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Local Minima

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

S |Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

This local minimum performs
poorly, and should be avoided.
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Local Minima

Old view: local minima is major problem in neural network
training

Recent view:

* For sufficiently large neural networks, most local minima incur low
cost

* Not important to find true global minimum
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Poor Conditioning

Poorly conditioned Hessian matrix
— High curvature: small steps leads to huge increase
Learning is slow despite strong gradients

Oscillations slow down
progress

CS109A, PROTOPAPAS, RADER, TANNER




No Critical Points

Some cost functions do not have critical points. In particular
classification.

WHY?
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Exploding and Vanishing Gradients

Exploding gradients lead to cliffs
Can be mitigated using gradient clipping
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Momentum

Oscillations because updates do not exploit curvature information

L(W)

Wy

Average gradient presents faster path to optimal: vertical components
cancel out

['ACS [m )
%@9@ CS109A, PROTOPAPAS, RADER, TANNER 13



Momentum

Question: Why not this?
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Momentum

Let us figure out an algorithm which will lead us to the minimum faster.
L(W)
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Momentum

Look each component at a time
L(W)
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Momentum

Let us figure out an algorithm
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Momentum

Let us figure out an algorithm
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Momentum

Let us figure out an algorithm
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Momentum

Let us figure out an algorithm
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Momentum

Old gradient descent:

fis the Neural Network

1
g = Ez VwL(f (xi; W), y;) W*=W —ng
l
New gradient descent with momentum:
v=av+(1l—a)g W*=W —nv

-

a €10,1) controls how quickly
effect of past gradients decay
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Adaptive Learning Rates
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Oscillations along vertical direction
— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

Oscillations along vertical direction
— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

— — = ('65‘
Oscillations along vertical direction

— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

L(W)

— — = ('65‘
Oscillations along vertical direction

— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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Adaptive Learning Rates

L(W)

— — = ('65‘
Oscillations along vertical direction

— Learning must be slower along parameter 2
Use a different learning rate for each parameter?
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AdaGrad

 Accumulate squared gradients:

* Update each parameter:

g is the gradient

* Greater progress along gently sloped directio
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Inversely proportional to
cumulative gradient
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0 is a small number, making sure
Ad aGra d this does not become too large

Old gradient descent:

1
g = Ez VwL(f (x;; W), ;) w* V¥V -—2g
l
We would like A's not to be the same and inversely proportional ) the |g;]
« 1 1
Wi =W; —ng; n; K — = -
lgil 0+ gl

New gradient descent with adaptive learning rate:
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RMSProp

* For non-convex problems, AdaGrad can prematurely decrease
learning rate

* Use exponentially weighted average for gradient accumulation

r=pr,+(1-p)g
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Adam

* RMSProp + Momentum
« Estimate first moment:

v,=pv,+(1-p)g,

e Estimate second moment:

* Update parameters:

= por+(1-p,)g
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Also applies
bias correction
tovandr

Works well in practice,
it is fairly robust to
hyper-parameters
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Bias Correction

To performe bias correction on the two running average variables -
v and r use the following equations. Do this before they are used to
update the weight.

® Ubiascorr — V/(l — P’i)

® Thiascorr — 7‘/(1 - pg)

where t is the number of the current iteration.
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Momentum Weighting Parameter
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