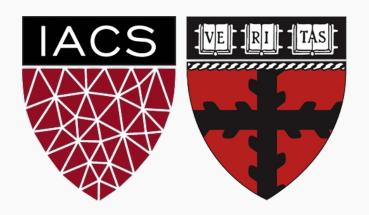
Optimizers

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

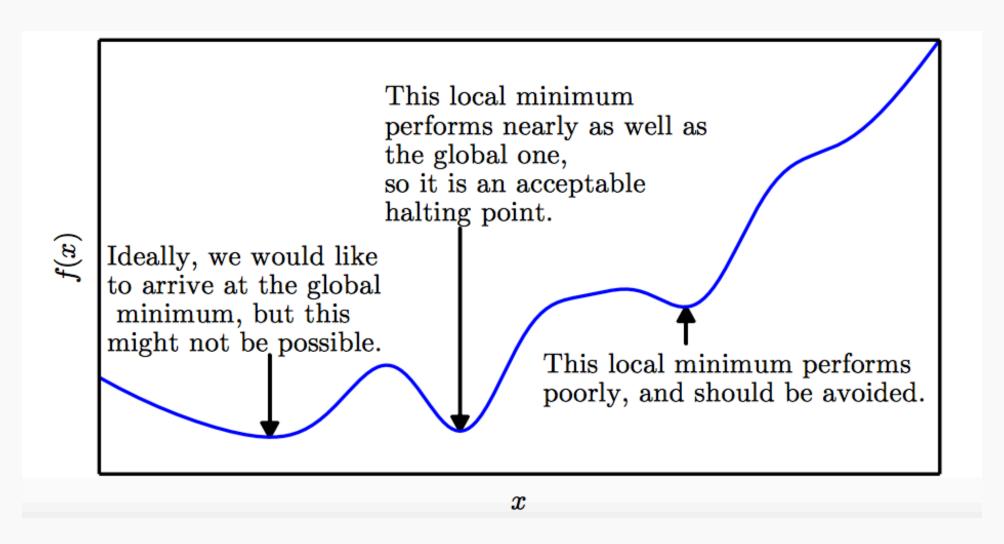


Outline

Optimization

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate

Local Minima



Local Minima

Old view: local minima is major problem in neural network training

Recent view:

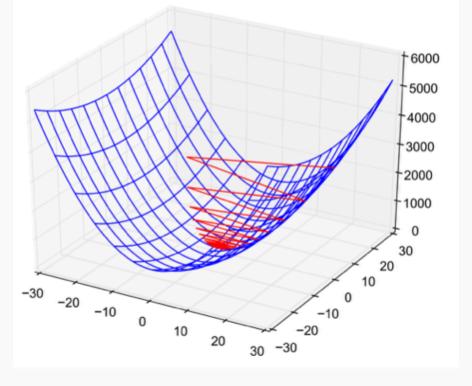
- For sufficiently large neural networks, most local minima incur low cost
- Not important to find true global minimum

Poor Conditioning

Poorly conditioned Hessian matrix

High curvature: small steps leads to huge increase
 Learning is slow despite strong gradients

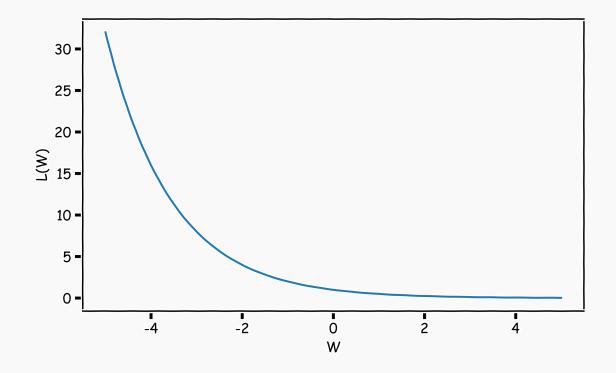
Oscillations slow down progress



No Critical Points

Some cost functions do not have critical points. In particular classification.

WHY?



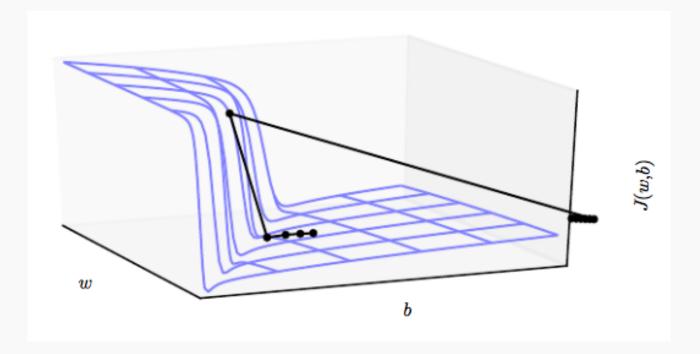
Exploding and Vanishing Gradients

Exploding gradients lead to cliffs

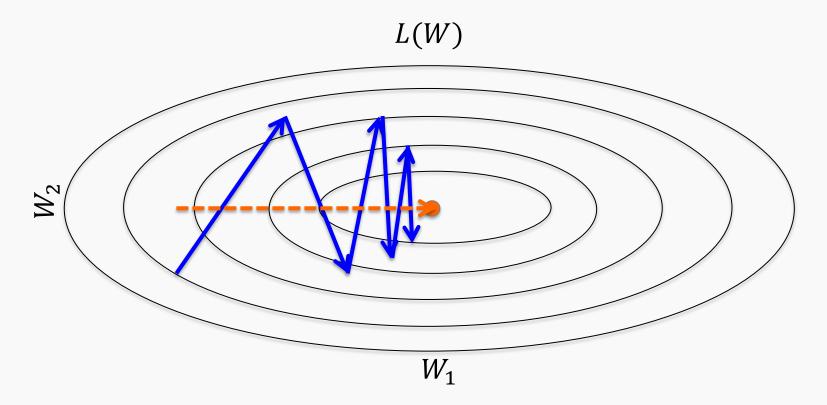
Can be mitigated using gradient clipping

if
$$||g|| > u$$

$$g \leftarrow \frac{gu}{\|g\|}$$

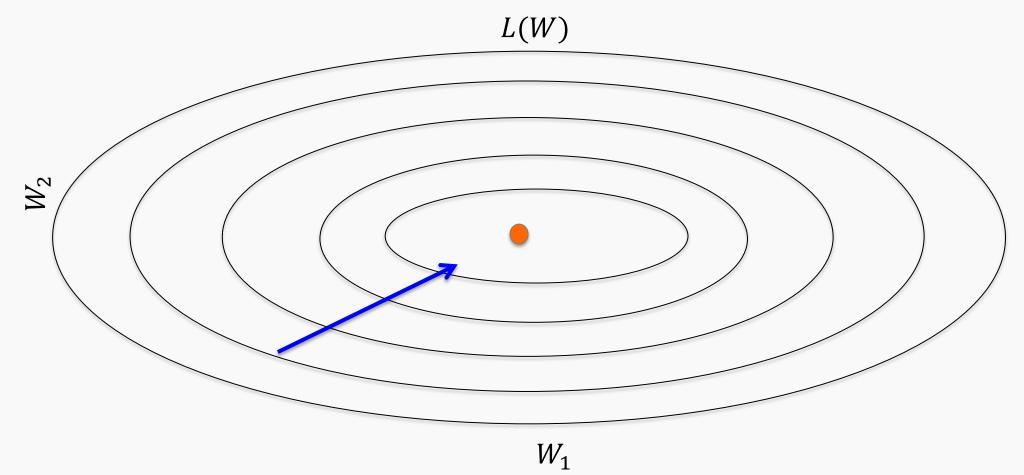


Oscillations because updates do not exploit curvature information



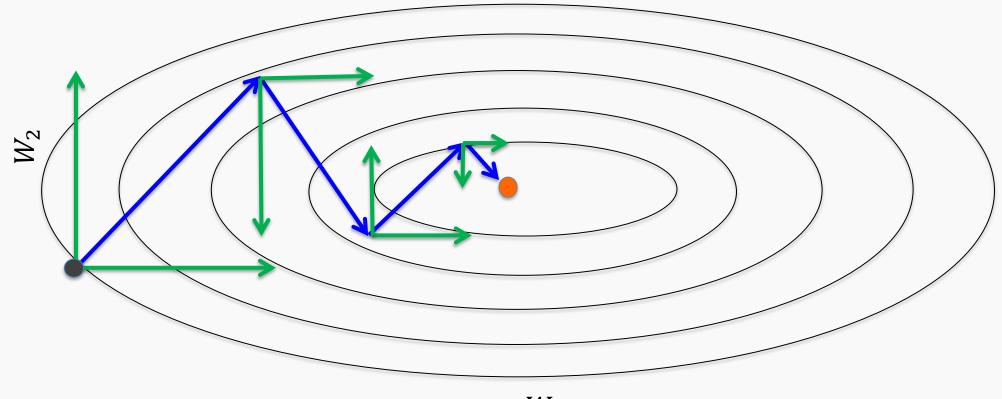
Average gradient presents faster path to optimal: vertical components cancel out

Question: Why not this?

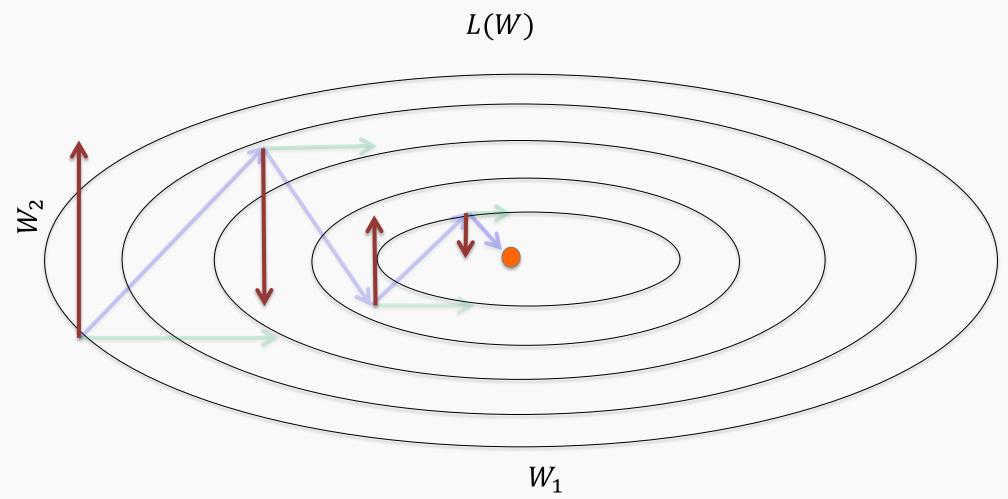


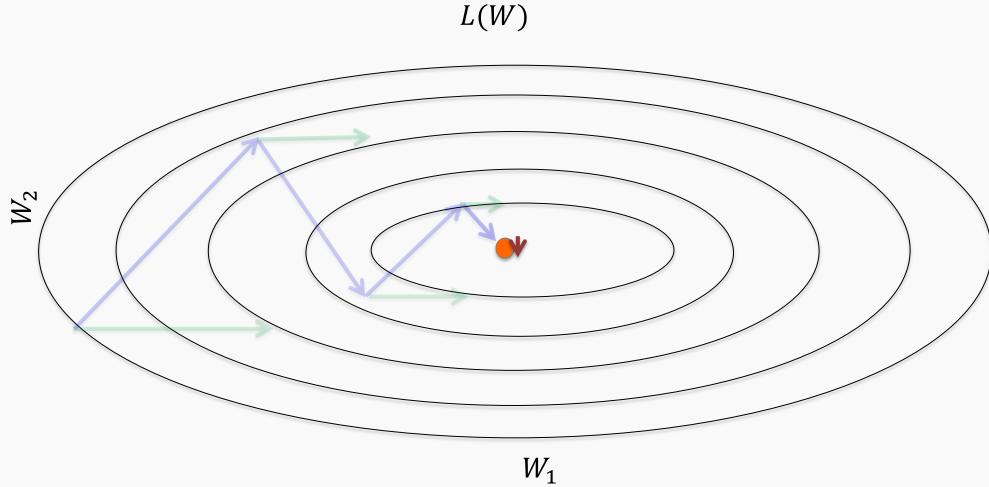
Let us figure out an algorithm which will lead us to the minimum faster.

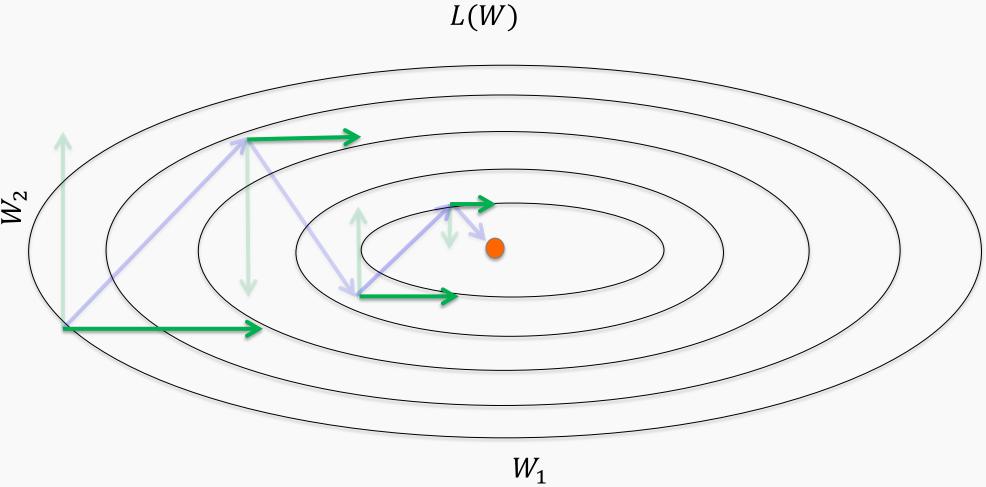
L(W)

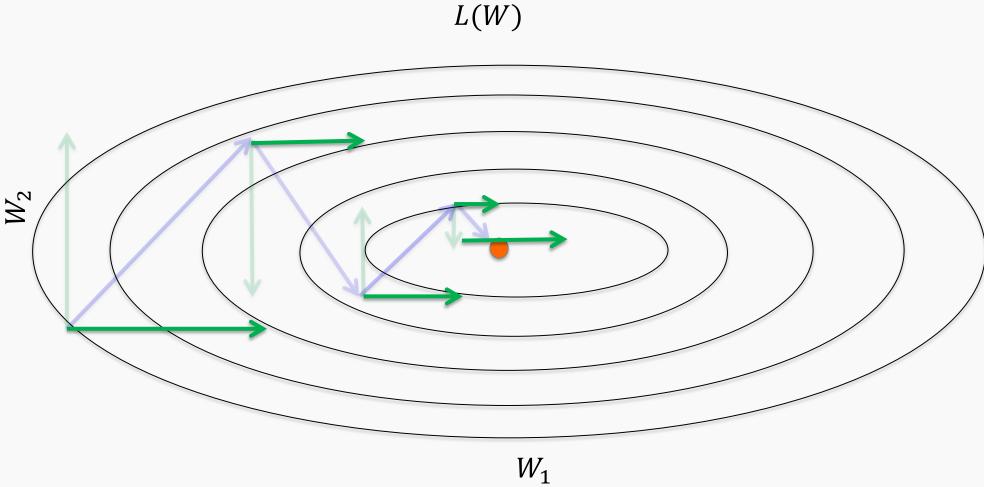


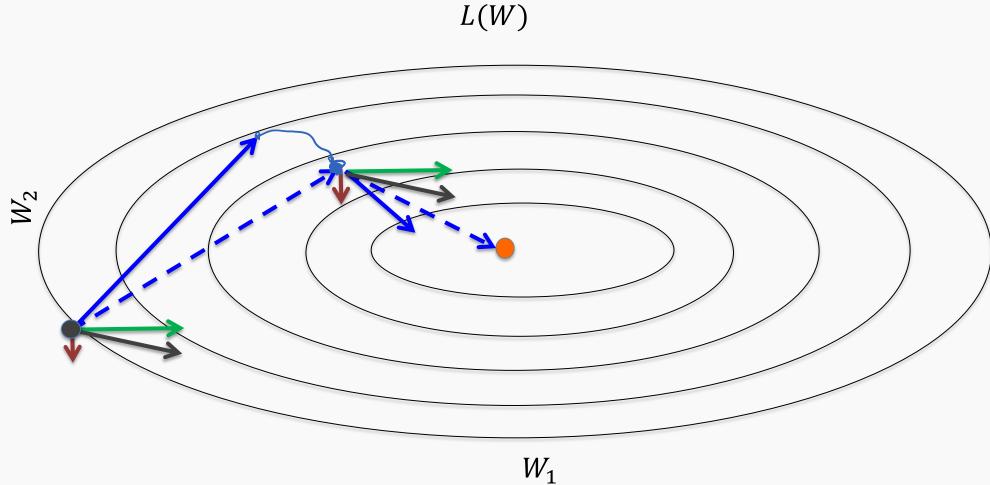
Look each component at a time











Old gradient descent:

$$g = \frac{1}{m} \sum_{i} \nabla_{W} L(f(x_i; W), y_i)$$

$$W^* = W - \eta g$$

New gradient descent with momentum:

$$\nu = \alpha \nu + (1 - \alpha) g$$

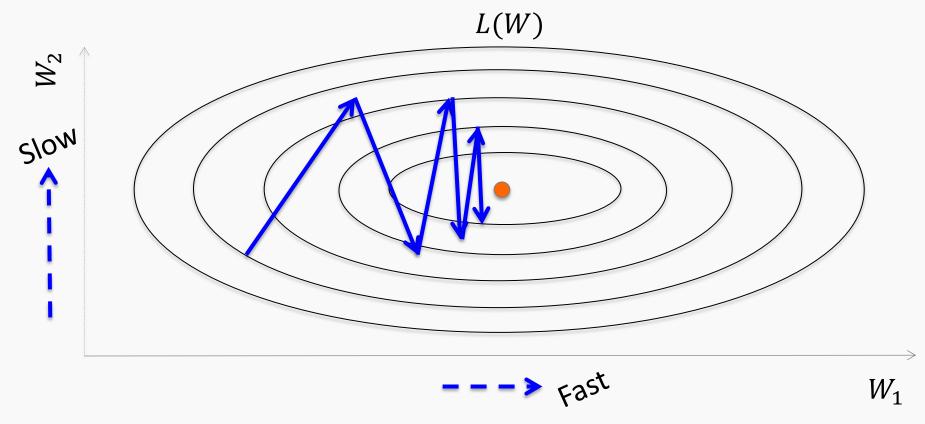
$$W^* = W - \eta v$$

 $\alpha \in [0,1)$ controls how quickly effect of past gradients decay

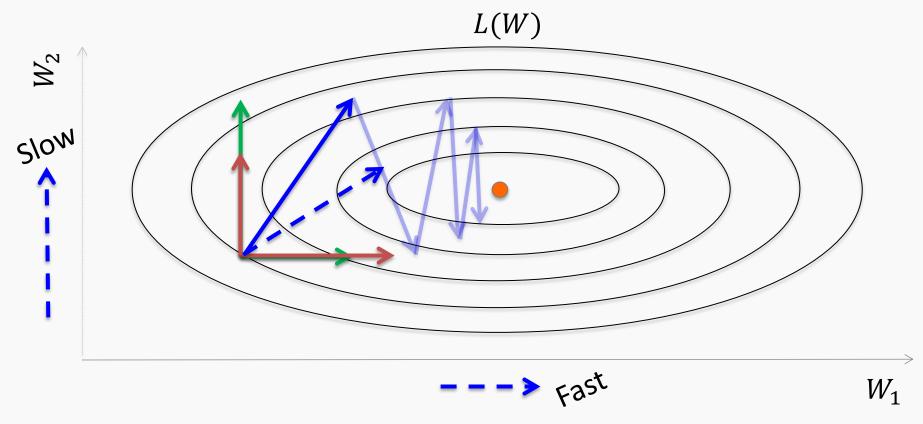
Outline

Optimization

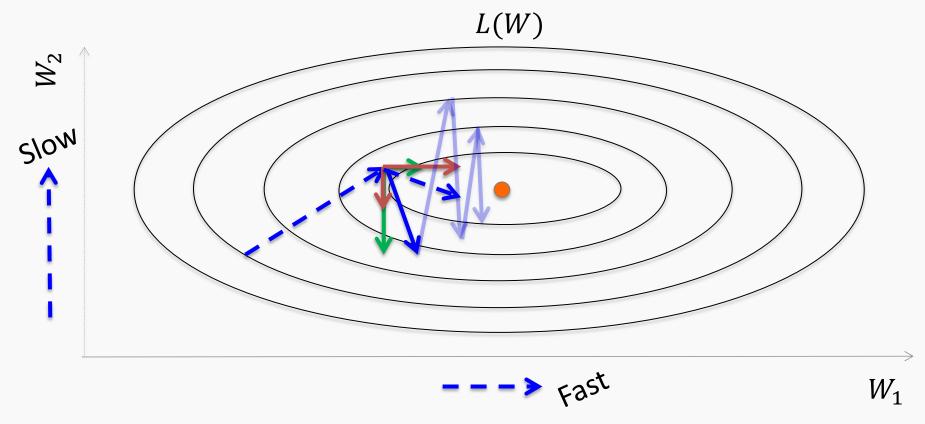
- Challenges in Optimization
- Momentum
- Adaptive Learning Rate



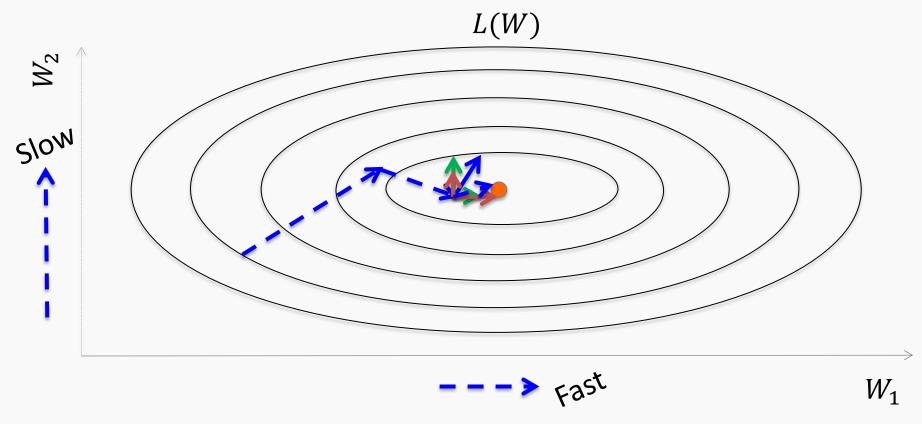
Oscillations along vertical direction



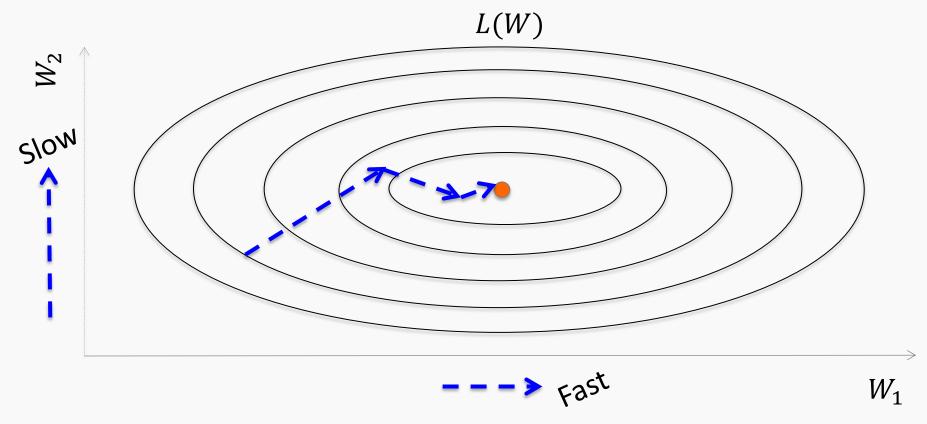
Oscillations along vertical direction



Oscillations along vertical direction



Oscillations along vertical direction



Oscillations along vertical direction

AdaGrad

Accumulate squared gradients:

$$r_i = r_i + g_i^2$$

g is the gradient

• Update each parameter:

$$W_i = W_i - rac{\epsilon}{\delta + \sqrt{r_i}} g_i$$

Greater progress along gently sloped directions

Inversely proportional to cumulative gradient

AdaGrad

 δ is a small number, making sure this does not become too large

Old gradient descent:

$$g = \frac{1}{m} \sum_{i} \nabla_{W} L(f(x_i; W), y_i) \qquad W^*$$

We would like $\lambda' s$ not to be the same and inversely proportiona the $|g_i|$

$$W_i^* = W_i - \eta_i g_i \qquad \qquad \eta_i \propto \frac{1}{|g_i|} = \frac{1}{\delta + |g_i|}$$

New gradient descent with adaptive learning rate:

$$r_i^* = r_i + g_i^2 \qquad \qquad W_i^* = W_i - \frac{\epsilon}{\delta + \sqrt{r_i}} g_i$$

RMSProp

- For non-convex problems, AdaGrad can prematurely decrease learning rate
- Use exponentially weighted average for gradient accumulation

$$r_i = \rho r_i + (1 - \rho)g_i^2$$

$$W_i = W_i - \frac{\epsilon}{\delta + \sqrt{r_i}} g_i$$

Adam

- RMSProp + Momentum
- Estimate first moment:

$$v_i = \rho_1 v_i + (1 - \rho_1) g_i$$

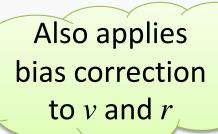
Estimate second moment:

$$r_i = \rho_2 r_i + (1 - \rho_2) g_i^2$$

Update parameters:

$$W_i = W_i - \frac{\epsilon}{\delta + \sqrt{r_i}} \nu_i$$

Works well in practice, it is fairly robust to hyper-parameters



Bias Correction

To performe bias correction on the two running average variables - ν and r use the following equations. Do this before they are used to update the weight.

- $\nu_{biascorr} = \nu/(1-\rho_1^t)$
- $ullet r_{biascorr} = r/(1ho_2^t)$

where t is the number of the current iteration.



Momentum Weighting Parameter

