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Bootstrapping and Confidence Intervals
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Bootstrap

In the lack of active imagination, parallel universes and the likes, we need 
an alternative way of producing fake data set that resemble the parallel 
universes. 

Bootstrapping is the practice of sampling from the observed data (X,Y) in
estimating statistical properties.
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Bootstrap

Imagine we have 5 billiard balls in a bucket.
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Bootstrap

We first pick randomly a ball and replicate it. This is called sampling 
with replacement.  We move the replicated ball to another bucket. 
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Bootstrap
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Bootstrap

We then randomly  pick another ball and again we replicate it.
As before, we move the replicated ball to the other bucket. 
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Bootstrap
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Bootstrap

We repeat this process. 
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Bootstrap

Again
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Bootstrap

And again
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Bootstrap

We continue until the “other” bucket has the same number of balls as 
the original one.

This new bucket represents a new parallel universe 
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Bootstrap

We repeat the same process and acquire another sample.
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Bootstrap

We repeat the same process and acquire another sample.
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Bootstrap
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Bootstrapping for Estimating Sampling Error

Bootstrapping is the practice of estimating properties of an
estimator by measuring those properties by, for example,
sampling from the observed data.

For example, we can compute !𝛽! and !𝛽" multiple times by
randomly sampling from our data set. We then use the
variance of our multiple estimates to approximate the true
variance of !𝛽! and !𝛽".

Definition
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Bootstrap
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Confidence intervals for the predictors estimates: Standard Errors

We can empirically estimate the standard deviations 𝜎12 which are 

called the  standard errors, 𝑆𝐸 !𝛽! , 𝑆𝐸 !𝛽" through bootstrapping.  

Alternatively: 

If we know the variance 𝜎34 of the noise 𝜖, we can compute 
𝑆𝐸 !𝛽! , 𝑆𝐸 !𝛽" analytically using the formulae below (no need to 
bootstrap):

Where 𝑛 is the number of 
observations

�̅� is the mean value of the 
predictor. 
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Standard Errors

18

More data:  𝑛 ↑ and ∑!(𝑥! − �̅�)" ↑⟹ 𝑆𝐸 ↓

Larger coverage: 𝑣𝑎𝑟(𝑥) or ∑!(𝑥! − �̅�)" ↑⟹ 𝑆𝐸 ↓
Better data: 𝜎#" ↓ ⇒ 𝑆𝐸 ↓

Better model:  ( 2𝑓 − 𝑦!) ↓⟹ 𝜎# ↓⟹ 𝑆𝐸 ↓

Question: What happens to the 5𝛽$,  5𝛽% under these scenarios?
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Standard Errors

In practice, we do not know the value of 𝜎" since we do not know the exact 
distribution of the noise 𝜖. 

However, if we make the following assumptions, 

• the errors 𝜖$ = 𝑦$ − 8𝑦$ and 𝜖& = 𝑦& − 8𝑦& are uncorrelated, for 𝑖 ≠ 𝑗 ,

• each 𝜖$ has a mean 0 and variance 𝜎"#,

then, we can empirically estimate 𝜎#, from the data and our regression line: 

Remember: 𝑦$ = 𝑓 𝑥$ + 𝜖$ ⟹ 𝜖$ = 𝑦$ − 𝑓(𝑥$)

𝜎" =
𝑛 = 𝑀𝑆𝐸
𝑛 − 2

= 4
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Standard Errors

The following results  are for the coefficients for TV advertising:

20

Method 𝑆𝐸 )𝛽𝟏
Analytic Formula 0.0061

Bootstrap 0.0061

The coefficients for TV advertising but restricting the coverage of x are:

The coefficients for TV advertising but with added extra noise: 

Method 𝑆𝐸 )𝛽𝟏
Analytic Formula 0.0068

Bootstrap 0.0068

Method 𝑆𝐸 )𝛽𝟏
Analytic Formula 0.028

Bootstrap 0.023

SE increase

SE increase
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Confidence intervals for the predictors estimates (cont)
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We can now estimate the mean and standard deviation of the estimates of 
(𝛽!, (𝛽%. 

2
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Confidence intervals for the predictors estimates (cont)
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68%
95%

The standard errors give us a sense of our uncertainty over our 
estimates. 

Typically we express this uncertainty as a 95% confidence interval,
which is the range of values such that the true value of 𝛽%is contained in 
this interval with 95% percent probability.

𝑪𝑰+𝜷 = (A𝜷 − 𝟐𝝈+𝜷, A𝜷 + 𝟐𝝈+𝜷)
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