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Model Selection

Model selection is the application of a principled method to determine 
the complexity of the model, e.g. choosing a subset of predictors, 
choosing the degree of the polynomial model etc.

A strong motivation for performing model selection is to avoid 
overfitting, which we saw can happen when: 

• there are too many predictors:
• the feature space has high dimensionality
• the polynomial degree is too high

• too many cross terms are considered

• the coefficients values are too extreme (we have not seen this yet) 
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Generalization Error

We know to evaluate the model on both train and test data, 
because models that do well on training data may do poorly 
on new data (overfitting). 

The ability of models to do well on new data is called 
generalization. 

The goal of model selection is to choose the model that 
generalizes the best. 
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Train-Validation-Test
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We use this to 
train a model We use this to 

select model

We use this to 
report model 
performance
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Model Selection

Question: 
How many different models when considering J predictors (only linear terms) do we 

have?
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Example:  3 predictors (𝑿𝟏, 𝑿𝟐, 𝑿𝟑)
• Models with 0 predictor:

M0: 

• Models with 1 predictor:  

M1: 𝑋!
M2: 𝑋"
M3: 𝑋#

• Models with 2 predictors: 

M4: {𝑋!, 𝑋"}
M5: {𝑋", 𝑋#}
M6: {𝑋#, 𝑋!}

• Models with 3 predictors: 

M7: {𝑋!, 𝑋", 𝑋#}

2! models
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Stepwise Variable Selection and Validation

Selecting optimal subsets of predictors (including choosing the 
degree of polynomial models) through:

• stepwise variable selection - iteratively building an optimal 
subset of predictors by optimizing a fixed model evaluation 
metric each time.

• validation - selecting an optimal model by evaluating each 
model on validation set.



PAVLOS PROTOPAPAS

Stepwise Variable Selection: Forward method

In forward selection, we find an ‘optimal’ set of predictors by iterative building up 
our set.

1. Start with the empty set P0, construct the null modelM0.

2. For 𝑘 = 1,… , 𝐽:

2.1 Let 𝑀!"# be the model constructed from the best set of

𝑘 − 1 predictors, 𝑃!"#.

2.2 Select the predictor 𝑋$! , not in 𝑃!"#, so that the model constructed from 
𝑃! = 𝑋$! ∪ 𝑃!"# optimizes a fixed metric (this can be p -value, F -stat; validation 
MSE, 𝑅%, or AIC/BIC on training set).

2.3 Let 𝑀! denote the model constructed from the optimal 𝑃! .

3. Select the model 𝑀 amongst {𝑀&, 𝑀#, … ,𝑀'} that optimizes a fixed metric (this 
can be validation MSE, 𝑅%; or AIC/BIS on training set)
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Stepwise Variable Selection Computational Complexity

How many models did we evaluate?

• 1st step, JModels

• 2nd step, J-1 Models (add 1 predictor out of J-1 possible)

• 3rd step, J-2 Models (add 1 predictor out of J-2 possible)

• …
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O(J2) ⌧ 2J for large J
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Choosing the degree of the polynomial model

Fitting a polynomial model requires choosing a degree. 

Underfitting: when the degree is 
too low, the model cannot fit the 
trend.

We want a model that fits the 
trend and ignores the noise.

Overfitting: when the degree is 
too high, the model fits all the 
noisy data points. 

Degree 1 Degree 2 Degree 50
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Underfitting: train and 
validation error is high. 

Best model: validation error is 
minimum.  

Overfitting: train error is low, 
validation error is high. 



Exercise C.1 
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Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.
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It is obvious that degree=3 is the 
correct model but the validation 
set by chance favors the linear 
model. 
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Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.

One solution to the problems raised by using a single validation set is to 
evaluate each model on multiple validation sets and average the 
validation performance. 

One can randomly split the training set into training and validation 
multiple times but randomly creating these sets can create the scenario 
where important features of the data never appear in our random draws.
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Cross Validation
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Training set

Training fold

Validation fold
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K-Fold Cross Validation

Given a data set 𝑋,, … , 𝑋- , where each 𝑋,, … , 𝑋- contains J features. 

To ensure that every observation in the dataset is included in at least one 
training set and at least one validation set we use the K-fold validation: 

• split the data into K uniformly sized chunks, {𝐶,, … , 𝐶.}

• we create K number of training/validation splits, using one of  the K 
chunks for validation and the rest for training. 

We fit the model on each training set, denoted '𝑓/!" , and evaluate it on the 

corresponding validation set, '𝑓/!" (𝐶0). The cross validation is the performance of 
the model averaged across all validation sets:

where L is a loss function. 15

𝐶𝑉 Model =
1
𝐾
4
01,

.

𝐿( '𝑓/!" (𝐶0))
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Leave-One-Out

Or using the leave one out method: 

• validation set: {𝑋0}
• training set: 𝑋20 = {𝑋,, … , 𝑋02,, 𝑋03,, … , 𝑋-}

for 𝑖 = 1,… , 𝑛:

We fit the model on each training set, denoted '𝑓4!" , and evaluate it on the 

corresponding validation set, '𝑓4!" (𝑋0). 
The cross validation score is the performance of the model averaged across all 
validation sets: 

where L is a loss function. 
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𝐶𝑉 Model =
1
𝑛
4
01,

-

𝐿( '𝑓4!" (𝑋0))



Exercise C.2 

17


