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Ensemble methods and Mixture of experts combine models in order to obtain
a more accurate and/or more robust model
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Outline

* |ntuition for ensemble methods (cooperative) and mixture of experts
(specialization)

* Simple ensemble methods for classification and regression: voting
and averaging - homogeneous learners

* More ensemble methods: bagging, boosting - homogeneous
learners- and blending and stacking - heterogeneous learners

* Mixture of experts and hierarchical mixture of experts
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Ensemble Methods

Team work

Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD
2009, Kaggle’s competitions)
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Ensemble Methods

Team work

Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD

2009, Kaggle’s competitions)

Why does it work? Intuition:

The famous jelly bean experiment by Prof. Marcus du Sautoy (anan veronica - Medium)
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Ensemble Methods

Team work

Ensemble methods use a combination of simpler learners (any model trained on data) to improve predictions. Combining models
usually results in a more precise model (often among the top rankings of many machine learning competitions, including Netflix, KDD

2009, Kaggle’s competitions)

Why does it work? Intuition:

The famous jelly bean experiment by Prof. Marcus du Sautoy (anan veronica - Medium)

e Jelly beans jar

* Asked 160 people to guess how many
 Answers ranged from 400 up to 50,000
* The average was 4514

e The true number of beans was 4510!
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Mixture of Experts

Specialist

Uses multiple simple learners, each of which specializes on a different part of the data, plus a manager model that will decide
which specialist to use for each input data.

IACS |2 am 28
WAVAVLY,
o

\OAY
"y




CS 109A - Advanced Section 5

Mixture of Experts

Specialist

Uses multiple simple learners, each of which specializes on a different part of the data, plus a manager model that will decide
which specialist to use for each input data.

Intuition:

PC doctor

Specialist 1

X Diagnostic
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Mixture of Experts

Specialist: Intuition
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Ensemble Methods
Voting and Averaging

classification/regression
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 Models can be trained with different splits of the same dataset and same algorithm
(homogeneous) or with the same dataset and different algorithms
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Ensemble Methods
Majority voting

Classification
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A class gets more than half of the votes, the prediction is called a “stable prediction”. Otherwise, the
prediction results less reliable and it is sometimes called “plurality voting”.
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Ensemble Methods
Weighting voting

Classification
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Ensemble Methods

Simple averaging

Regression
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Ensemble Methods
Weighted averaging

Regression
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Bagging

Bootstrap aggregating for lower variance: usually homogeneous weak learners, independently
learned in parallel and combined using some kind of deterministic averaging process
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Boosting

Usually uses homogeneous weak learners, learns them sequentially - a base model depends on the
previous ones

Ensamble classifier
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Figure adapted from Sirakorn - Wikimedia.org
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Outline

* |ntuition for ensemble of models and mixture of experts \/

* Simple ensemble of models for classification and regression: voting
and averaging

 More ensemble of models: bagging, boosting, blending and
stacking

* Mixture of experts and hierarchical mixture of experts
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Outline

* |ntuition for ensemble of models and mixture of experts \/

* Simple ensemble of models for classification and regression: voting
and averaging \/
homogeneous /

 More ensemble of models: Bagging, boostiﬁg, blending and
stacking

* Mixture of experts and hierarchical mixture of experts




CS 109A - Advanced Section 5

Outline

* |ntuition for ensemble of models and mixture of experts \/

* Simple ensemble of models for classification and regression: voting
and averaging \/
homogeneous /

 More ensemble of models: Bagging, boostiﬁg, blending and

: N N
stacki ng less variance less bias

* Mixture of experts and hierarchical mixture of experts
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction
- less bias

first-stage model 1

first-stage model 2

first-stage model 3

e d Final prediction

first-stage model 4

first-stage model 5
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction
- less bias
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction

- less bias
Predict on
validation 1st level
and ho predictions
S
- ho_
first-stage model 1 o1
training _ s
. m ho 2
first-stage model 2 I 3  new features
hold Zzltidation ' training | " VS E———
first-stage model 3 —»m =] | | | [
training dat
raining data m .

observations
witR n features

first-stage model 4 —m> ho 4

training e
first-stage model 5 _IE, (b5
training

| observatioRs

with n feature training data for second level model

m “observations”
with (n+5) features




CS 109A - Advanced Section 5

Blending
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- less bias
Predict on
validation 1st level
and ho predictions
S
-
first-stage model 1 B
| training v
: ho 2
first-stage model 2 o2 W2 new features
hold Zzltidation ' training | e v o1 2 05 b b8
first-stage model 3 [Eal__ S o8 - RN — e d Final prediction
training data m s m predictions

observations
witR n features

first-stage model 4 i X

training e
first-stage model 5 (b5
training

| observations

with n feature training data for second level model

m “observations”
with (n+5) features




CS 109A - Advanced Section 5

Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction

- less bias
Predict on
validation 1st level
and ho predictions
S
m/(#models) first-stage model 1 B o1 -
observations
with n features VS

first-stage model 2 p2

- new features .

hold validation
set

X,y p1 p2 p3 p4 pd

HEEENE—

VS

first-stage model 3 p3

e dl Final prediction

m predictions

training data
I observations

VS

first-stage model 4 i X

witR n features

| observations

with n feature VS

first-stage model 5 R

training data for second level model new features

 cpsanatons o101 02 103 o4 o5
X, Y

1 [

with (n+5) features

IACS |2 st

YT
Koy
A

\




CS 109A - Advanced Section 5

Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction

- less bias
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Blending

Independent, parallel, heterogeneous weak learners, by training a meta-model to output a prediction

- less bias
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.

“Stacked generalization works by deducing the biases of the generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in a
second space whose inputs are (for example) the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it,

and whose output is (for example) the correct guess.” Stack Generalization 1992 - D. Wolpert
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.
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Stacking

Similar to Blending, except each model is now used to make out of distribution predictions.

train on - predict on —QW\ 1st level mx5
. ver dictions
first-stage model 1 [ e X5

o o =

ho
first-staae model 2
B B ., |

training data hoo new features

— E el |
split data Meta A
— 03 » E Bl od-! R

 Chservations first-stage model 4 - N
with n features || new training set
o o N =

k-folds
(k=3)
first-stage model 5
‘ ‘ new holdout to validate meta-model
o o - [

ho5
o Jror[ro2 [ o ot s I 8
become features : :

of the data X,y

m observations
with n features

IACS |2 st

NS
KX
"y

new features




CS 109A - Advanced Section 5

Outline

* |ntuition for ensemble of models and mixture of experts \/

* Simple ensemble of models for classification and regression: voting
and averaging \/

homogeneous / heterogeneous
* More ensemble of models: bagglng, boostlng, blending and
N
StaCkmg J less variance less bias

* Mixture of experts and hierarchical mixture of experts
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Mixture of Experts

Specialization instead of cooperation

Good if the dataset contains several different regimes which have different relationships between
input and output. Covers different input regions with different learners
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Mixture of Experts

Specialization instead of cooperation

Good if the dataset contains several different regimes which have different relationships between
input and output. Covers different input regions with different learners

Image credit: Data Flair
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.

Expert 1 JHi0)=n
Expert pi fz(-x): Yo

Expert 3 F(x0)= 3

Meta expert —

Expert 4 Ja(X)= Y4
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.

_____ g1 <—— (¢ating functions
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.

<4—— gating functions

0< g <1, Z gix) =1

Meta expert — Y

P = ) gy,
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Mixture of Experts

Learning involves learning the(oarameters of each expert
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Mixture of Experts

Learning involves learning the parameters of each expert and thec

Darameters of the gating networ
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

0< g <1, Z gix) =1

Meta expert — Y
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

\ 0< g <1, Zgi(x) =1
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

: i
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

0<g <1,
7'
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

0<g <1,
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network

0< g: < 1,
Gating network e’
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network
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Mixture of Experts

Learning involves learning the parameters of each expert and the parameters of the gating network
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Mixture of Experts

Making more assumptions about how the data came to be, we get a likelihood function that gives a
statistical approach - better loss function 81
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Mixture of Experts

Making more assumptions about how the data came to be, we get a likelihood function that gives a
statistical approach - better loss function 81
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Mixture of Experts

Making more assumptions about how the data came to be, we get a likelihood function that gives a
statistical approach - better loss function 81
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Mixture of Experts

Making more assumptions about how the data came to be, we get a likelihood function that gives a
statistical approach - better loss function 81

Gating network
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l
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p(YIMoE) = ) g——=e207

; \/ 27 \ Linear experts
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Mixture of Experts

Uses different learners or combination of experts for different regions of the input data.

_____ g1 <—— (¢ating functions
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The models are mixed using a gating network that decides what combination of experts to use
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Hierarchical Mixture of Experts

If the output is conditioned on multiple levels of probabilistic gating functions, the mixture is called
a hierarchical mixture of experts




CS 109A - Advanced Section 5

Summary

Ensamble Models- cooperation:

Simple:

* Voting: simple and weighted

* Averaging: simple and weighted
Less simple:

* Bagging: independent, parallel, homogeneous weak learners, combined with some deterministic
averaging process - less variance

* Boosting: sequential, homogeneous weak learners, combined in a deterministic, adaptive way (a base
model depends on the previous ones) - less bias

* Blending: independent, parallel, heterogeneous weak learners, by training a meta-model to output a
prediction - less bias

* Stacking: same as blending but k-folding the training data - less bias

Mixture of Experts - specialization:

For data that was generated with different models, or whose description depends on the input-output regime.
Heterogeneous models, trained in different regions of the data, combined by a gating network that decides
the probability that a given input is best described by a certain expert.
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Questions?
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