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Geometry of Data

Recall:

logistic regression for building classification boundaries works best when:

- the classes are well-separated in the feature space 

- have a nice geometry to the classification boundary)
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Geometry of Data

Recall:

the decision boundary is defined where the probability of being in class 1 

and class 0 are equal, i.e. 

! " = 1 = 1 − ! " = 1 ⇒. ! " = 1 = 0.5, 

Which is equivalent to when the log-odds=0:  

*+ = 0,

this equation defines a line or a hyperplane.  It can be generalized with higher 

order polynomial terms.
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Geometry of Data

Question: Can you guess the equation that defines the decision boundary below?
−0.8%& + %( = 0 ⟹ %( = 0.8%& ⇒ ,-./.012 = 0.8 ,34
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Geometry of Data

Question: How about these?
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Geometry of Data

Question: Or these?
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Geometry of Data

Notice that in all of the datasets the classes are still well-separated in the feature 
space, but the decision boundaries cannot easily be described by single equations: 
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Geometry of Data

While logistic regression models with linear boundaries are intuitive to interpret 
by examining the impact of each predictor on the log-odds of a positive 
classification, it is less straightforward to interpret nonlinear decision boundaries 
in context: 

("#+2"&) − ")& + 10 = 0

It would be desirable to build models that:

1. allow for complex decision boundaries.

2. are also easy to interpret. 
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Interpretable Models

People in every walk of life have long been using interpretable models for 
differentiating between classes of objects and phenomena: 
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Interpretable Models (cont.)

Or in the [inferential] data analysis world:
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Decision Trees

It turns out that the simple flow charts in our examples can be formulated as 

mathematical models for classification and these models have the properties we 

desire; they are: 

1. interpretable by humans 

2. have sufficiently complex decision boundaries 

3. the decision boundaries are locally linear, each component of the decision 

boundary is simple to describe mathematically. 
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Decision Trees
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The Geometry of Flow Charts 

Flow charts whose graph is a tree (connected and no cycles) represents a model 
called a decision tree. 

Formally, a decision tree model is one in which the final outcome of the model is 
based on a series of comparisons of the values of predictors against threshold 
values. 

In a graphical representation (flow chart), 

• the internal nodes of the tree represent attribute testing.

• branching in the next level is determined by attribute value (yes/no).

• terminal leaf nodes represent class assignments.

13



CS109A, PROTOPAPAS, RADER, TANNER 14

The Geometry of Flow Charts 

Flow charts whose graph is a tree 
(connected and no cycles) represents 
a model called a decision tree. 

Formally, a decision tree model is one 
in which the final outcome of the 
model is based on a series of 
comparisons of the values of 
predictors against threshold values. 

14



CS109A, PROTOPAPAS, RADER, TANNER 15

The Geometry of Flow Charts

Every flow chart tree corresponds to a partition of the feature space by axis 
aligned lines or (hyper) planes. Conversely, every such partition can be written as 
a flow chart tree. 
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The Geometry of Flow Charts

Each comparison and branching represents splitting a region in the 
feature space on a single feature. Typically, at each iteration, we split 
once along one dimension (one predictor).  Why?
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Learning the Model

Given a training set, learning a decision tree model for binary 
classification means:

• producing an optimal partition of the feature space with axis-
aligned linear boundaries (very interpretable!), 

• each region is predicted to have a class label based on the largest 
class of the training points in that region (Bayes’ classifier) when 
performing prediction. 

17
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Learning the Model

Learning the smallest ‘optimal’ decision tree for any given set of data 

is NP complete for numerous simple definitions of ‘optimal’. Instead, 

we will seek a reasonably model using a greedy algorithm. 

1. Start with an empty decision tree (undivided feature space) 

2. Choose the ‘optimal’ predictor on which to split and choose the 

‘optimal’ threshold value for splitting. 

3. Recurse on each new node until stopping condition is met 

Now, we need only define our splitting criterion and stopping 

condition. 
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Numerical vs Categorical Attributes

Note that the ‘compare and branch’ method by which we defined 

classification tree works well for numerical features. 

However, if a feature is categorical (with more than two possible 

values), comparisons like feature < threshold does not make 

sense. 

How can we handle this?  

A simple solution is to encode the values of a categorical feature using 

numbers and treat this feature like a numerical variable.  This is 

indeed what some computational libraries (e.g. sklearn) do, 

however, this method has drawbacks. 
19
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Numerical vs Categorical Attributes

20

Example
Supposed the feature we want to split on is color, and the values are: Red, Blue and Yellow. If we 
encode the categories numerically as:

Red = 0,  Blue = 1, Yellow = 2

Then the possible non-trivial splits on color are

{{Red}, {Blue, Yellow}}                   {{Red, Blue},{Yellow}}

But if we encode the categories numerically as:

Red = 2, Blue = 0, Yellow = 1

The possible splits are

{{Blue}, {Yellow, Red}}                    {{Blue,Yellow}, {Red}} 

Depending on the encoding, the splits we can optimize over can be different!
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Numerical vs Categorical Attributes

In practice, the effect of our choice of naive encoding of categorical 

variables are often negligible - models resulting from different choices 

of encoding will perform comparably. 

In cases where you might worry about encoding, there is a more 

sophisticated way to numerically encode the values of categorical 

variables so that one can optimize over all possible partitions of the 

values of the variable.  

This more principled encoding scheme is computationally more 

expensive but is implemented in a number of computational libraries 

(e.g. R’s randomForest). 

21
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Splitting Criteria

22
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Optimality of Splitting 

While there is no ‘correct’ way to define an optimal split, there are 
some common sensical guidelines for every splitting criterion: 

• the regions in the feature space should grow progressively more 
pure with the number of splits. That is, we should see each region 
‘specialize’ towards a single class. 

• the fitness metric of a split should take a differentiable form 
(making optimization possible). 

• we shouldn’t end up with empty regions - regions containing no 
training points. 

23



CS109A, PROTOPAPAS, RADER, TANNER 24

Classification Error

Suppose we have ! number of predictors and " classes. 

Suppose we select the #th predictor and split a region containing $
number of training points along the threshold %& ∈ ℝ .

We can assess the quality of this split by measuring the classification 
error made by each newly created region, *+, *-:

where /(1|*3) is the proportion of training points in *3 that are 
labeled class 1.

24

Error(i|j, tj) = 1�max
k

p(k|Ri)
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Classification Error

We can now try to find the predictor ! and the threshold "# that minimizes 
the average classification error over the two regions, weighted by the 
population of the regions: 

where $% is the number of training points inside region &%. 
25

min
j,tj

⇢
N1

N
Error(1|j, tj) +

N2

N
Error(2|j, tj)

�
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Gini Index
Suppose we have ! number of predictors, " number of training points and 
# classes. 

Suppose we select the $th predictor and split a region containing " number 
of training points along the threshold %& ∈ ℝ . 

We can assess the quality of this split by measuring the purity of each 
newly created region, )*, ),. This metric is called the Gini Index: 

Question: What is the effect of squaring the proportions of each class? 
What is the effect of summing the squared proportions of classes within 
each region? 

26

Gini(i|j, tj) = 1�
X

k

p(k|Ri)
2
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Gini Index

We can now try to find the predictor ! and the threshold "# that 
minimizes the average Gini Index over the two regions, weighted by 
the population of the regions: 

where $% is the number of training points inside region &%. 
27

Class 1 Class 2 Gini(i|j, tj)
R1 0 6 1� (6/62 + 0/62) = 0
R2 5 8 1� [(5/13)2 + (8/13)2] = 80/169

Example

min
j,tj

⇢
N1

N
Gini(1|j, tj) +

N2

N
Gini(2|j, tj)

�
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Information Theory

The last metric for evaluating the quality of a split is motivated by metrics of 

uncertainty in information theory. 

Ideally, our decision tree should split the feature space into regions such that each 

region represents a single class. In practice, the training points in each region is 

distributed over multiple classes, e.g.: 

However, though both imperfect, !" is clearly sending a stronger ‘signal’ for a 

single class (Class 2) than !#. 

28

Class 1 Class 2
R1 1 6
R2 5 6
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Information Theory

One way to quantify the strength of a signal in a particular region is to analyze the 

distribution of classes within the region. We compute the entropy of this 

distribution. 

For a random variable with a discrete distribution, the entropy is computed by: 

Higher entropy means the distribution is uniform-like (flat histogram) and thus 

values sampled from it are ‘less predictable’ (all possible values are equally 

probable). 

Lower entropy means the distribution has more defined peaks and valleys and thus 

values sampled from it are ‘more predictable’ (values around the peaks are more 

probable). 

29

H(X) = �
X

x2X

p(x) log2 p(x)
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Entropy

Suppose we have ! number of predictors, " number of training points and 
# classes. 

Suppose we select the $th predictor and split a region containing " number of 
training points along the threshold %& ∈ ℝ . 

We can assess the quality of this split by measuring the entropy of the class 
distribution in each newly created region, )*, ),:

Note: we are actually computing the conditional entropy of the distribution of 
training points amongst the # classes given that the point is in region .. 

30

min
j,tj

⇢
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

�
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Entropy

We can now try to find the predictor j and the threshold tj that 
minimizes the average entropy over the two regions, weighted by the 
population of the regions: 

31

Class 1 Class 2 Entropy(i|j, tj)
R1 0 6 �( 66 log2

6
6 + 0

6 log2
0
6 ) = 0

R2 5 8 �( 5
13 log2

5
13 + 8

13 log2
8
13 ) ⇡ 1.38

Example

min
j,tj

⇢
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

�
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Comparison of Criteria

Recall our intuitive guidelines for splitting criteria, which of the three 
criteria fits our guideline the best? 

We have the following comparison of the value of the three criteria at 
different levels of purity (from 0 to 1) in a single region (for binary 
outcomes). 

32
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Comparison of Criteria 

Recall our intuitive guidelines for splitting criteria, which of the three 

criteria fits our guideline the best? 

To note that entropy penalizes impurity the most is not to say that it 
is the best splitting criteria. For one, a model with purer leaf nodes 

on a training set may not perform better on the testing test. 

Another factor to consider is the size of the tree (i.e. model 

complexity) each criteria tends to promote. 

To compare different decision tree models, we need to first discuss 

stopping conditions. 

33
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Stopping Conditions & Pruning

34
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Variance vs Bias

If we don’t terminate the decision tree learning algorithm manually, 

the tree will continue to grow until each region defined by the model 

possibly contains exactly one training point (and the model attains 

100% training accuracy). 

To prevent this from happening, we can simply stop the algorithm at a 

particular depth. 

But how do we determine the appropriate depth? 

35



CS109A, PROTOPAPAS, RADER, TANNER 36

Variance vs Bias

36
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Variance vs Bias

We make some observations about our models: 

• (High Bias) A tree of depth 4 is not a good fit for the training data - it’s unable to 

capture the nonlinear boundary separating the two classes. 

• (Low Bias) With an extremely high depth, we can obtain a model that correctly 

classifies all points on the boundary (by zig-zagging around each point). 

• (Low Variance) The tree of depth 4 is robust to slight perturbations in the training data 

- the square carved out by the model is stable if you move the boundary points a bit. 

• (High Variance) Trees of high depth are sensitive to perturbations in the training data, 

especially to changes in the boundary points. 

Not surprisingly, complex trees have low bias (able to capture more complex geometry in 

the data) but high variance (can overfit). Complex trees are also harder to interpret and 

more computationally expensive to train. 

37
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Stopping Conditions

Common simple stopping conditions: 

• Don’t split a region if all instances in the region belong to the same class.

• Don’t split a region if the number of instances in the sub-region will fall below 
pre-defined threshold (min_samples_leaf). 

• Don’t split a region if the total number of leaves in the tree will exceed pre-
defined threshold. 

The appropriate thresholds can be determined by evaluating the model on a held-
out data set or, better yet, via cross-validation. 

38
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Stopping Conditions

More restrictive stopping conditions: 

• Compute the gain in purity, gain in information, or reduction in 
entropy of splitting a region R into R1 and R2:

!"#$ % = Δ % = ( % − *+
* ( %, − *-

* ((%/)

where m is a metric like the Gini Index or entropy. Don’t split if the 
gain is less than some pre-defined threshold (min_impurity_decrease). 

39
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Alternative to Using Stopping Conditions

What is the major issue with pre-specifying a stopping condition?

• you may stop too early or stop too late.

How can we fix this issue?

• choose several stopping criterion (set minimal Gain(R) at 
various levels) and cross-validate which is the best.

What is an alternative approach to this issue?

• Don’t stop.  Instead prune back!

40



CS109A, PROTOPAPAS, RADER, TANNER 41

To Hot Dog or Not Hot Dog…

41
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Hot Dog or Not

42

width ≤ 1.05in

width ≤ 0.725in

yes no

length ≤ 6.25in

yes no

length ≤ 7.25in

yes no yes no
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Motivation for Pruning

43
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Motivation for Pruning: if we were to stop early

44
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Motivation for Pruning

45
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Motivation for Pruning

46

Full	Tree

Simple	Tree

PRUNING	

Early	Stopping
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Pruning

Rather than preventing a complex tree from growing, we can obtain a simpler 
tree by ‘pruning’ a complex one. 

There are many method of pruning, a common one is cost complexity pruning, 
where by we select from a array of smaller subtrees of the full model that 
optimizes a balance of performance and efficiency. 

That is, we measure

! " = $%%&% " + ( "

where T is a decision (sub) tree, " is the number of leaves in the tree and ( is 
the parameter for penalizing model complexity.

47
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Pruning our Tree of Hot Dogs

48

Tree Error # Leaves Total 
Cost

Full (T) 0 6 0.06
T1 0.0434 5 0.0934
T2 0.0434 5 0.0934

Let ! = 0.01:
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Pruning our Tree of Hot Dogs

49

Tree Error # Leaves Total 
Cost

Full (T) 0 6 1.2
T1 0.0434 5 1.0434
T2 0.0434 5 1.0434

Let ! = 0.2:
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Pruning

! " = $%%&% " + ( "

1. Fix (.

2. Find best tree for a given ( and based on cost complexity C.

3. Tune for the best ( using CV (what should be the error measure?) 

50
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Pruning

The pruning algorithm:

1. Start with a full tree !" (each leaf node is pure)

2. Replace a subtree in !" with a leaf node to obtain a pruned tree !#. This subtree 
should be selected to minimize

$%%&% !" − $%%&%(!#)
!" − |!#|

3. Iterate this pruning process to obtain !", !#, … , !-where !- is the tree containing 
just the root of !"

4. Select the optimal tree !. by cross validation.

Note: you might wonder where we are computing the cost-complexity /(!0). One 
can prove that this process is equivalent to explicitly optimizing C at each step. 

51
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Decision Trees for Regression (A look ahead)

52
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Next 

How can this decision tree approach apply to a regression problem 
(quantitative outcome)?

Questions to consider:

• What would be a reasonable loss function?  
• How would you determine any splitting criteria?
• How would you perform prediction in each leaf?

A picture is worth a thousand words…

53
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Regression Tree Example

54

How do we decide a split here?
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Regression Tree (max_depth = 1)

55
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Regression Tree (max_depth = 2)

56
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Regression Tree (max_depth = 5)
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Regression Tree (max_depth = 10)

58
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Adaptations for Regression

With just two modifications, we can use a decision tree model for regression: 

1. The three splitting criteria we’ve examined each promoted splits that were pure -
new regions increasingly specialized in a single class. 

A. For classification, purity of the regions is a good indicator the performance 
of the model. 

B. For regression, we want to select a splitting criterion that promotes splits 
that improves the predictive accuracy of the model as measured by, say, 
the MSE. 

2. For regression with output in ℝ, we want to label each region in the model with a 
real number - typically the average of the output values of the training points 
contained in the region. 

59



Exercise Time!

Exercise (graded): Decision Tree Classifiers

60


