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Multiple Linear Regression 

If you have to guess someone's height, would you rather be told

• Their weight, only

• Their weight and gender

• Their weight, gender, and income

• Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible. 
Even though height and favorite number may not be strongly related, at 
worst you could just ignore the information on favorite number. We want 
our models to be able to take in lots of data as they make their 
predictions.
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Response vs. Predictor Variables

TV radio newspaper sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9
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Multilinear Models

In practice, it is unlikely that any response variable Y depends solely on one predictor x. 
Rather, we expect that is a function of multiple predictors 𝑓(𝑋!, … , 𝑋"). Using the 
notation we introduced last lecture, 

𝑌 = 𝑦!, … , 𝑦#,            𝑋 = 𝑋!, … , 𝑋" and         𝑋$ = 𝑥!$, … , 𝑥%$, … , 𝑥#$,
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we can still assume a simple form for 𝑓 -a multilinear 
form:

𝑓 𝑋!, … , 𝑋" = 𝛽# + 𝛽!𝑋! +⋯+ 𝛽"𝑋"

Hence, +𝑓, has the form:

)𝑓 𝑋!, … , 𝑋" = )𝛽# + )𝛽!𝑋! +⋯+ )𝛽"𝑋"
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Multiple Linear Regression

Given a set of observations, 

the data and the model can be expressed in vector notation, 
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Multilinear Model, example 

For our data

𝑆𝑎𝑙𝑒𝑠 = 𝛽, + 𝛽- × 𝑇𝑉 + 𝛽.×𝑅𝑎𝑑𝑖𝑜 + 𝛽/×𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟

In linear algebra notation 

𝒀 =
𝑆𝑎𝑙𝑒𝑠-
⋮

𝑆𝑎𝑙𝑒𝑠0
, 𝑿 =

1 𝑇𝑉- 𝑅𝑎𝑑𝑖𝑜- 𝑁𝑒𝑤𝑠-
⋮ ⋮ ⋮
1 𝑇𝑉0 . 𝑅𝑎𝑑𝑖𝑜0 𝑁𝑒𝑤𝑠0

, 𝜷 =
𝛽,
⋮
𝛽/
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Multiple Linear Regression

The model takes a simple algebraic form:

We will again choose the MSE as our loss function, which can be 
expressed in vector notation as

Minimizing the MSE using vector calculus yields, 
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Y = X� + ✏

MSE(�) =
1

n
kY � X�k2

b��� =
�
X>X

��1
X>Y = argmin

���
MSE(���).
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Interpreting multi-linear regression

For linear models, it is easy to interpret the model parameters.
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When we have a large number of predictors:
𝑋!, … , 𝑋", there will be a large number of 
model parameters, 𝛽!, 𝛽&, … , 𝛽".

Looking at the values of 𝛽’s is impractical, so 
we visualize these values in a feature 
importance graph.

The feature importance graph shows which 
predictors has the most impact on the 
model’s prediction.
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Qualitative Predictors

So far, we have assumed that all variables are quantitative. But in 
practice,  often some predictors are qualitative. 

Example:  The credit data set contains information about balance, age, 
cards, education, income, limit , and rating for a number of potential 
customers.

13

Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance

14.890 3606 283 2 34 11 Male No Yes Caucasian 333

106.02 6645 483 3 82 15 Female Yes Yes Asian 903

104.59 7075 514 4 71 11 Male No No Asian 580

148.92 9504 681 3 36 11 Female No No Asian 964

55.882 4897 357 2 68 16 Male No Yes Caucasian 331
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Qualitative Predictors

If the predictor takes only two values, then we create an indicator or 
dummy variable that takes on two possible numerical values.

For example for the gender, we create a new variable:

We then use this variable as a predictor in the regression equation. 
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xi =

⇢
1 if i th person is female
0 if i th person is male

yi = �0 + �1xi + ✏i =

⇢
�0 + �1 + ✏i if i th person is female
�0 + ✏i if i th person is male
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Qualitative Predictors

Question: What is interpretation of 𝛽+ and 𝛽,? 
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Qualitative Predictors

Question: What is interpretation of 𝛽+ and 𝛽,? 

• 𝛽+ is the average credit card balance among males, 

• 𝛽+ + 𝛽, is the average credit card balance among females, 

• and 𝛽, the average difference in credit card balance between females
and males.

Example: Calculate 𝛽+ and 𝛽, for the Credit data. 

You should find 𝛽+~$509, 𝛽,~$19
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More than two levels: One hot encoding

Often, the qualitative predictor takes more than two values (e.g. ethnicity 
in the credit data). 

In this situation, a single dummy variable cannot represent all possible 
values. 

We create additional dummy variable as:  
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xi,2 =

⇢
1 if i th person is Caucasian
0 if i th person is not Caucasian

xi,1 =

⇢
1 if i th person is Asian
0 if i th person is not Asian
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More than two levels: One hot encoding

We then use these variables as predictors, the regression 
equation becomes:

Question: What is the interpretation of 𝛽,, 𝛽-, 𝛽.?  
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yi = �0 + �1xi,1 + �2xi,2 + ✏i =

8
<

:

�0 + �1 + ✏i if i th person is Asian
�0 + �2 + ✏i if i th person is Caucasian
�0 + ✏i if i th person is AfricanAmerican
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Collinearity
Collinearity and multicollinearity refers to the case in which two or more predictors 
are correlated (related). 
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The regression coefficients are not 
uniquely determined. In turn it hurts the 
interpretability of the model as then the 
regression coefficients are not unique 
and have influences from other features.

Both limit and rating have positive 
coefficients, but it is hard to understand if the 
balance is higher because of the rating or is 
it because of the limit? If we remove limit
then we achieve almost the same model 
performance but the coefficients change. 

Limit and Rating are 
highly correlated
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Beyond linearity

So far we assumed:

• linear relationship between X and Y
• the residuals 𝑟- = 𝑦- − .𝑦- were uncorrelated (taking the average of the 

square residuals to calculate the MSE implicitly assumed 
uncorrelated residuals). 

These assumptions need to be verified using the data and visually 
inspecting the residuals. 
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Residual Analysis

If the correct model is not linear then, 
𝑦 = 𝛽+ + 𝛽,𝑥 + 𝝓 𝒙 + 𝜖

our model assuming linear relationship is: 

.𝑦 = 3𝛽+ + 3𝛽,𝑥
Then the residuals, 𝑟 = 𝑦 − .𝑦 = 𝜖 + 𝝓 𝒙 , are not independent of 𝒙

In residual analysis, we typically create two types of plots:

1. a plot of 𝑟- with respect to 𝑥- or .𝑦- . This allows us to compare the 
distribution of the noise at different values of 𝑥- or .𝑦- . 

2. a histogram of 𝑟- . This allows us to explore the distribution of the 
noise independent of 𝑥- or .𝑦- .

21
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Residual Analysis 

22

Linear assumption is correct. There is 
no obvious relationship between 
residuals and x.		Histogram of residuals 
is symmetric and normally distributed. 

Linear assumption is incorrect. There 
is an obvious relationship between 
residuals and x.		Histogram of 
residuals is symmetric but not 
normally distributed. 

Note: For multi-regression, we plot the residuals vs predicted y, .𝑦, since there are too many 
x’s and that could wash out the relationship. 
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Beyond linearity: synergy effect or interaction effect 

We also assume that the average effect on sales of a one-unit increase 
in TV is always 𝛽, regardless of the amount spent on radio.

Synergy effect or interaction effect states that when an increase on the 
radio budget affects the effectiveness of the TV spending on sales. 
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We change

𝑌 = 𝛽+ + 𝛽,𝑋, + 𝛽0𝑋0 + 𝜖
to:

𝑌 = 𝛽+ + 𝛽,𝑋, + 𝛽0𝑋0 + 𝛽1𝑋,𝑋0 + 𝜖
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What does it mean?

24

𝑥2345673 = 6
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽,×𝐼𝑛𝑐𝑜𝑚𝑒.
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽0 + 𝛽, ×𝐼𝑛𝑐𝑜𝑚𝑒.
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What does it mean?

25

𝑥2345673 = 6
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽,×𝐼𝑛𝑐𝑜𝑚𝑒.
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽0 + 𝛽, + 𝛽1 ×𝐼𝑛𝑐𝑜𝑚𝑒

𝑥2345673 = 6
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽,×𝐼𝑛𝑐𝑜𝑚𝑒.
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽+ + 𝛽0 + 𝛽, ×𝐼𝑛𝑐𝑜𝑚𝑒.
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Too many predictors, collinearity and too many 
interaction terms leads to OVERFITTING!
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Polynomial Regression

28
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Fitting non-linear data

Multi-linear models can fit large datasets with many 
predictors. But the relationship between predictor and target 
isn’t always linear. 

29

We want a model: 
𝑦 = 𝑓3 𝑥

Where 𝑓is a non-linear 
function and 𝛽 is a 
vector of the parameters 
of 𝑓. 
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M,

𝑦 = 𝛽, + 𝛽-𝑥 + 𝛽.𝑥. +⋯+ 𝛽4𝑥4

Just as in the case of linear regression with cross terms, polynomial 
regression is a special case of linear regression - we treat each 𝑥8 as a 
separate predictor. Thus, we can write

30
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Polynomial Regression

This looks a lot like multi-linear regression where the predictors are 
powers of x! 
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Multi-Regression
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Model Training

Give a dataset 𝑥-, 𝑦- , 𝑥., 𝑦. , … , 𝑥0 , 𝑦0 , we find the optimal 
polynomial model: 

𝑦 = 𝛽, + 𝛽-𝑥 + 𝛽.𝑥. +⋯+ 𝛽4𝑥4

1. We transform the data by adding new predictors: 

@𝑥 = [1, @𝑥-, @𝑥., … , @𝑥4]
where @𝑥5 = 𝑥5

2. Fit the parameters by minimizing the MSE using vector 
calculus. As in multi-linear regression:

32

C𝜷 = D𝑿𝑻 D𝑿
7𝟏 D𝑿𝑻𝒚



CS109A, PROTOPAPAS, RADER, TANNER

Polynomial Regression (cont)
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Fitting a polynomial model requires choosing a degree.

Underfitting: when the degree is 
too low, the model cannot fit the 
trend.

We want a model that fits the 
trend and ignores the noise.

Overfitting: when the degree is 
too high, the model fits all the 
noisy data points. 

Degree 1 Degree 2 Degree 50
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Feature Scaling

Do we need to scale out features for polynomial regression? 

Linear regression, 𝑌 = 𝑋𝛽, is invariant under scaling. If 𝑋 is called by some number 

𝜆 then 𝛽 will be scaled by  
!
'

and MSE will be identical. 

However if the range of 𝑋 is low or large then we run into troubles. Consider a 
polynomial degree of 20 and the maximum or minimum value of any predictor is large 
or small. Those numbers to the 20th power will be problematic. 

It is always a good idea to scale 𝑋 when considering polynomial regression: 

𝑋#()* =
𝑋 − ;𝑋
𝜎+

Note: sklearn’s StandardScaler() can do this. 
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High degree of polynomial  
leads to OVERFITTING!
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Ex B.1, B.2 & B.3
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