minimum MSE

• Uniformity of the data samples’ labels

• Size of tree, such as maximum depth
• The “gain” converges
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Considerations

Shallow trees have: high bias and low variance

108

Deep trees have: low bias and high variance

Simple decision trees often:
• Overfit
• Underperform when compared to other classification 

and regression methods
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BAGGING



CS109A, PROTOPAPAS, RADER, TANNER

Bootstrap Aggregating

Bootstrap = generate data via sampling w/ replacement

Aggregating = return the average (regression) or majority class (classification)

110
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Combine them? 2 magic realisms
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Combine them? 20 magic realisms
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Combine them? 100 magic realisms
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Bagging (regression)

The resulting tree is 
the average of all tree 
(estimators). 
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Bagging (classification)

For each 
bootstrap, we 
build a decision 
tree. The results is 
a combination 
(majority) of the 
predictions from 
all trees. 
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Bootstrap Aggregating

BENEFITS
• More expressive

• Helps prevent overfitting

• Decreases variance
(less sensitive to different data)

116

ISSUES
• interpretability ("majority")

solution: variable importance via the avg Gini/MSE 

for each feature

• can still underfit or overfit

solution: validation via out-of-bag error

• Trees tend to be highly correlated

(split the same at the beginning)

solution: random forests
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RANDOM   
FORESTS
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Random Forests

Random Forest is a modified form of bagging that creates ensembles of 
independent decision trees. 

To de-correlate the trees, we: 

1. train each tree on a separate bootstrap sample of the full training 
set (same as in bagging) 

2. for each tree, at each split, we randomly select a set of 𝐽′ predictors 
from the full set of predictors. 

From amongst the 𝐽′ predictors, we select the optimal predictor and the 
optimal corresponding threshold for the split. 
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Random Forests

SPECIFY

• Number of trees (n_estimators)

• Number of predictors (max_features)

CONSIDERATIONS

• Be careful w/ the # of predictors. If you select a small %, you’ll have an ensemble of 
weak models

• A lot of hyperparameters. Vary all of them together.
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BOOSTING
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Motivation for Boosting 

Question: Could we address the shortcomings of single decision trees 
models in some other way? 

For example, rather than performing variance reduction on complex 
trees, can we decrease the bias of simple trees - make them more 
expressive? 

Can we learn from our mistakes? 

A solution to this problem, making an expressive model from simple 
trees, is another class of ensemble methods called boosting. 
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Gradient Boosting 

The key intuition behind boosting is that one can take an ensemble of 
simple models {Th}h∈H and additively combine them into a single, more 
complex model.

Each model Th might be a poor fit for the data, but a linear combination 
of the ensemble:

can be expressive/flexible.
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Gradient Boosting: the algorithm 

Gradient boosting is a method for iteratively building a complex 
regression model T by adding simple models. 

Each new simple model added to the ensemble compensates for 
the weaknesses of the current ensemble. 
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Gradient Boosting: the algorithm 

1. Fit a simple model 𝑇(%) on the training data 

{ 𝑥', 𝑦' , … , (𝑥(, 𝑦()}

Set 𝑇 ← 𝑇(%) .   

Compute the residuals {r1 , . . . , rN } for T. 

2. Fit a simple model, 𝑇(') , to the current residuals, i.e. train using

{ 𝑥', 𝑟' , … , (𝑥(, 𝑟()}

3. Set 𝑇 ← 𝑇 + 𝜆𝑇(')

4. Compute residuals, set 𝑟) ← 𝑟) − 𝜆𝑇* 𝑥) , 𝑛 = 1,… , 𝑁

5. Repeat steps 2-4 until stopping condition met.

where 𝜆 is a constant called the learning rate. 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 

129



CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Build our first ANN

134

ℒ(𝑊) =*
!

"

ℒ! 𝑊Affine𝑋 ℎ = 𝑋𝑊 Activation =𝑦 =
1

1 + 𝑒#$ Loss Fun

“Sigmoid activation” 𝝈

𝑋 𝑌𝜎(XW)
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Combining neurons allows us to model interesting functions

135

X Y
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Different weights change the shape and position

136

X Y
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Neural networks can model any reasonable function

X Y
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Adding layers allows us to model increasingly complex functions

X Y
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Learning Multiple Components

If x>0:
return sqrt(x)

else:
return ‘x must be positive’

rf = RandomForestRegressor(
n_estimators = 1000, 
random_state = 42

rf.fit(x_train, y_train);

model = 
tf.keras.Sequential()
model.add(tf.keras.layers.
Flatten(input_shape=(28, 
28)))
model.add(tf.keras.layers.
Dense(154, 
activation='relu'))

Next: Artificial general intelligence ??
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Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layerinput layer
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Depth = Repeated Compositions
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Gradient Descent (cont.)

If the step is proportional to the slope then you avoid overshooting the 
minimum. How? 

142

𝑑ℒ(𝑊)
𝑑𝑊

𝑑ℒ(𝑊)
𝑑𝑊 𝑑ℒ(𝑊)

𝑑𝑊
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Hyperparameter tuning

143

Anand, Kanav, Wang, Ziqi, Loog, Marco, & Van Gemert, Jan. (2020). Black Magic in Deep Learning: How Human Skill Impacts Network Training

Random search, grid search, developer tools such as `weights and biases’, Bayesian optimization, expertise
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Data Augmentation
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Dropout

145

• Randomly set some neurons and their connections to zero (i.e. “dropped”)
• Prevent overfitting by reducing co-adaptation of neurons
• Like training many random sub-networks
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Dropout

146

• Widely used and highly effective
• Proposed as an alternative to ensembling, which is too expensive for neural 

nets

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Test error for different 
architectures with and 
without dropout. The 
networks have 2 to 4 
hidden layers each with 
1024 to 2048 units.

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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FAIRNESS



The Tyranny of Algorithmic Bias, 
and How to End It
A Work In Progress

• Matthew Finney – Harvard University
• CS109a, Fall 2020
• All opinions are my own



AI in the 2010s



AI in the 2010s



AI in the 2010s



AI in the 2010s



AI in the 2010s



The Socially Conscious Data Scientist’s Agenda

1. We can define and measure
algorithmic bias

2. We can isolate the root cause of 
(poor) algorithmic behavior

3. We can take action to make 
algorithms more fair



What is 
algorithmic 

bias?



In the U.S., kidney function measurements are adjusted by race
Case study

• The eGFR is the standard-of-care for 
measuring kidney function

• It’s calculated by measuring the level of 
creatinine in a blood sample

• Because “African Americans” have higher 
muscle mass, the CKD-EPI algorithm increases 
their scores

• A higher score indicates higher kidney function



The CKD-EPI eGFR equation is racially biased
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Many people see this as unfair. Can you think of any reasons why?



Two definitions used in the algorithmic community
What is fairness?

• Group Fairness 
• Identifiable groups should be treated similarly 

to the population as a whole

• Adapted from Sahil Verma and Julia Rubin. 2018. Fairness Definitions Explained. 
https://fairware.cs.umass.edu/papers/Verma.pdf.

• Individual Fairness
• Similar individuals should be treated similarly

https://fairware.cs.umass.edu/papers/Verma.pdf


Is the CKD-EPI algorithm Group Fair?

• Group Fairness Definition
• Protected groups should be treated similarly 

to 
non-protected groups and the population as a 
whole

Source: Taber et  al., Twenty years of evolving trends in racial disparities for adult 
kidney transplant recipients. Kidney Int. 2016.



Is the CKD-EPI algorithm Individually Fair?

• Individual Fairness Definition
• Similar individuals should be treated similarly

Reconsidering the Consequences of Using Race
to Estimate Kidney Function

Clinicians estimate kidney function to guide impor-
tant medical decisions across a wide range of settings,
including assessing the safety of radiology studies,
choosing chemotherapy, and reviewing the use of com-
mon nonprescription medications such as nonsteroidal
anti-inflammatory drugs. Because direct measure-
ment of kidney function is infeasible at the bedside, the
usual approach involves using estimating equations that
rely on serum creatinine. These equations assign a higher
estimated glomerular filtration rate (eGFR) to patients
who are identified as black. Yet in some medical and so-
cial science disciplines, a consensus has emerged that
race is a social construct rather than a biological one.1 In
this Viewpoint, we argue that the use of kidney func-
tion estimating equations that include race as a vari-
able cause problems for transparency and unduly re-
strict access to care in some cases, yet offer only modest
benefits to precision.

Estimated GFR equations fulfill an important need
for clinicians to conveniently assess kidney function
and, secondarily, for public health authorities to assess
the prevalence of kidney disease. These equations,
such as the Chronic Kidney Disease Epidemiology Col-
laboration equation (CKD-EPI) and its predecessor, the

Modification of Diet in Renal Disease Study (MDRD)
equation, were generated in large cohorts of individu-
als who underwent gold-standard measurement of
“true” GFR by infusing iothalamate or another chemical
into the blood and quantifying its urine clearance.
Investigators found that black race was independently
associated with a slightly higher GFR at the same serum
creatinine level. This association has been justified by
the assertion that black individuals release more creati-
nine into the blood, perhaps because of more muscle
mass, although data remain inconclusive.2-4 The CKD-
EPI equation includes a race coefficient that increases
the eGFR in black patients by about 16%. Estimated
GFR equations also include age and sex because older
individuals and women, on average, have less muscle
than younger individuals and men, respectively; these
generalizations have a stronger empirical basis than
that for race.

Classifying patients according to ancestry (rather
than race or ethnicity) has legitimate purposes to iden-
tify individuals at risk of complications from rare gene

mutations like sickle cell trait or cystic fibrosis. How-
ever, eGFR equations are distinct because they instead
assert that existing organ function is different between
individuals who are otherwise identical except for race.
Population studies reveal only small differences in
gene distributions between racial groups while show-
ing greater variation between individuals of the same
race. Meanwhile, the history of medicine offers abun-
dant evidence that racial categories were often gener-
ated arbitrarily and at times implemented to reinforce
social inequality.5

Racial categorization is often used in a nonstandard-
ized way. Consider a hypothetical 50-year-old woman
with a creatinine level of 2.0 mg/dL and no proteinuria.
Her father self-identified as black race and her mother
self-identified as white race. If this patient is admitted
to the hospital, an administrator or clinician may assess
the patient’s skin tone or hair and label her as black in
the medical record. Alternatively, the patient may be
asked to identify her race. Yet she would have no way
to know that her answer would affect assessments of her
organ function or treatment. Furthermore, 3% of indi-
viduals in the United States identified as multiracial in the
2010 Census, whereas in Brazil and some other coun-

tries, the multiracial category exceeds
one-third of the population. Decision
support provides little guidance about
how to calculate the patient’s eGFR if she
is biracial, refuses to answer the ques-
tion about race, or self-identifies with a
race that is different than that recorded
in the medical record.

Estimated GFR equations have major clinical
consequences. Many essential medications including
antibiotics are withheld from patients with a low eGFR
or are administered at reduced doses. The authorita-
tive Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines recommend nephrology referral
if a patient’s eGFR is less than 30 mL/min/1.73 m2.
If the patient in the above example were considered
to be black, her eGFR would be 33 mL/min/1.73 m2,
but if she were considered to be white, her eGFR
would be 28 mL/min/1.73 m2 with the CKD-EPI equa-
tion (ie, below the threshold for referral). In addition,
clinical trials commonly exclude patients with reduced
kidney function. If this patient were considered to
be black, she could enter some trials that would
exclude her if she were considered to be white.

Perhaps the most concerning implication of race
in eGFR is that it has the potential to reduce access
to kidney transplantation, for which racial disparities
are substantial. In the United States, being wait-listed
for a kidney transplant requires an eGFR of less than

Estimated GFR equations are distinct
because they assert that existing organ
function is different between individuals
who are identical except for race.
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Why does this 
keep 

happening?



Why isn’t fairness part of our process?

• We have good intentions • … but need mechanisms for action

Hard to define

Lack of 
transparency

Hard to measure

Lack of 
accountability

CHALLENGES

(LACK OF) INCENTIVES

Fairness is context-
specific

No hard business reason 
to prioritize fairness

Image: Rob Osborne



How will we end 
this?



Ingredients of an algorithmic decision

PROCESSTECHNOLOGY PEOPLE

• Data
• Algorithm
• …   

• Data Analyst/Scientist
• Business Owner
• End User
• …

• Model Training
• Evaluation
• Application
• …

Icons by Font Awesome licensed under CC BY 4.0 

How can we change these to mitigate algorithmic bias?



What mechanisms can help us build fair models?
Process

A commitment to defined 
and measurable fairness 
objectives

An independent, third party 
review of processes and 
outcomes

Fairness Statement

Algorithmic Practice Audit

Hard to define

Lack of 
transparency

Hard to measure

Lack of 
accountability

CHALLENGES PROPOSED APPROACH



What will you do to create fair algorithms?

Do you have mechanisms to 
ensure algorithmic fairness?

Are you following existing 
technical best practices, and 
using classes of fair algorithms?

PROCESS

TECHNOLOGY

Are your data and tech teams 
representative of your 
customers and stakeholders?

PEOPLE
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Neural 

Networks 

Computing 
Tools

Linear 

KNN 

Logistic 
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Courses Related to Data Science

• CS 109B: Advanced Topics in Data Science 
• https://harvard-iacs.github.io/2020-CS109B/

• CS 171: Visualizations

• CS 181/281: Machine Learning

• CS 182: Artificial Intelligence (AI)

• CS 205:  Distributive Computing

• Stat 110/210: Probability Theory

• Stat 111/211: Statistical Inference

• Stat 139: Linear Models 

• Stat 149: Generalized Linear Models

• Stat 195: Intro to Statistical Machine Learning

This list is not exhaustive!
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State of Machine Learning and Data Science 2020

Kaggle enterprise executive summary report 

Kaggle surveyed its community of data enthusiasts to share 
trends within a quickly growing field.

Based on responses from 20,036 Kaggle members, they’ve 
created a report focused on the 13% (2,675 respondents) who 
are currently employed as data scientists.
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Key findings: Gender  
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Key findings: Age  
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Key findings: Nationalities  
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Key findings: Education  
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Key findings: Salary  
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Key findings: Salary by Country  
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Key findings: Methods and Algorithms

183



CS109A, PROTOPAPAS, RADER, TANNER

Key findings: ML Frameworks
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Thank You! 
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