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Ensemble 
methods

Mixture of 
experts

combines models 
cooperatively

combines models 

by specialization

heterogeneous 
models

homogeneous 
models {Voting and Averaging

Bagging and Boosting
Blending{Stacking

experts + 
gating network

{covered in 
class, 

reviewed 
here today

Ensemble methods and Mixture of experts combine models in order to obtain 
a more accurate and/or more robust model

{covered  
here today

heterogeneous 
models {



Outline
• Intuition for ensemble methods (cooperative) and mixture of experts 

(specialization)


• Simple ensemble methods for classification and regression: voting 
and averaging - homogeneous learners


• More ensemble methods: bagging, boosting - homogeneous 
learners- and blending and stacking - heterogeneous learners


• Mixture of experts and hierarchical mixture of experts
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Ensemble Methods
Team work
Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models 
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD 
2009, Kaggle’s competitions)
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Ensemble Methods
Team work
Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models 
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD 
2009, Kaggle’s competitions)

Why does it work? Intuition:
The famous jelly bean experiment by Prof. Marcus du Sautoy (Anah Veronica - Medium)
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Ensemble Methods
Team work
Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models 
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD 
2009, Kaggle’s competitions)

Why does it work? Intuition:
The famous jelly bean experiment by Prof. Marcus du Sautoy (Anah Veronica - Medium)

• Jelly beans jar

• Asked 160 people to guess how many

• Answers ranged from 400 up to 50,000 

• The average was 4514

• The true number of beans was 4510! 
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Uses multiple simple learners, each of which specializes on a different part of the data, plus a manager model that will decide 
which specialist to use for each input data.


Specialist
Mixture of Experts
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Uses multiple simple learners, each of which specializes on a different part of the data, plus a manager model that will decide 
which specialist to use for each input data.


PC doctor

Specialist 1

Specialist 3

Specialist 4

Specialist 3

Specialist 2

x Diagnostic

Specialist
Mixture of Experts
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Mixture of Experts
Specialist: Intuition

CEOMarketing Expert

Accountant

Financial Expert

Lawyer

Risk Specialist

x

Consultant

Data Analyst

Business 
Development

y
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Ensemble Methods
Voting and Averaging

Model 1

Model 3

Model 4

Model 5

Model n

. 

. 

. 

.

Ensamble Model

Model 2

̂yx

classification/regression

voting/averaging

• Models can be trained with different splits of the same dataset and same algorithm 
(homogeneous) or with the same dataset and different algorithms
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Ensemble Methods
Majority voting

Model 1

Model 3

Model 4

Model 5

Model n

. 

. 

. 

.

Model 2

Class jx

y1

n

∑
i=1

yi

Classification

class 1

class 2

class 3

nclass 1

∑
i=1

1

nclass 2

∑
i=1

1

nclass 3

∑
i=1

1

A class gets more than half of the votes, the prediction is called a “stable prediction”. Otherwise, the 
prediction results less reliable and it is sometimes called “plurality voting”.

Voting
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Ensemble Methods
Weighting voting

Model 1

Model 3

Model 4

Model 5

Model n

. 

. 

. 

.

Model 2

x
n

∑
i=1

yi

Classification Voting

class 1

class 2

class 3

nclass 1

∑
i=1

wi1

nclass 2

∑
i=1

wi1

nclass 3

∑
i=1

wi1

Class j
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Ensemble Methods
Simple averaging

Model 1

Model 3

Model 4

Model 5

Model n

. 

. 

. 

.

Model 2

x

Averaging
1
n

n

∑
i=1

yi

Regression
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Ensemble Methods
Weighted averaging

Model 1

Model 3

Model 4

Model 5

Model n

. 

. 

. 

.

Model 2

yx
∑n

i=1 wiyi

∑n
i=1 wi

Regression

Weighted averaging
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Basic Learner 1

Basic Learner 3

Basic Learner 4

Basic Learner 5

Statistics on 
the output. 

Aggregation

Basic Learner 2

y, σy

k bootstrap Samples

of l observations

Bagging
Bootstrap aggregating for lower variance: usually homogeneous weak learners, independently 
learned in parallel and combined using some kind of deterministic averaging process


training data

n observations

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

y1

y2

y3

y4

y5
If n is large -> representativity

If n >> l -> independence



Boosting
Usually uses homogeneous weak learners, learns them sequentially - a base model depends on the 
previous ones

Figure adapted from Sirakorn - Wikimedia.org

classifier 1 classifier 2 classifier n

Ensamble classifier

…… Prediction
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Outline
• Intuition for ensemble of models and mixture of experts


• Simple ensemble of models for classification and regression: voting 
and averaging


• More ensemble of models: bagging, boosting, blending and 
stacking


• Mixture of experts and hierarchical mixture of experts
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Outline
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Outline
• Intuition for ensemble of models and mixture of experts


• Simple ensemble of models for classification and regression: voting 
and averaging
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stacking
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Outline
• Intuition for ensemble of models and mixture of experts


• Simple ensemble of models for classification and regression: voting 
and averaging


• More ensemble of models: bagging, boosting, blending and 
stacking


• Mixture of experts and hierarchical mixture of experts
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first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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ho vs
training data

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

m observations

with n features

hold 
out

Blending

training

training

training

training

training

validation

set

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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vs

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

m observations

with n features

hold 
out

training

training

training

training

training

validation

set

    

    

    

    

    

vs
ho

ho

ho

ho

ho

vs

vs

vs
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training data
ho vs

Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

p 2

p 3

p 4

p 5

p 1 ho 1

ho 2

ho 3

ho 4

ho 5

1st level 
predictions

vs

x, y p1 p2 p3 p4

new features

p5

Predict on 
validation 


and ho

l observations

with n features



ho vs

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

m observations

with n features

hold 
out

training data for second level model

m “observations” 

with (n+5) features

m predictions 

training

training

training

training

training

validation

set

    

    

    

    

    

vs
ho

ho

ho

ho

ho

vs

vs

vs

vs

training data

Predict on 
validation 


and ho

Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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ho vs
Meta 
model Final prediction
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Blending
Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction 
- less bias
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1     2     3

split data

k-folds 

(k=3)

training data

ho

training data
m observations

with n features

hold 
out

Stacking
Similar to Blending, except each model is now used to make out of distribution predictions.

“Stacked generalization works by deducing the biases of the generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in a 
second space whose inputs are (for example) the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, 
and whose output is (for example) the correct guess.” Stack Generalization 1992 - D. Wolpert
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first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

1     2     3

split data

k-folds 

(k=3)

training data

ho

training data
m observations

with n features

hold 
out

Similar to Blending, except each model is now used to make out of distribution predictions.

Stacking
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, predict on 

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

y1     2     3

split data

k-folds 

(k=3)

training data

ho

training data
m observations

with n features

hold 
out

1     2     3 1     2     3 1     2     3
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1     2     3 1     2     3 1     2     3

1     2     3 1     2     3 1     2     3

1     2     3 1     2     3 1     2     3

1     2     3 1     2     3 1     2     3

Stacking
Similar to Blending, except each model is now used to make out of distribution predictions.
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, predict on 

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

y1     2     3

split data

k-folds 

(k=3)

training data

ho

training data
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hold 
out
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1     2     3 1     2     3 1     2     3

mx5

Stacking
Similar to Blending, except each model is now used to make out of distribution predictions.
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, predict on 
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Stacking
Similar to Blending, except each model is now used to make out of distribution predictions.
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, predict on 
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training data
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training data
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Stacking
Similar to Blending, except each model is now used to make out of distribution predictions.


CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

l observations

with n features



ho ho ho

, predict on 

first-stage model 1

first-stage model 3

first-stage model 4

first-stage model 5

first-stage model 2

1     2     3
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k-folds 
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Outline
• Intuition for ensemble of models and mixture of experts


• Simple ensemble of models for classification and regression: voting 
and averaging


• More ensemble of models: bagging, boosting, blending and 
stacking


• Mixture of experts and hierarchical mixture of experts
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Good if the dataset contains several different regimes which have different relationships between 
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Uses different learners or combination of experts for different regions of the input data.
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Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



Mixture of Experts

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Expert 1

x

Gating network

y1

y2

y3

y4

yk

̂y = ∑
i

giyi. 
. 
.

y1

y2

y3

y4

yk

y4yk y3y1y2

g1
g2
g3
g4

gk

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



Mixture of Experts

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Expert 1

x

Gating network

y1

y2

y3

y4

yk

̂y = ∑
i

giyi. 
. 
.

y

g1
g2
g3
g4

gk

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

target

Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



Mixture of Experts

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Expert 1

x

Gating network

y1

y2

y3

y4

yk

̂y = ∑
i

giyi. 
. 
.

y

p(y |MoE) = ∑
i

gi
1

2π
e− 1

2 (y−yi)2

g1
g2
g3
g4

gk

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



Mixture of Experts

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Expert 1

x

Gating network

y1

y2

y3

y4

yk

̂y = ∑
i

giyi. 
. 
.

y

L = − log(p(y |MoE))

p(y |MoE) = ∑
i

gi
1

2π
e− 1

2 (y−yi)2

g1
g2
g3
g4

gk

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



Mixture of Experts

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Expert 1

x

Gating network

y1

y2

y3

y4

yk

̂y = ∑
i

giyi. 
. 
.

y

p(y |MoE) = ∑
i

gi
1

2π
e− 1

2 (y−yi)2

gi(x) =
eηT

i x

∑k
j=1 eηT

j x

L = − log(p(y |MoE))
yi = θT

i x
Linear experts

Softmax gating 
network

g1
g2
g3
g4

gk

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020

CS 109A - Advanced Section 5

Making more assumptions about how the data came to be, we get a likelihood function that gives a 
statistical approach - better loss function



x

Gating network

∑

̂y(x) = ∑
i

gi(x)yi

Expert 2

Expert 3

Expert 4

Expert k

. 

. 

. 

.

Meta expert

y1

y2

y3

y4

yk

̂y

gating functions

∑
i

gi(x) = 10 ≤ gi(x) ≤ 1,

g1

g2g3
g4gk

Mixture of Experts
Uses different learners or combination of experts for different regions of the input data.
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Summary
Ensamble Models- cooperation:


Simple:

• Voting: simple and weighted

• Averaging: simple and weighted


Less simple:

• Bagging: independent, parallel, homogeneous weak learners, combined with some deterministic 

averaging process - less variance

• Boosting: sequential, homogeneous weak learners, combined in a deterministic, adaptive way (a base 

model depends on the previous ones) - less bias

• Blending: independent, parallel, heterogeneous weak learners, by training a meta-model to output a 

prediction - less bias

• Stacking: same as blending but k-folding the training data - less bias


Mixture of Experts - specialization: 
For data that was generated with different models, or whose description depends on the input-output regime. 
Heterogeneous models, trained in different regions of the data, combined by a gating network that decides 
the probability that a given input is best described by a certain expert.
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Questions?
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