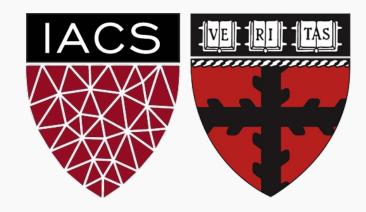
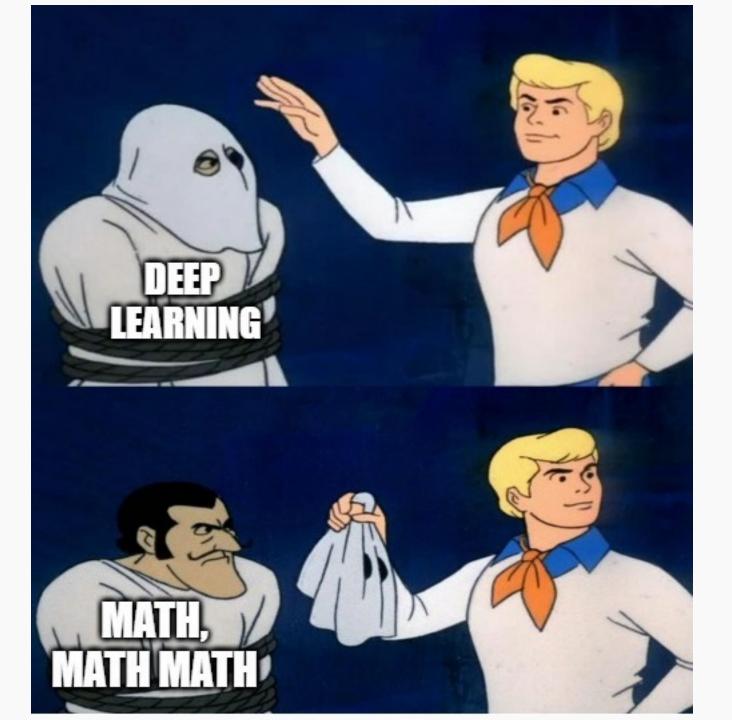
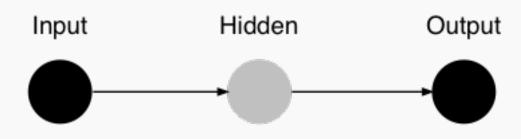
Part A: Universal Approximators; Nodes and Layers

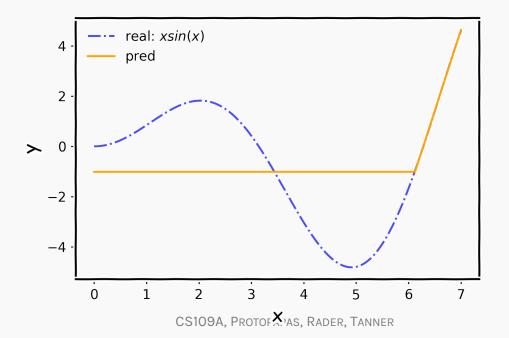
CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

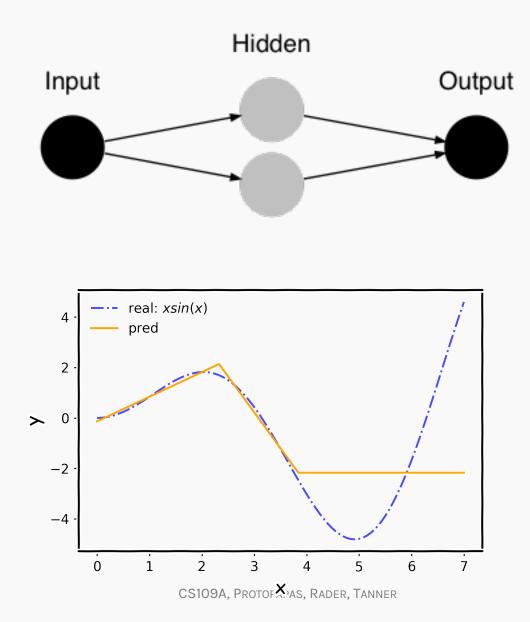


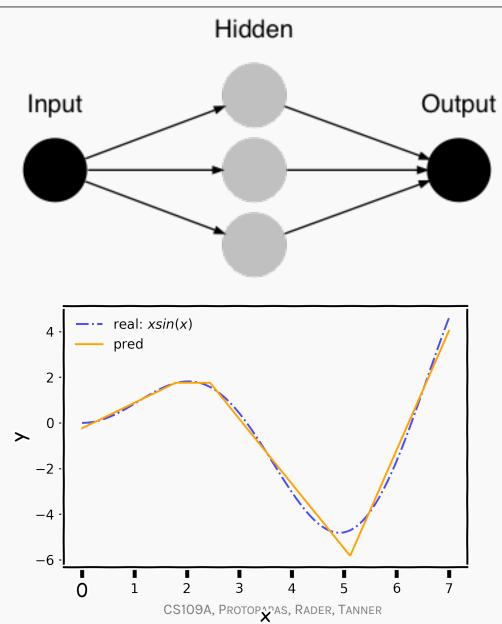


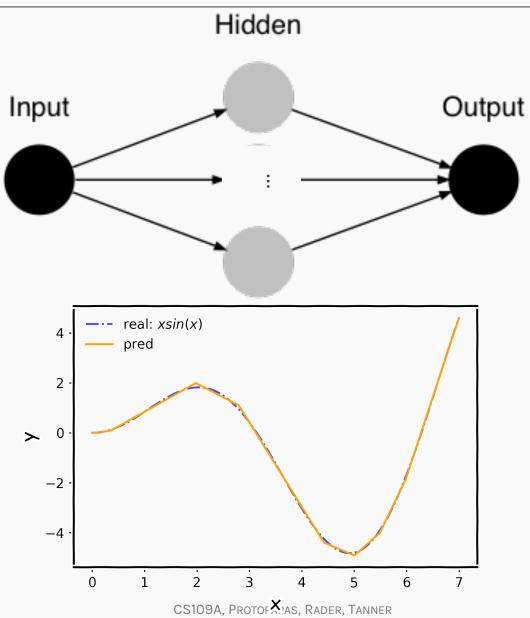
Activation function Loss function Output units Architecture Optimizer



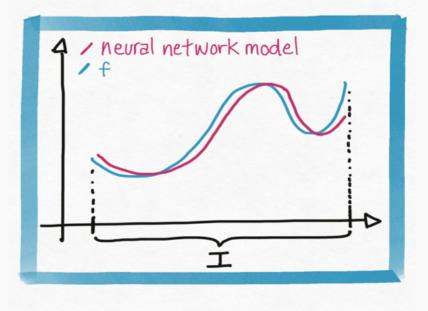








Neural Networks as Universal Approximators



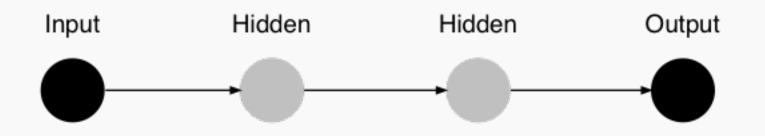
We have seen that neural networks can represent complex functions, but are there limitations on what a neural network can express?

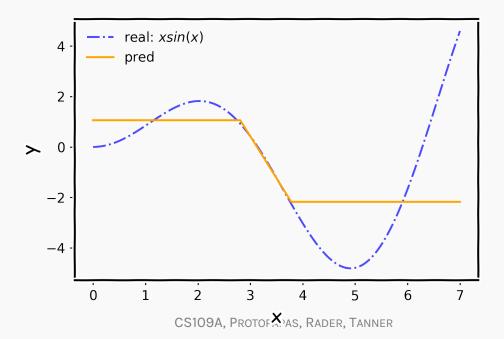
Theorem:

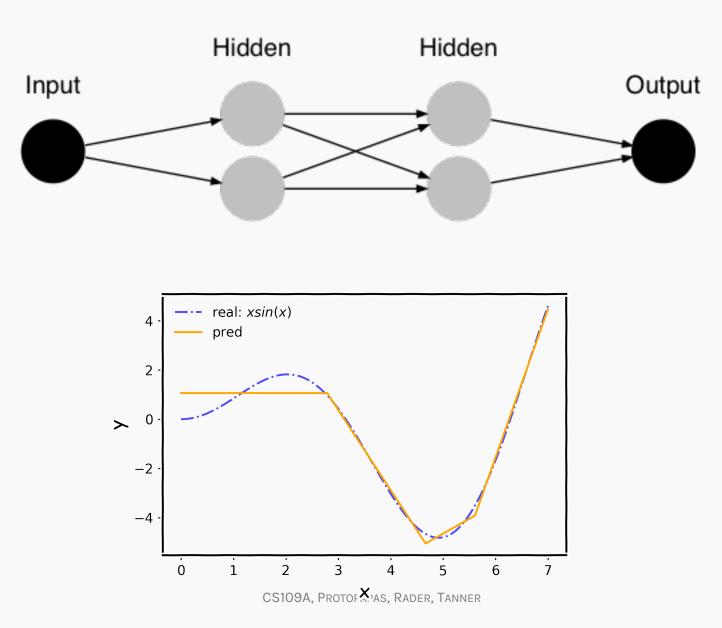
For any continuous function f defined on a bounded domain, we can find a neural network that approximates f with an arbitrary degree of accuracy.

One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy.

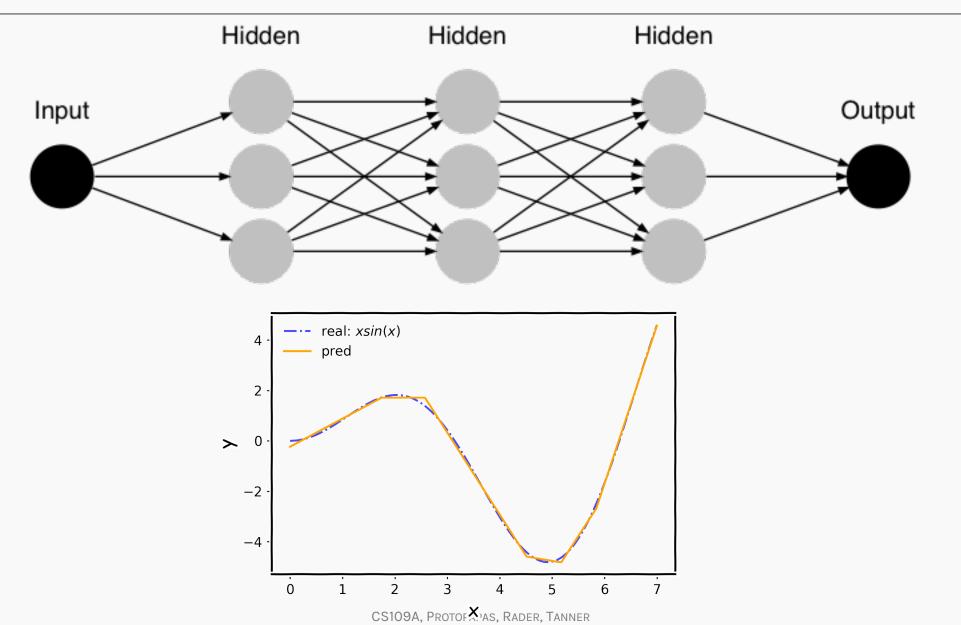
So why deeper?





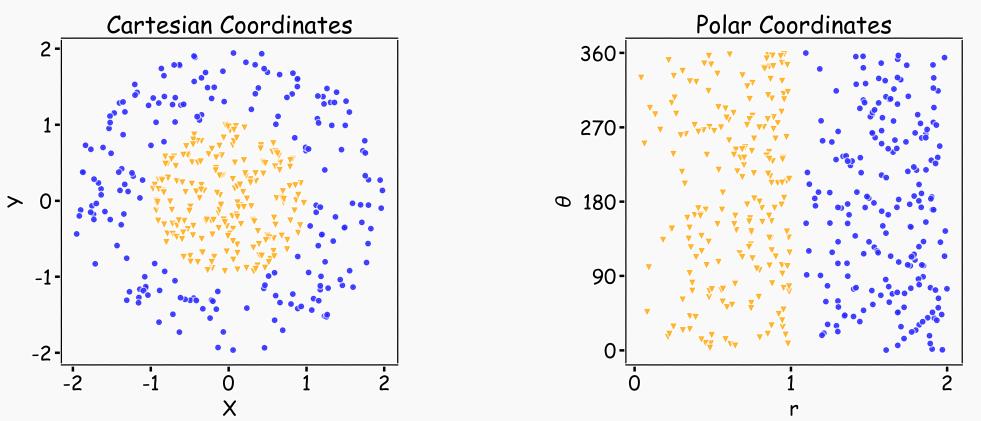


Layers



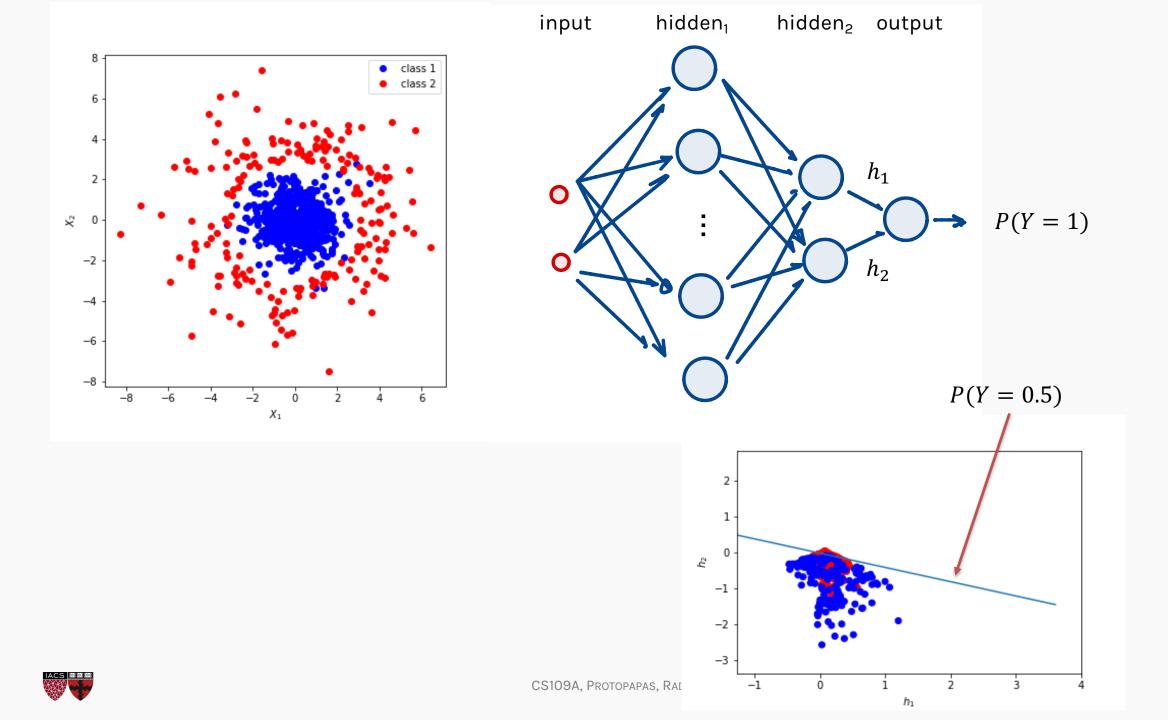
Why layers?

Representation matters!

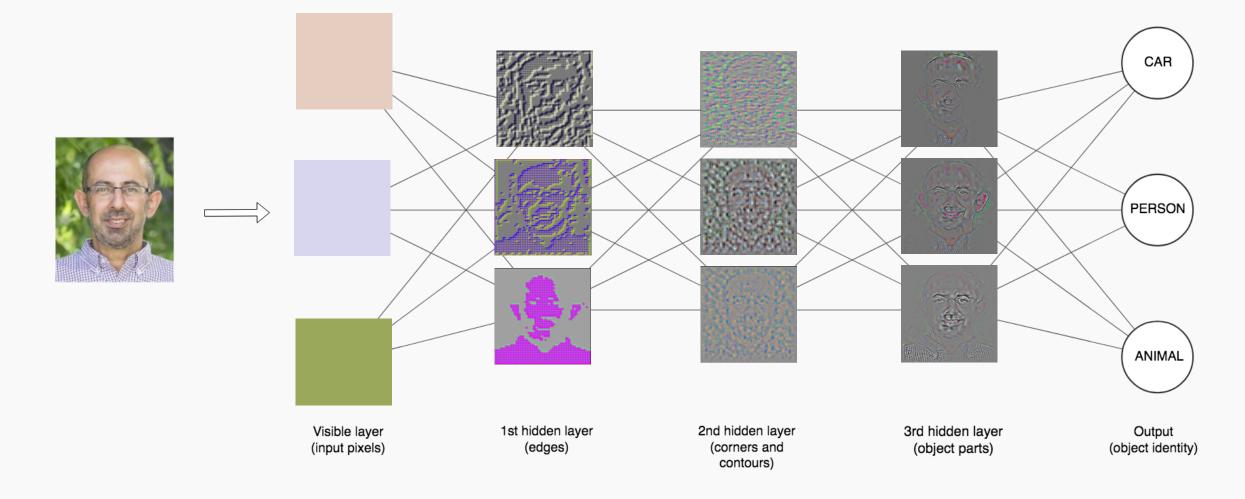


Neural networks can **learn useful representations** for the problem. This is another reason why they can be so powerful!

CS109A, PROTOPAPAS, RADER, TANNER

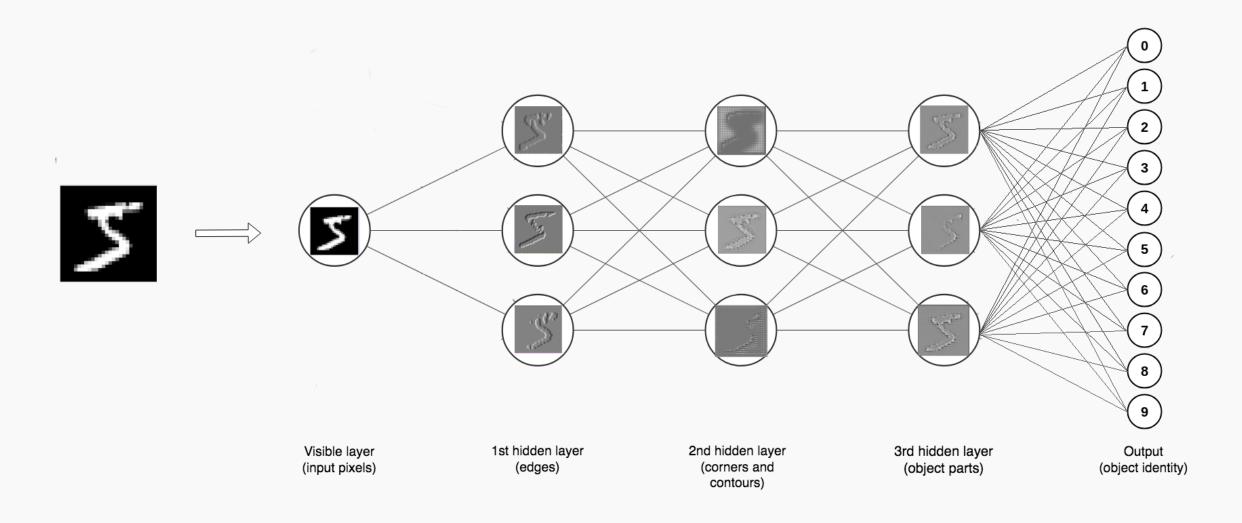


Depth = Repeated Compositions

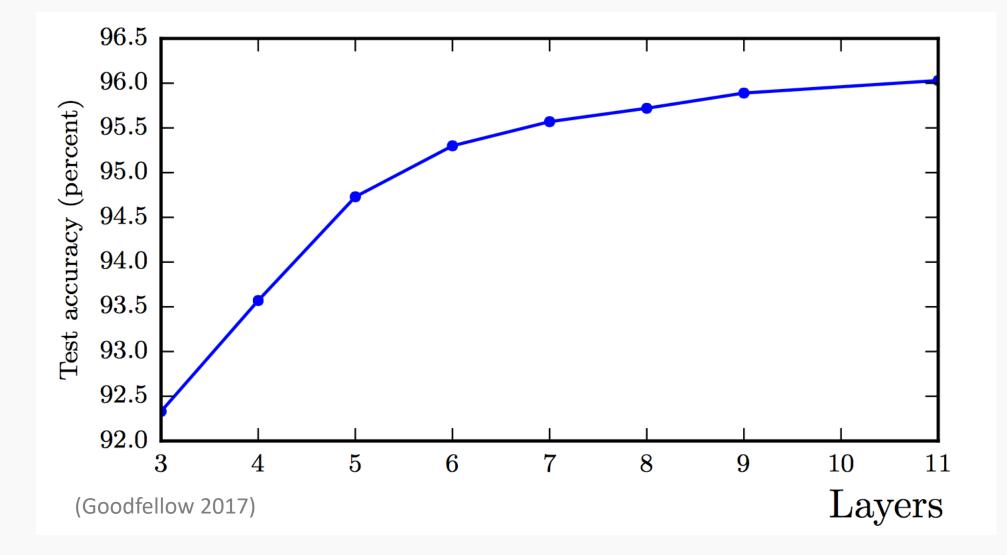


Hand-written digit recognition: MNIST data

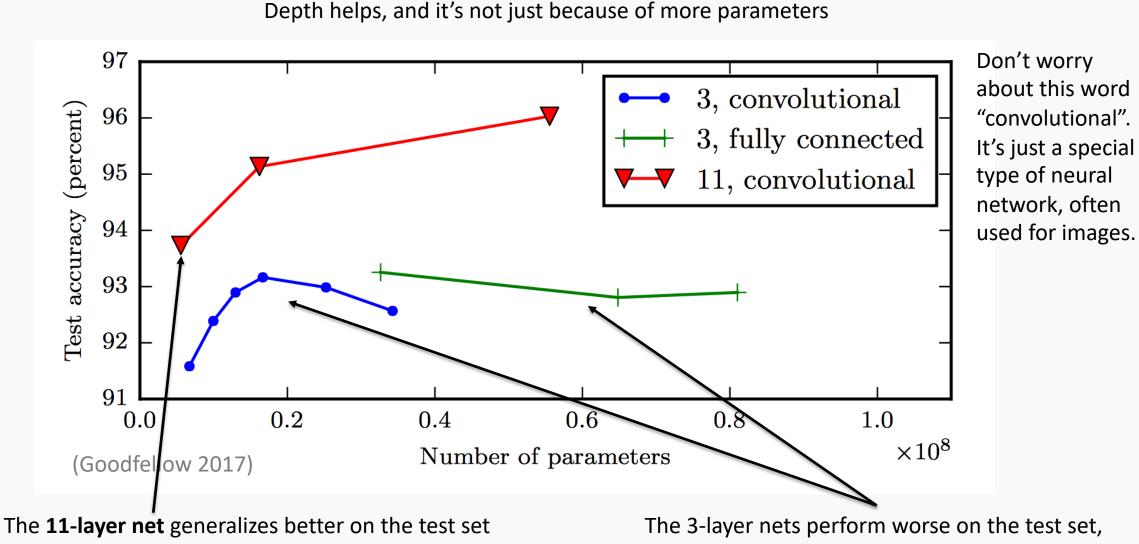
Depth = Repeated Compositions



Better Generalization with Depth



Shallow Nets Overfit More



when controlling for number of parameters.

even with similar number of total parameters.

Classifier using Keras on Iris data

