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Brute Force

Greedy Search

Non-Convex
optimization
using Gradient
Descent
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Challenges in Optimization

Local Minima No critical points

Ideally, we would like to arrive at the Some cost functions do not have
global minimum, but this might not be critical points. In particular for
possible. Some local minima performs classification when p(y = 1) is never
as well as the global one, so itis an Zero or one.

acceptable stopping point.



Challenges in Optimization

Exploding and vanishing Gradients Poor Conditioning

Exploding gradients due to cliffs. Can be Poorly conditioned Hessian matrix. High
mitigated using gradient clipping: curvature: small steps leads to huge
increase. Learning is slow despite strong
‘ H > Uu: 6_L —u gradients. Oscillations slow down
ow progress.

where u is user defined threshold.
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Momentum

Oscillations because updates do not exploit curvature information

L(W)

Wy

Average gradient presents faster path to optimal: vertical components
cancel out
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Momentum

Question: Why not this?

L(W)

Wy
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Momentum

Let us figure out an algorithm which will lead us to the minimum faster.
L(W)
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Momentum

Add the average of the gradient from before
L(W)

Current gradient

Average gradient
up to this
moment

Wy
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Momentum

Old gradient descent:

fis the Neural Network

1
g = Ez VwL(f (xi; W), y;) W*=W —ng
l
New gradient descent with momentum:
v=av+(1l—a)g W*=W —nv

-

a €10,1) controls how quickly
effect of past gradients decay
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Adaptive Learning Rates
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=
S
A
[
[
[
[
[
— — = ('65‘ W,

Oscillations along vertical direction
— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

Oscillations along vertical direction
— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

L(W)

— — = ('65‘
Oscillations along vertical direction

— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

L(W)

— — = ('65‘
Oscillations along vertical direction

— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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AdaGrad

 Accumulate squared gradients:

g is the gradient

* Update each parameter:

* Greater progress along gently sloped directions\[

Inversely proportional to
cumulative gradient
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RMSProp

* For non-convex problems, AdaGrad can
prematurely decrease learning rate

* Use exponentially weighted average for
gradient accumulation

= pr+(1-p)g;
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Adam

* RMSProp + Momentum
« Estimate first moment:

v,=pv,+(1-p)g,

e Estimate second moment:

* Update parameters:

= por+(1-p,)g
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Also applies
bias correction
tovandr

Works well in practice,
it is fairly robust to
hyper-parameters
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Bias Correction

To perform bias correction on the two running average variables, we use the

following equations. We do this before we update weights.

<

Veorr = 1

— pt

ﬁ

rCOTT - 1

— p}

Where t is the number of the current iteration.

CS109A, PROTOPAPAS, RADER, TANNER

28






