
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 22: Decision Trees

CS109A, PROTOPAPAS, RADER, TANNER 1

Outline

• Motivation

• Decision Trees

• Classification Trees

• Splitting Criteria

• Stopping Conditions & Pruning

• Regression Trees

1

CS109A, PROTOPAPAS, RADER, TANNER 2

Geometry of Data

Recall:

logistic regression for building classification boundaries works best when:

- the classes are well-separated in the feature space

- have a nice geometry to the classification boundary)

2

CS109A, PROTOPAPAS, RADER, TANNER
3

Geometry of Data

Recall:

the decision boundary is defined where the probability of being in class 1

and class 0 are equal, i.e.

! " = 1 = 1 − ! " = 1 ⇒. ! " = 1 = 0.5,

Which is equivalent to when the log-odds=0:

*+ = 0,

this equation defines a line or a hyperplane. It can be generalized with higher

order polynomial terms.

3

CS109A, PROTOPAPAS, RADER, TANNER 4

Geometry of Data

Question: Can you guess the equation that defines the decision boundary below?
−0.8%& + %(= 0 ⟹ %(= 0.8%& ⇒ ,-./.012 = 0.8 ,34

4

CS109A, PROTOPAPAS, RADER, TANNER 5

Geometry of Data

Question: How about these?

5

CS109A, PROTOPAPAS, RADER, TANNER 6

Geometry of Data

Question: Or these?

6

CS109A, PROTOPAPAS, RADER, TANNER 7

Geometry of Data

Notice that in all of the datasets the classes are still well-separated in the feature
space, but the decision boundaries cannot easily be described by single equations:

7

CS109A, PROTOPAPAS, RADER, TANNER 8

Geometry of Data

While logistic regression models with linear boundaries are intuitive to interpret
by examining the impact of each predictor on the log-odds of a positive
classification, it is less straightforward to interpret nonlinear decision boundaries
in context:

("#+2"&) − ")& + 10 = 0

It would be desirable to build models that:

1. allow for complex decision boundaries.

2. are also easy to interpret.

8

CS109A, PROTOPAPAS, RADER, TANNER 9

Interpretable Models

People in every walk of life have long been using interpretable models for
differentiating between classes of objects and phenomena:

9

CS109A, PROTOPAPAS, RADER, TANNER 10

Interpretable Models (cont.)

Or in the [inferential] data analysis world:

10

CS109A, PROTOPAPAS, RADER, TANNER
11

Decision Trees

It turns out that the simple flow charts in our examples can be formulated as

mathematical models for classification and these models have the properties we

desire; they are:

1. interpretable by humans

2. have sufficiently complex decision boundaries

3. the decision boundaries are locally linear, each component of the decision

boundary is simple to describe mathematically.

11

CS109A, PROTOPAPAS, RADER, TANNER

Decision Trees

12

CS109A, PROTOPAPAS, RADER, TANNER 13

The Geometry of Flow Charts

Flow charts whose graph is a tree (connected and no cycles) represents a model
called a decision tree.

Formally, a decision tree model is one in which the final outcome of the model is
based on a series of comparisons of the values of predictors against threshold
values.

In a graphical representation (flow chart),

• the internal nodes of the tree represent attribute testing.

• branching in the next level is determined by attribute value (yes/no).

• terminal leaf nodes represent class assignments.

13

CS109A, PROTOPAPAS, RADER, TANNER 14

The Geometry of Flow Charts

Flow charts whose graph is a tree
(connected and no cycles) represents
a model called a decision tree.

Formally, a decision tree model is one
in which the final outcome of the
model is based on a series of
comparisons of the values of
predictors against threshold values.

14

CS109A, PROTOPAPAS, RADER, TANNER 15

The Geometry of Flow Charts

Every flow chart tree corresponds to a partition of the feature space by axis
aligned lines or (hyper) planes. Conversely, every such partition can be written as
a flow chart tree.

15

CS109A, PROTOPAPAS, RADER, TANNER 16

The Geometry of Flow Charts

Each comparison and branching represents splitting a region in the
feature space on a single feature. Typically, at each iteration, we split
once along one dimension (one predictor). Why?

16

CS109A, PROTOPAPAS, RADER, TANNER 17

Learning the Model

Given a training set, learning a decision tree model for binary
classification means:

• producing an optimal partition of the feature space with axis-
aligned linear boundaries (very interpretable!),

• each region is predicted to have a class label based on the largest
class of the training points in that region (Bayes’ classifier) when
performing prediction.

17

CS109A, PROTOPAPAS, RADER, TANNER
18

Learning the Model

Learning the smallest ‘optimal’ decision tree for any given set of data

is NP complete for numerous simple definitions of ‘optimal’. Instead,

we will seek a reasonably model using a greedy algorithm.

1. Start with an empty decision tree (undivided feature space)

2. Choose the ‘optimal’ predictor on which to split and choose the

‘optimal’ threshold value for splitting.

3. Recurse on each new node until stopping condition is met

Now, we need only define our splitting criterion and stopping

condition.

18

CS109A, PROTOPAPAS, RADER, TANNER
19

Numerical vs Categorical Attributes

Note that the ‘compare and branch’ method by which we defined

classification tree works well for numerical features.

However, if a feature is categorical (with more than two possible

values), comparisons like feature < threshold does not make

sense.

How can we handle this?

A simple solution is to encode the values of a categorical feature using

numbers and treat this feature like a numerical variable. This is

indeed what some computational libraries (e.g. sklearn) do,

however, this method has drawbacks.
19

CS109A, PROTOPAPAS, RADER, TANNER 20

Numerical vs Categorical Attributes

20

Example
Supposed the feature we want to split on is color, and the values are: Red, Blue and Yellow. If we
encode the categories numerically as:

Red = 0, Blue = 1, Yellow = 2

Then the possible non-trivial splits on color are

{{Red}, {Blue, Yellow}} {{Red, Blue},{Yellow}}

But if we encode the categories numerically as:

Red = 2, Blue = 0, Yellow = 1

The possible splits are

{{Blue}, {Yellow, Red}} {{Blue,Yellow}, {Red}}

Depending on the encoding, the splits we can optimize over can be different!

CS109A, PROTOPAPAS, RADER, TANNER
21

Numerical vs Categorical Attributes

In practice, the effect of our choice of naive encoding of categorical

variables are often negligible - models resulting from different choices

of encoding will perform comparably.

In cases where you might worry about encoding, there is a more

sophisticated way to numerically encode the values of categorical

variables so that one can optimize over all possible partitions of the

values of the variable.

This more principled encoding scheme is computationally more

expensive but is implemented in a number of computational libraries

(e.g. R’s randomForest).

21

CS109A, PROTOPAPAS, RADER, TANNER

Splitting Criteria

22

CS109A, PROTOPAPAS, RADER, TANNER 23

Optimality of Splitting

While there is no ‘correct’ way to define an optimal split, there are
some common sensical guidelines for every splitting criterion:

• the regions in the feature space should grow progressively more
pure with the number of splits. That is, we should see each region
‘specialize’ towards a single class.

• the fitness metric of a split should take a differentiable form
(making optimization possible).

• we shouldn’t end up with empty regions - regions containing no
training points.

23

CS109A, PROTOPAPAS, RADER, TANNER 24

Classification Error

Suppose we have ! number of predictors and " classes.

Suppose we select the #th predictor and split a region containing $
number of training points along the threshold %& ∈ ℝ .

We can assess the quality of this split by measuring the classification
error made by each newly created region, *+, *-:

where /(1|*3) is the proportion of training points in *3 that are
labeled class 1.

24

Error(i|j, tj) = 1�max
k

p(k|Ri)

CS109A, PROTOPAPAS, RADER, TANNER 25

Classification Error

We can now try to find the predictor ! and the threshold "# that minimizes
the average classification error over the two regions, weighted by the
population of the regions:

where $% is the number of training points inside region &%.
25

min
j,tj

⇢
N1

N
Error(1|j, tj) +

N2

N
Error(2|j, tj)

�

CS109A, PROTOPAPAS, RADER, TANNER 26

Gini Index
Suppose we have ! number of predictors, " number of training points and
classes.

Suppose we select the $th predictor and split a region containing " number
of training points along the threshold %& ∈ ℝ .

We can assess the quality of this split by measuring the purity of each
newly created region,)*,),. This metric is called the Gini Index:

Question: What is the effect of squaring the proportions of each class?
What is the effect of summing the squared proportions of classes within
each region?

26

Gini(i|j, tj) = 1�
X

k

p(k|Ri)
2

CS109A, PROTOPAPAS, RADER, TANNER 27

Gini Index

We can now try to find the predictor ! and the threshold "# that
minimizes the average Gini Index over the two regions, weighted by
the population of the regions:

where $% is the number of training points inside region &%.
27

Class 1 Class 2 Gini(i|j, tj)
R1 0 6 1� (6/62 + 0/62) = 0
R2 5 8 1� [(5/13)2 + (8/13)2] = 80/169

Example

min
j,tj

⇢
N1

N
Gini(1|j, tj) +

N2

N
Gini(2|j, tj)

�

CS109A, PROTOPAPAS, RADER, TANNER
28

Information Theory

The last metric for evaluating the quality of a split is motivated by metrics of

uncertainty in information theory.

Ideally, our decision tree should split the feature space into regions such that each

region represents a single class. In practice, the training points in each region is

distributed over multiple classes, e.g.:

However, though both imperfect, !" is clearly sending a stronger ‘signal’ for a

single class (Class 2) than !#.

28

Class 1 Class 2
R1 1 6
R2 5 6

CS109A, PROTOPAPAS, RADER, TANNER
29

Information Theory

One way to quantify the strength of a signal in a particular region is to analyze the

distribution of classes within the region. We compute the entropy of this

distribution.

For a random variable with a discrete distribution, the entropy is computed by:

Higher entropy means the distribution is uniform-like (flat histogram) and thus

values sampled from it are ‘less predictable’ (all possible values are equally

probable).

Lower entropy means the distribution has more defined peaks and valleys and thus

values sampled from it are ‘more predictable’ (values around the peaks are more

probable).

29

H(X) = �
X

x2X

p(x) log2 p(x)

CS109A, PROTOPAPAS, RADER, TANNER 30

Entropy

Suppose we have ! number of predictors, " number of training points and
classes.

Suppose we select the $th predictor and split a region containing " number of
training points along the threshold %& ∈ ℝ .

We can assess the quality of this split by measuring the entropy of the class
distribution in each newly created region,)*,),:

Note: we are actually computing the conditional entropy of the distribution of
training points amongst the # classes given that the point is in region ..

30

min
j,tj

⇢
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

�

CS109A, PROTOPAPAS, RADER, TANNER 31

Entropy

We can now try to find the predictor j and the threshold tj that
minimizes the average entropy over the two regions, weighted by the
population of the regions:

31

Class 1 Class 2 Entropy(i|j, tj)
R1 0 6 �(66 log2

6
6 + 0

6 log2
0
6) = 0

R2 5 8 �(5
13 log2

5
13 + 8

13 log2
8
13) ⇡ 1.38

Example

min
j,tj

⇢
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

�

CS109A, PROTOPAPAS, RADER, TANNER 32

Comparison of Criteria

Recall our intuitive guidelines for splitting criteria, which of the three
criteria fits our guideline the best?

We have the following comparison of the value of the three criteria at
different levels of purity (from 0 to 1) in a single region (for binary
outcomes).

32

CS109A, PROTOPAPAS, RADER, TANNER
33

Comparison of Criteria

Recall our intuitive guidelines for splitting criteria, which of the three

criteria fits our guideline the best?

To note that entropy penalizes impurity the most is not to say that it
is the best splitting criteria. For one, a model with purer leaf nodes

on a training set may not perform better on the testing test.

Another factor to consider is the size of the tree (i.e. model

complexity) each criteria tends to promote.

To compare different decision tree models, we need to first discuss

stopping conditions.

33

CS109A, PROTOPAPAS, RADER, TANNER

Stopping Conditions & Pruning

34

CS109A, PROTOPAPAS, RADER, TANNER
35

Variance vs Bias

If we don’t terminate the decision tree learning algorithm manually,

the tree will continue to grow until each region defined by the model

possibly contains exactly one training point (and the model attains

100% training accuracy).

To prevent this from happening, we can simply stop the algorithm at a

particular depth.

But how do we determine the appropriate depth?

35

CS109A, PROTOPAPAS, RADER, TANNER 36

Variance vs Bias

36

CS109A, PROTOPAPAS, RADER, TANNER
37

Variance vs Bias

We make some observations about our models:

• (High Bias) A tree of depth 4 is not a good fit for the training data - it’s unable to

capture the nonlinear boundary separating the two classes.

• (Low Bias) With an extremely high depth, we can obtain a model that correctly

classifies all points on the boundary (by zig-zagging around each point).

• (Low Variance) The tree of depth 4 is robust to slight perturbations in the training data

- the square carved out by the model is stable if you move the boundary points a bit.

• (High Variance) Trees of high depth are sensitive to perturbations in the training data,

especially to changes in the boundary points.

Not surprisingly, complex trees have low bias (able to capture more complex geometry in

the data) but high variance (can overfit). Complex trees are also harder to interpret and

more computationally expensive to train.

37

CS109A, PROTOPAPAS, RADER, TANNER 38

Stopping Conditions

Common simple stopping conditions:

• Don’t split a region if all instances in the region belong to the same class.

• Don’t split a region if the number of instances in the sub-region will fall below
pre-defined threshold (min_samples_leaf).

• Don’t split a region if the total number of leaves in the tree will exceed pre-
defined threshold.

The appropriate thresholds can be determined by evaluating the model on a held-
out data set or, better yet, via cross-validation.

38

CS109A, PROTOPAPAS, RADER, TANNER 39

Stopping Conditions

More restrictive stopping conditions:

• Compute the gain in purity, gain in information, or reduction in
entropy of splitting a region R into R1 and R2:

!"#$ % = Δ % = (% − *+
* (%, − *-

* ((%/)

where m is a metric like the Gini Index or entropy. Don’t split if the
gain is less than some pre-defined threshold (min_impurity_decrease).

39

CS109A, PROTOPAPAS, RADER, TANNER 40

Alternative to Using Stopping Conditions

What is the major issue with pre-specifying a stopping condition?

• you may stop too early or stop too late.

How can we fix this issue?

• choose several stopping criterion (set minimal Gain(R) at
various levels) and cross-validate which is the best.

What is an alternative approach to this issue?

• Don’t stop. Instead prune back!

40

CS109A, PROTOPAPAS, RADER, TANNER 41

To Hot Dog or Not Hot Dog…

41

CS109A, PROTOPAPAS, RADER, TANNER 42

Hot Dog or Not

42

width ≤ 1.05in

width ≤ 0.725in

yes no

length ≤ 6.25in

yes no

length ≤ 7.25in

yes no yes no

CS109A, PROTOPAPAS, RADER, TANNER 43

Motivation for Pruning

43

CS109A, PROTOPAPAS, RADER, TANNER 44

Motivation for Pruning: if we were to stop early

44

CS109A, PROTOPAPAS, RADER, TANNER 45

Motivation for Pruning

45

CS109A, PROTOPAPAS, RADER, TANNER 46

Motivation for Pruning

46

Full	Tree

Simple	Tree

PRUNING	

Early	Stopping

CS109A, PROTOPAPAS, RADER, TANNER 47

Pruning

Rather than preventing a complex tree from growing, we can obtain a simpler
tree by ‘pruning’ a complex one.

There are many method of pruning, a common one is cost complexity pruning,
where by we select from a array of smaller subtrees of the full model that
optimizes a balance of performance and efficiency.

That is, we measure

! " = $%%&% " + ("

where T is a decision (sub) tree, " is the number of leaves in the tree and (is
the parameter for penalizing model complexity.

47

CS109A, PROTOPAPAS, RADER, TANNER 48

Pruning our Tree of Hot Dogs

48

Tree Error # Leaves Total
Cost

Full (T) 0 6 0.06
T1 0.0434 5 0.0934
T2 0.0434 5 0.0934

Let ! = 0.01:

CS109A, PROTOPAPAS, RADER, TANNER 49

Pruning our Tree of Hot Dogs

49

Tree Error # Leaves Total
Cost

Full (T) 0 6 1.2
T1 0.0434 5 1.0434
T2 0.0434 5 1.0434

Let ! = 0.2:

CS109A, PROTOPAPAS, RADER, TANNER 50

Pruning

! " = $%%&% " + ("

1. Fix (.

2. Find best tree for a given (and based on cost complexity C.

3. Tune for the best (using CV (what should be the error measure?)

50

CS109A, PROTOPAPAS, RADER, TANNER 51

Pruning

The pruning algorithm:

1. Start with a full tree !" (each leaf node is pure)

2. Replace a subtree in !" with a leaf node to obtain a pruned tree !#. This subtree
should be selected to minimize

$%%&% !" − $%%&%(!#)
!" − |!#|

3. Iterate this pruning process to obtain !", !#, … , !-where !- is the tree containing
just the root of !"

4. Select the optimal tree !. by cross validation.

Note: you might wonder where we are computing the cost-complexity /(!0). One
can prove that this process is equivalent to explicitly optimizing C at each step.

51

CS109A, PROTOPAPAS, RADER, TANNER

Decision Trees for Regression (A look ahead)

52

CS109A, PROTOPAPAS, RADER, TANNER 53

Next

How can this decision tree approach apply to a regression problem
(quantitative outcome)?

Questions to consider:

• What would be a reasonable loss function?
• How would you determine any splitting criteria?
• How would you perform prediction in each leaf?

A picture is worth a thousand words…

53

CS109A, PROTOPAPAS, RADER, TANNER 54

Regression Tree Example

54

How do we decide a split here?

CS109A, PROTOPAPAS, RADER, TANNER 55

Regression Tree (max_depth = 1)

55

CS109A, PROTOPAPAS, RADER, TANNER 56

Regression Tree (max_depth = 2)

56

CS109A, PROTOPAPAS, RADER, TANNER 57

Regression Tree (max_depth = 5)

57

CS109A, PROTOPAPAS, RADER, TANNER 58

Regression Tree (max_depth = 10)

58

CS109A, PROTOPAPAS, RADER, TANNER 59

Adaptations for Regression

With just two modifications, we can use a decision tree model for regression:

1. The three splitting criteria we’ve examined each promoted splits that were pure -
new regions increasingly specialized in a single class.

A. For classification, purity of the regions is a good indicator the performance
of the model.

B. For regression, we want to select a splitting criterion that promotes splits
that improves the predictive accuracy of the model as measured by, say,
the MSE.

2. For regression with output in ℝ, we want to label each region in the model with a
real number - typically the average of the output values of the training points
contained in the region.

59

Exercise Time!

Exercise (graded): Decision Tree Classifiers

60

