Bootstrapping and Confidence Intervals

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

In the lack of active imagination, parallel universes and the likes, we need an alternative way of producing fake data set that resemble the parallel universes.

Bootstrapping is the practice of sampling from the observed data (X,Y) in estimating statistical properties.

Imagine we have 5 billiard balls in a bucket.

We first pick randomly a ball and replicate it. This is called **sampling** with replacements ove the replicated ball to another bucket.

We then randomly pick another ball and again we replicate it. As before, we move the replicated ball to the other bucket.

We repeat this process.

Again

And again

We continue until the "other" bucket has **the same number of balls** as the original one.

This new bucket represents a new parallel universe

We repeat the same process and acquire another sample.

We repeat the same process and acquire another sample.

Definition

Bootstrapping is the practice of estimating properties of an estimator by measuring those properties by, for example, sampling from the observed data.

For example, we can compute $\hat{\beta}_0$ and $\hat{\beta}_1$ multiple times by randomly sampling from our data set. We then use the variance of our multiple estimates to approximate the true variance of $\hat{\beta}_0$ and $\hat{\beta}_1$.

We can empirically estimate the standard deviations $\sigma_{\hat{\beta}}$ which are called the **standard errors,** $SE(\hat{\beta}_0)$, $SE(\hat{\beta}_1)$ through bootstrapping.

Alternatively:

If we know the variance σ_{ϵ}^2 of the noise ϵ , we can compute $SE(\hat{\beta}_0), SE(\hat{\beta}_1)$ analytically using the formulae below (no need to bootstrap):

$$SE\left(\hat{\beta}_{0}\right) = \sigma_{\epsilon} \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i}(x_{i} - \bar{x})^{2}}}$$

$$SE\left(\hat{\beta}_{1}\right) = \frac{\sigma_{\epsilon}}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}}}$$

Where *n* is the number of observations

 \bar{x} is the mean value of the predictor.

More data:
$$n \uparrow \text{and } \sum_{i} (x_{i} - \bar{x})^{2} \uparrow \Longrightarrow SE \downarrow$$

Larger coverage: $var(x) \text{ or } \sum_{i} (x_{i} - \bar{x})^{2} \uparrow \Longrightarrow SE \downarrow$
Better data: $\sigma_{\epsilon}^{2} \downarrow \Rightarrow SE \downarrow$
 $SE(\hat{\beta}_{0}) = \sigma_{\epsilon} \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}}}$
 $SE(\hat{\beta}_{1}) = \frac{\sigma(\epsilon)}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}}$

Better model: $(\hat{f} - y_i) \downarrow \Longrightarrow \sigma_{\epsilon} \downarrow \Longrightarrow SE \downarrow$

$$\sigma(\epsilon) = \sqrt{\sum_{n \in \mathbb{Z}} \frac{\left(\hat{f}(x) - y_i\right)^2}{n - 2}}$$

Question: What happens to the $\widehat{\beta_0}$, $\widehat{\beta_1}$ under these scenarios?

In practice, we do not know the value of σ_{ϵ} since we do not know the exact distribution of the noise ϵ .

However, if we make the following assumptions,

- the errors $\epsilon_i = y_i \hat{y}_i$ and $\epsilon_j = y_j \hat{y}_j$ are uncorrelated, for $i \neq j$,
- each ϵ_i has a mean 0 and variance σ_ϵ^2 ,

then, we can empirically estimate σ^2 , from the data and our regression line:

$$\sigma_{\epsilon} = \sqrt{\frac{n \cdot MSE}{n-2}} = \sqrt{\sum_{i=1}^{\infty} \frac{\left(\hat{f}(x) - y_{i}\right)^{2}}{n-2}}$$

Remember:
$$y_i = f(x_i) + \epsilon_i \Longrightarrow_{\text{CS109A}, i_{\text{ROTOPAPAS}, i_{\text{RADER}}}} f(x_i)$$

The following results are for the coefficients for TV advertising:

Method	$SE(\hat{eta}_1)$
Analytic Formula	0.0061
Bootstrap	0.0061

The coefficients for TV advertising but restricting the coverage of x are:

Method	$SE(\hat{eta}_1)$
Analytic Formula	0.0068
Bootstrap	0.0068

SE increase

The coefficients for TV advertising but with added **extra** noise:

Method	$SE(\hat{eta_1})$
Analytic Formula	0.028
Bootstrap	0.023

SE increase

Confidence intervals for the predictors estimates (cont)

We can now estimate the mean and standard deviation of the estimates of $\hat{\beta}_0, \hat{\beta}_1.$

Confidence intervals for the predictors estimates (cont)

The standard errors give us a sense of our uncertainty over our estimates.

Typically we express this uncertainty as a 95% confidence interval, which is the range of values such that the **true** value of β_1 is contained in this interval with 95% percent probability.

 $CI_{\widehat{\beta}} = (\widehat{\beta} - 2\sigma_{\widehat{\beta}}, \widehat{\beta} + 2\sigma_{\widehat{\beta}})$

22

