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What is a random variable?

In the context of data, we often describe their potential numeric outcomes (before 
collecting the data) as random variables.  That is:

Let’s perform a survey of Harvard students and ask the question: do you primarily use a 
Mac (vs. PC vs. Linux/Ubuntu, etc.)?  

Let !" be the observed response for the first person we are going to ask.  Then !" can be 
thought of as a random variable.  (!" = 1 implies ‘Mac’, !" = 0 implies anything else).

*Technically a random variable is a function that takes possible outcomes of random 
phenomenon (responses of ‘Mac’, ‘PC’, etc.) and maps them to numeric values.
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What is a probability distribution?
A probability distribution is any function (formula, table, or graph) that assigns 

probabilities (or likelihoods) to all the possible outcomes of a random variable.

Typically they are written as a formula (called a probability mass function or probability 

density function, or as its cumulative distribution function).

In our ‘Mac’ example, we could define the probability distribution as a table:

Which could be summarized as the formula, for ! ∈ {0,1}: 
( ) = ! = +, 1 − + ./,

The goal of out study would be to estimate +.
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Discrete vs. Continuous

There are two major types of random variables: discrete (can only take on specific 
values) and continuous (can take on any value within a range).

The probability distribution is defined differently for these two types:

A probability mass function (PMF) is a function that gives the probability of getting a 
specific value for a discrete random variable.

A probability density function (PDF) is a function that gives the relative likelihood of a 
specific value for a continuous random variable (that height of the curve).  

*Note: probabilities for a continuous random variable can be represented as areas under 
the curve, and thus P(X = x) = 0 since there is no width.
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The Binomial Distribution

Let X be a random variable that counts the number of successes in a fixed number of 
independent trials (n) with fixed probability of success (p) in each trial.  Then  is said to 
have a binomial distribution.  This is often written as:	# ∼ %&'()(', ,), and X has 
probability mass function (PMF):

. # = 0 = '
0 ,1 1 − , 451

Think counting the number of heads when flipping a biased coin n times.

The binomial distribution is useful to describe polling data (proportion of people who 
will vote for Biden), survey data (will you take CS109B next year?), or any data that are 
binary! 

The Bernoulli distribution is a special case when n = 1.  This is the distribution that 
describes our `Mac` example.
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Binomial Distribution Examples
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A binomial distribution has mean !" and standard deviation !"(1 − ").
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The Normal Distribution
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Let X be a normally distributed random variable.  Then ! ∼ #(%, '(), and X has 
probability distribution function (PDF):

* + = 1
2/'(

01
213
4
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The normal distribution (sometimes called the Gaussian) is often referred to as the bell-
shaped curve.  But the normal distribution isn’t the only one that is bell-shaped: t
distributions are also bell shaped, for example.

The standard normal distribution is a special case: 6 ∼ #(0,1).

Any normal random variable can be standardized using the formula 6 = 813
4 .
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The Normal Distribution Examples
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A normal distribution has mean ! and standard deviation ".



CS109A, PROTOPAPAS, RADER, TANNER

Central Limit Theorem
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Why is the normal distribution used so often?  The Central Limit Theorem: random 
variables that are averages or sums of many other random variables will be 
approximately Normally distributed.

More specifically: if !", !#, …, !$ are independent random variables (representing 
individual observations of data) with mean % and standard deviation & (not necessarily 

normal themselves), then the sample mean '! = )*+),+⋯+).
$ will have approximate 

distribution:

'! ∼ 0 %, &
#
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Joint Distributions
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What happens to these probability distributions (PMFs and PDFs) when there are
multiple random variables (aka, multiple observations in a data set) involved? 

Let ! "#, "%, … , "' be the joint distribution of ( separate random variables.  If they all 
come from the same generative marginal distribution, ! ") , and are independent, what 
is the resulting distribution?

! "#, "%, … , "' = ! "#) ⋅ ! "% ⋯!("' =/
)0#

'
!("))
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Modeling Data with Probability Distributions
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The Probability of Data

In a typical probability problem (like in Stat 104 or 110), you would be told something 
like “20% of Harvard College students are collegiate athletes.  What is the probability 
that there are 50 athletes in a random sample of 200 students from Harvard College?”

! " = 50 = 200
50 (0.20)*+ 0.80 -*+ = 0.0149

! " ≥ 50 =2
*+

3++
200
4 (0.20)5 0.80 3++65 = 0.0494

An alternative question: what is more likely to occur: 50 athletes or 40 athletes in a 
sample of 200 students?  How can we make the determination?
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Inference: the inverse of probability

In the last problem, how did we know that the statement “20% of Harvard College 
students are collegiate athletes” is accurate?  Where did this come from?

In most applications, the true population parameter (here, the proportion in all of 
Harvard College) is unknown.  What we get to observe is the data, and we want to make 
a statement about the unknown parameter.  So a more poignant question would be:

“There are 50 athletes in a random sample of 200 students from Harvard College.  Is a 
binomial distribution with p = 0.2 or p = 0.25 more reasonable?”

This approach of using the data to make a statement about a parameter (in a statistical 
model) is called inference.  
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Likelihood Theory
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The idea of likelihood

The likelihood approach to inference is based on exactly what was presented in the last 
slide: given observed values of data (summarized by specific sample statistics), what 
values of the model’s parameters are likely?

It simply just flips a PDF or PMF on its head: instead of writing this function with the data 
(!) as the unknown, it uses the same function but uses the parameter(s) as the 
unknown(s).  The likelihood function, ℒ, measures how well a model (and its set of 
parameters) describes the observed data

For a set of independent and normally distributed random variables, !# ∼ %(', )*):

ℒ(', )*|-., … , -0) =2
#3.

0 1
26)*

78
9:8;
<

=
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The log-likelihood

The likelihood function measures how well a model describes observed data. So it makes 
sense that we want a model (or set of parameters) that maximizes this function.

Likelihood function are typically products of many similar pieces, and products are 
difficult to maximize (both mathematically and numerically).  Why?

So instead, the log of the likelihood function, called the log-likelihood function, ℓ, is 
used.  For the Normal distribution model:

ℓ ", $% &', … , &) = ln -
./'

) 1
22$%

34
5647
8

9
= −;

./'

)
22$% −;

./'

) &. − "
$

%

If the goal is optimization, why is transforming via the log function a good choice?
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Maximizing the likelihood

In order to choose the best Normal distribution to describe a set of data, we should 

maximize the likelihood that chooses the best set of parameters given the data.

The maximum likelihood estimates for a statistical model are those that maximize the 

likelihood function given the observed data.  

How do we do this mathematically?  How could we do this computationally?

With Math: ______________________________________________________

With Computers:__________________________________________________
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Likelihood function example

3 observations are collected [3, 5, 10] that are thought to come from a normal 
distribution with unknown mean, !, but is known to have a variance of "# = 2#, (yes, 
this is contrived).

Let’s plot the likelihood and log-likelihood functions:
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Modeling Linear Regression Probabilistically
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The Simple Linear Regression Model 
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We’ve defined the linear regression model to predict the i-th observation’s response, !", 
from a predictor, #", to be: 

$(!") = () + (+#"

This is often written instead as 
!" = () + (+#" + ,"

The error term, ,", represents the distance the observation lies from the line in the 
vertical distance (direction of Y).

What’s the difference between (),(+ and  -(), -(+?  What about !" and /!"?
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The Probabilistic Regression Model 
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Let’s rewrite the linear regression model with a probabilistic twist:

!" = $% + $'(" + )", where )" ∼ +(0, /0)

This regression model can be rewritten as:

!"|(" ∼ +($% + $'(", /0)

This formulation allows us to write out the joint likelihood function for this probability 
model.
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The Likelihood of Linear Regression  
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The joint likelihood function for this probability model becomes:

!(#$, #&| )⃗, *⃗) =-
./&

0
1 ).|*. =-

./&

0 1
2456

78
9:8(;<=;>?:)

@
A

Which leads to the log-likelihood:

B(#$, #&| )⃗, *⃗) = −D
./&

0
ln 2456 −D

./&

0 ). − (#$ + #&*.)
5

6

What should we do with this log-likelihood?  

What does maximizing this function lead to with regards to the best estimates of #$, #&?
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Take home message
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By taking a probabilistic approach to linear regression and assuming the residuals are 
normally distributed, we see that maximizing the likelihood to this model is equivalent to 
minimizing mean squared error!

So if we believe our residuals are normally distributed, then minimizing mean square 
error is a natural choice.

But by choosing this specific probability model, we get much more than simply 
motivation for our loss function.  We get inferential 
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Checking the assumptions of this model:

The probabilistic model of linear regression leads to 4 main 
assumptions that can be checked with the data (the first 3 at least):
1. Linearity: relationships are linear and there is no clear non-linear 

pattern around the line (as evidenced by the residuals).
2. Normality: the residuals are normally distributed.
3. Constant Variance: the vertical spread of the residuals is constant 

everywhere along the line.
4. Independence: the observations are independent of each other.

Note: collinearity is not a violation of an assumption, but can certainly 
muck up the model.
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Standard ordinary least squares (OLS) regression leads to explicit formulae for !"# and !"$:

!"$ =
∑()$* (,( − ,̅)(0( − 10)

∑()$* ,( − ,̅ 2

!"# = 10 − !"$,̅

Note: our probabilistic model states that the 3( are normally distributed (conditional on 4() and 
thus !"$ and !"# will be normally distributed!  We can leverage this to determine the sampling 
distribution of these estimates (and build hypothesis tests and confidence intervals*)!  

*See lecture 9 for these approaches.

Reminder: Estimates of the slope and intercept 
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statsmodels
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There are two packages used to fit linear regression models in python.

• sklearn: is great for getting estimates, doing predictions, integrating cross-validation, etc.  
Not so good for confidence intervals or hypothesis testing (it’s machine learning, not
statistics).

• statsmodels: is great for statistical inference (confidence intervals and hypothesis testing) 
but not as good at the other things

Which to use depends on what your goal of modeling is.

Fitting linear regression models in Python
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OLS in statsmodels

28



Exercise Time!
Ex. 1: Normal Distributions and Likelihoods (15 min)

Ex. 2: Linear Regression in statsmodels (15+ min)
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Ex. 1: Normal Distributions and Likelihoods
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Ex. 2: Linear Regression in statsmodels
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