Multi, Poly Regression and Model Selection
Part B: Multi-regression

CS109A Introduction to Data Science

Pavlos Protopapas, Kevin Rader and Chris Tanner
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Multiple Linear Regression

If you have to guess someone's height, would you rather be told
* Their weight, only
* Their weight and gender
* Their weight, gender, and income
* Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible.
Even though height and favorite number may not be strongly related, at
worst you could just ignore the information on favorite number. We want
our models to be able to take in lots of data as they make their
predictions.
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Response vs. Predictor Variables
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Multilinear Models

In practice, it is unlikely that any response variable Y depends solely on one predictor x.
Rather, we expect that is a function of multiple predictors f(Xy, ..., X;). Using the
notation we introduced last lecture,

Y=y1,...,yn, X=X1,...,X] and X] =x1j, ...,xl-j,...,xnj,

price | we can still assume a simple form for f -a multilinear
W) | e o form:

f(X1, .. X)) = Bo + BiXy + -+ BiX;

Hence, f, has the form:

f(Xlr ---»X]) = fo + 1 Xy + -+ .BA]X]
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Multiple Linear Regression

Given a set of observations,

{((1?1’1, ..

the data and the model can be expressed in vector notation,
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Multilinear Model, example

For our data
Sales = By + 1 X TV + B,XRadio + f3XNewspaper

In linear algebra notation
Sales, 1 TV, Radio; News;

Y=< s ),X=(z z s ),ﬁ:(s
Sales, 1 TV,. Radio,, News,

Sales;} = 11 TV; Radio, News; x |By

L]
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Multiple Linear Regression

The model takes a simple algebraic form:
Y =X0O+e¢€

We will again choose the MSE as our loss function, which can be
expressed in vector notation as

MSE(8) = ~||Y — X8|
11

Minimizing the MSE using vector calculus yields,

AN

p = (XTX)_l X'Y = arg;nin MSE(B).
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Interpreting multi-linear regression

For linear models, it is easy to interpret the model parameters.

FEATURE IMPORTANCE
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When we have a large number of predictors:
X1, ..., X, there will be a large number of
model parameters, 4, 53, ..., B;-

Looking at the values of f’s is impractical, so
we visualize these values in a feature
Importance graph.

4 % SAND
~ SUMMER SOLSTICE DAV LENGTH
: WATER TARLE DEPTH
b WIND SPEED
i MEAN WARMEST
1 # OF DAYS OF ABNORMAL TEMP.
# OF WILD FIRES
DISTANCE To QTY
ENERGY CONSUMPTION
LON G\ TUDE
LADITUDE
TOTAL POPULATION
COUNTRY GDP

The feature importance graph shows which
predictors has the most impact on the
model’s prediction.
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Qualitative Predictors

So far, we have assumed that all variables are quantitative. But in
practice, often some predictors are qualitative.

Example: The credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential

customers.

Income Limit Rating Cards Age Education Gender Student Married Ethnicity | Balance
14890 3606 283 2 34 1 Male No Yes Caucasian 333
106.02 6645 483 3 82 15 Female Yes Yes Asian 903
104.59 7075 514 4 71 11 Male No No Asian 580
148.92 9504 681 3 36 M Female No No Asian 964
55.882 4897 357 2 68 16 Male No Yes Caucasian 331
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Qualitative Predictors

If the predictor takes only two values, then we create an indicator or
dummy variable that takes on two possible numerical values.

For example for the gender, we create a new variable:

S 1 if ¢ th person is female
*7 1 0 if 4th person is male

We then use this variable as a predictor in the regression equation.

o .| Bo+pBi+e if ith person is female
Yi = Po + Prai + e = { Bo + €; if ith person is male
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Qualitative Predictors

Question: What is interpretation of f; and (1?
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Qualitative Predictors

Question: What is interpretation of f; and (1?
* [y is the average credit card balance among males,
* Bo + [1 isthe average credit card balance among females,

* and p; the average difference in credit card balance between females
and males.

Example: Calculate y and f; for the Credit data.
You should find £,~$509, f;~$19
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More than two levels: One hot encoding

Often, the qualitative predictor takes more than two values (e.g. ethnicity
in the credit data).

In this situation, a single dummy variable cannot represent all possible
values.

We create additional dummy variable as:

N 1 if ¢th person is Asian
1™ 0 if ith person is not Asian

53
(\V)
|

1 if ¢ th person is Caucasian
0 if 2 th person is not Caucasian
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More than two levels: One hot encoding

We then use these variables as predictors, the regression

equation becomes:
Bo + B1 + €; if ith person is Asian

Yi = Bo + B1xi1 + Baxio +€ = Po+ B2+ e if ith person is Caucasian
Bo + ¢€; if 1 th person is AfricanAmerican

Question: What is the interpretation of Sy, 1, 5,7
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Collinearity

Collinearity and multicollinearity refers to the case in which two or more predictors

are correlated (related).

Limit and Ratingare

%iiﬁll o highly correlated : .
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Both 1imit and rating have positive

coefficients, but it is hard to understand if the
balance is higher because of the ratingoris

, . _ it because of the 1imit? If we remove 1imit
regression coefficients are not unique

. then we achieve almost the same model
%\d have influences from other featu rggc.)% .performance but the coefficients change.

The regression coefficients are not
uniquely determined. In turn it hurts the
interpretability of the model as then the
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Beyond linearity

So far we assumed:

* linear relationship between Xand Y

* theresiduals r; = y; — J; were uncorrelated (taking the average of the
square residuals to calculate the MSE implicitly assumed
uncorrelated residuals).

These assumptions need to be verified using the data and visually
inspecting the residuals.
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Residual Analysis

If the correct model is not linear then,
Yy =Po+Pix+ Px)+e
our model assuming linear relationship is:
¥ = Bo + P1x
Then the residuals,r = (y —y) = € + ¢p(x), are not independent of x

In residual analysis, we typically create two types of plots:

1. a plotofr; with respect to x; or y;. This allows us to compare the
distribution of the noise at different values of x; or ;.

2. a histogram of r;. This allows us to explore the distribution of the
noise independent of x; or J;.
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Residual Analysis
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Linear assumption is incorrect. There
IS an obvious relationship between
residuals and x. Histogram of
residuals is symmetric but not
normally distributed.

Linear assumption is correct. There is
no obvious relationship between
residuals and x. Histogram of residuals
is symmetric and normally distributed.

Note: For multi-regression, we plot the residuals vs predicted y, §, since there are too many
. X’s and that could wash out the relationship.
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Beyond linearity: synergy effect or interaction effect

We also assume that the average effect on sales of a one-unit increase
In TV is always [; regardless of the amount spent on radio.

Synergy effect or interaction effect states that when an increase on the
radio budget affects the effectiveness of the TV spending on sales.

We change

Y =0+ b1X1 + BX, + €
to:

Y = Bo + p1X1 + B2Xy H 3 X1 Xo + €
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What does it mean?

Regression with no interaction term

2000 = Students

Non-students
1750 =
1500 =

1250 =

1000 -

Balance

750 =

500 =
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[] [] [] [] []
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Income

Bo + f1xIncome.
(Bo + B2) + (B1)XIncome.

0 Balance

Xstudent = )1 Balance

CS109A, PROTOPAPAS, RADER, TANNER 24



What does it mean?

Regression with no interaction term Regression with interaction term
2000 = Students 2000 = Students
Non-students Non-students
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0 Balance = fy + 1 XIncome.
Xst =
udent —
1 Balance = (By + ;) + (B1)XIncome.

~ |0 Balance = By + By XIncome.
Astudent =1 Balance = (B, + B,) + (B; + ) xIncome
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Too many predictors, collinearity and too many
Interaction terms leads to OVERFITTING!
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www.landers co.uk

Treatment effeck(y)

“It's a non-linear pattern with
ovtliers..... but for some reason
I'm very happy with the data.”
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Polynomial Regression
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Fitting non-linear data

Multi-linear models can fit large datasets with many

predictors. But the relationship between predictor and target
Isn’t always linear.

We want a model:

Li Mod Ai

- inear Model t‘. Non-linear Model y = fﬁ (X)

x ® . ‘e

“,~~ . .\‘ Py . ~ .
et STl RIS Wherg fis a non linear
° e The “be, functionand f is a
o~ -8, .
‘ * | vectorof the parameters
. > of f.
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a
predictor X, is a polynomial model of degree M,

y =po+ p1x+ ﬁzxz + et :BMxM

Just as in the case of linear regression with cross terms, polynomial

regression is a special case of linear regression - we treat each x™ as a
separate predictor. Thus, we can write

[ /1 :L'% :13{”\ /50\

1 2 ... ¥ 51
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Polynomial Regression

This looks a lot like multi-linear regression where the predictors are
powers of x!

Multi-Regression

n (1 5131,1 @ /60\

1 ZB271 “ . ZEQ’J 51

Yn \1 337;,,1 ZCnJ) \5J}

Poly-Regression

Y1 (] ‘/Ei @\ [ Fo )
. 1 x5 ... 51
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Model Training

Give a dataset {(xq,y,), (x5, ¥5), ..., (X;,, ¥,) }, we find the optimal
polynomial model:

Y = Bo + Bix + Box® + -+ ByxM

1. We transform the data by adding new predictors:

f —_ [1, fl’ 5(,:2, JXM]

where %, = x*

2. Fit the parameters by minimizing the MSE using vector
calculus. As in multi-linear regression:

B=(X"TX)" Xy
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Polynomial Regression (cont)

Fitting a polynomial model requires choosing a degree.

&/\ 3/\
Degree 1 Degree 50

>
DS

Underfitting: when the degree is ~ We wanta model that fits the Overfitting: when the degree is

too low, the model cannot fit the ~ trend and ignores the noise. too high, the model fits all the

trend. noisy data points.
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Feature Scaling

Do we need to scale out features for polynomial regression?

Linear regression, Y = X[, is invariant under scaling. If X is called by some number
Athen [ will be scaled by %and MSE will be identical.

However if the range of X is low or large then we run into troubles. Consider a
polynomial degree of 20 and the maximum or minimum value of any predictor is large
or small. Those numbers to the 20" power will be problematic.

It is always a good idea to scale X when considering polynomial regression:

XTlOT'm — X B X

Ox

Note: sklearn’s StandardScaler () can do this.

“ CS109A, PROTOPAPAS, RADER, TANNER
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High degree of polynomial
leads to OVERFITTING!
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Ex B.1,B.2 & B.3




