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Gradient Boosting
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Has a fixed
form fcx) computational

easy to

parametric interpret complexity
Linear Regression YES YES how

polynomial Regression yes NO Low

-

Regression Trees NO YES how

- -

Bagging and RF NO TENNO MEDIUM

z #

NO YES HIGH
K-nearest Neighbors

Comparison of Models: 

Choosing the right model isn’t just about minimizing the test errors. 
We want extra insights from our models:
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"Can a set of weak learners create a single strong learner?"
Leslie Gabriel Valiant 

How many jelly beans do you see? 
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Motivation for Boosting 

Question: Could we address the shortcomings of single decision trees 
models in some other way? 

For example, rather than performing variance reduction on complex 
trees, can we decrease the bias of simple trees - make them more 
expressive? 

Can we learn from our mistakes? 

A solution to this problem, making an expressive model from simple 
trees, is another class of ensemble methods called boosting. 
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Gradient Boosting 

The key intuition behind boosting is that one can take an ensemble of 
simple models {Th}h∈H and additively combine them into a single, more 
complex model.

Each model Th might be a poor fit for the data, but a linear combination 
of the ensemble:

can be expressive/flexible.

Question: But which models should we include in our ensemble? What 
should the coefficients or weights in the linear combination be? 
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Gradient Boosting: the algorithm 

Gradient boosting is a method for iteratively building a complex 
regression model T by adding simple models. 

Each new simple model added to the ensemble compensates for 
the weaknesses of the current ensemble. 
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Gradient Boosting: the algorithm 

1. Fit a simple model 𝑇(") on the training data 

{ 𝑥$, 𝑦$ , … , (𝑥%, 𝑦%)}

Set 𝑇 ← 𝑇(") .   

Compute the residuals {r1 , . . . , rN } for T. 

2. Fit a simple model, 𝑇($) , to the current residuals, i.e. train using

{ 𝑥$, 𝑟$ , … , (𝑥%, 𝑟%)}

3. Set 𝑇 ← 𝑇 + 𝜆𝑇($)

4. Compute residuals, set 𝑟& ← 𝑟& − 𝜆𝑇' 𝑥& , 𝑛 = 1,… , 𝑁

5. Repeat steps 2-4 until stopping condition met.

where 𝜆 is a constant called the learning rate. 
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Gradient Boosting: illustration 
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training data: { 𝑥!, 𝑦! , … , (𝑥", 𝑦")}
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Gradient Boosting: illustration 
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Fit a simple model 𝑇($)
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Gradient Boosting: illustration 
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Compute the residuals {r1 , . . . , rN } for T. 
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Gradient Boosting: illustration 
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train usin: { 𝑥!, 𝑟! , … , (𝑥", 𝑟")}
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Gradient Boosting: illustration 
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Set 𝑇 ← 𝑇 + 𝜆𝑇(!)
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Gradient Boosting: illustration 
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𝑟& ← 𝑟& − 𝜆𝑇' 𝑥&
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Why Does Gradient Boosting Work? 

Intuitively, each simple model T(i) we add to our ensemble model T, 
models the errors of T. 

Thus, with each addition of T(i), the residual is reduced 

𝑟& − 𝜆𝑇 ' (𝑥&)

Note that gradient boosting has a tuning parameter, 𝜆. 

If we want to easily reason about how to choose 𝜆 and investigate the 
effect of 𝜆 on the model T, we need a bit more mathematical formalism. 

In particular, how can we effectively descend through this optimization 
via an iterative algorithm?

We need to formulate gradient boosting as a type of gradient descent. 
17
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Gradient Boosting as Gradient Descent 

Often in regression, our objective is to minimize the MSE

Treating this as an optimization problem, we can try to directly 
minimize the MSE with respect to the predictions 

The update step for gradient descent would look like 
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Gradient Boosting as Gradient Descent (cont.) 

There are two reasons why minimizing the MSE with respect to  /𝑦&’s is 
not interesting: 

• We know where the minimum MSE occurs: /𝑦& = 𝑦&, for every n. 

• Learning sequences of predictions, /𝑦&!, … , /𝑦&' , …, does not produce a 
model. The predictions in the sequences do not depend on the 
predictors! 

23



CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting as Gradient Descent (cont.) 

The solution is to change the update step in gradient descent. Instead of 
using the gradient - the residuals - we use an approximation of the 
gradient that depends on the predictors: 

/𝑦 ← /𝑦& + 𝜆 𝑟̂& 𝑥& , 𝑛 = 1,… ,𝑁

In gradient boosting, we use a simple model to  approximate the 
residuals, 𝑟̂&(𝑥&), in each iteration. 

Motto: gradient boosting is a form of gradient descent with the MSE as 
the loss (objective) function. 

Technical note: note that gradient boosting is descending in a space of 
models or functions relating 𝑥& to 𝑦&! 
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Gradient Boosting as Gradient Descent (cont.) 

But why do we care that gradient boosting is gradient descent? 

By making this connection, we can import the massive amount of 
techniques for studying gradient descent to analyze gradient boosting.

For example, we can easily reason about how to choose the learning rate 
𝜆 in gradient boosting. 
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Choosing a Learning Rate 

Under ideal conditions, gradient descent iteratively approximates and 
converges to the optimum. 

When do we terminate gradient descent? 

• We can limit the number of iterations in the descent. But for an 
arbitrary choice of maximum iterations, we cannot guarantee that we 
are sufficiently close to the optimum in the end. 

• If the descent is stopped when the updates are sufficiently small (e.g. 
the residuals of T are small), we encounter a new problem: the 
algorithm may never terminate! 

Both problems have to do with the magnitude of the learning rate, 𝜆. 
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Choosing a Learning Rate 

For a constant learning rate, 𝜆, if 𝜆 is too small, it takes too many 
iterations to reach the optimum. 

If 𝜆 is too large, the algorithm may ‘bounce’ around the optimum and 
never get sufficiently close. 
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Today’s lucky student: Anyone awake!
Exercise goal 

Regression with Boosting
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