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Advanced Section #4: 
Methods of Dimensionality Reduction:

Principal Component Analysis (PCA)
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Outline

1. Introduction:
a. Why Dimensionality Reduction?
b. Linear Algebra (Recap).
c. Statistics (Recap).

2. Principal Component Analysis:
a. Foundation.
b. Assumptions & Limitations.
c. Kernel PCA for nonlinear dimensionality reduction.
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Dimensionality Reduction, why?

A process of reducing the number of predictor variables under 
consideration.
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To find a more meaningful basis to express our data filtering 
the noise and revealing the hidden structure.

C. Bishop, Pattern Recognition and Machine 

Learning, Springer (2008).
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A simple example taken from Physics

Consider an ideal spring-mass system oscillating along x. 
Seeking the pressure Y that spring exerts on the wall. 
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LASSO regression model:

LASSO variable selection:

J. Shlens, A Tutorial on Principal Component 

Analysis, (2003).
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Principal Component Analysis versus LASSO 

LASSO simply selects one of the arbitrary 
directions, scientifically unsatisfactory.

We want to use all the measurements to 
situate the position of mass.

We want to find a lower-dimensional 
manifold of predictors on which data lie.
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✓ Principal Component Analysis (PCA):
A powerful Statistical tool for analyzing  data sets and is formulated in the context of Linear Algebra.

LASSO

X

X



Linear Algebra (Recap)
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Symmetric matrices

Then             is a symmetric matrix.

Symmetric: 

Using that : 
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Consider a design (or data) matrix consists of n observations 
and p predictors:

Similar for 
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Eigenvalues and Eigenvectors

For a real and symmetric matrix:

There exists a unique set of real eigenvalues: 
and the associated eigenvectors:  
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such that:

➢ Hence, they form an orthonormal basis.

(orthogonal)

(normalized)
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Spectrum and Eigen-decomposition

Eigen-decomposition:
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Spectrum:  

Orthogonal Matrix:  
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Real & Positive Eigenvalues: Gram Matrix

● The eigenvalues of             are non-negative real numbers: 

● Hence, and are positive-semidefinite .   

Similar for 
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Same eigenvalues

Same eigenvalues. 

Transformed eigenvectors: 
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● and             share the same eigenvalues:
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The sum of eigenvalues of       is equal to its trace

● Cyclic Property of Trace:

Suppose the matrices:   
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● The trace of a Gram matrix is the sum of its eigenvalues.



Statistics (Recap)

13



CS109A, PROTOPAPAS, RADER, TANNER

Centered Model Matrix 

Consider the model (data) matrix
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Centered Model Matrix:

We make the predictors centered (each column has zero expectation)
by subtracting the sample mean: 
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Sample Covariance Matrix

Consider the Covariance matrix:
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Inspecting the terms:
➢ The diagonal terms are the sample variances:

➢ The non-diagonal terms are the sample covariances:



Principal Components Analysis (PCA)
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PCA

PCA is a linear transformation that 
transforms data to a new coordinate system.
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The data with the greatest variance lie on the 
first axis (first principal component) and so on.

PCA tries to fit an ellipsoid to the data.

PCA reduces the dimensions by throwing away 
the low variance principal components.

J. Jauregui (2012)
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PCA foundation

Note that the covariance matrix is symmetric, so it permits an 
orthonormal eigenbasis:
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The eigenvector       is called the ith principal component of 

The eigenvalues can be sorted in      as:  
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Measure the importance of the principal components

The total sample variance of the predictors:
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The fraction of the total sample variance that corresponds to      :

so, indicates the “importance” of the ith principal component.
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Back to spring-mass example

PCA finds:
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Hence, PCA indicates that there may be fewer variables that are 
essentially responsible for the variability of the response.

revealing the one-degree of freedom.
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PCA Dimensionality Reduction

The Spectrum represents the dimensionality reduction by PCA.
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PCA Dimensionality Reduction

There is no rule in how many eigenvalues to keep, but it is 
generally clear and left to the analyst’s discretion.
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C. Bishop, Pattern Recognition and Machine 

Learning, Springer (2008).
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PCA Dimensionality Reduction

An example on leaves (thanks to Chris Rycroft, AM205)
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PCA Dimensionality Reduction

The average leaf
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(Why do we need this again?)
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PCA Dimensionality Reduction

First three principal components
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positive

negative
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PCA Dimensionality Reduction – Keeping up to k Components
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Assumptions of PCA

Although PCA is a powerful tool for dimension reduction, it is 
based on some strong assumptions.
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The assumptions are reasonable, but they must be checked in 
practice before drawing conclusions from PCA.

When PCA assumptions fail, we need to use other Linear or 
Nonlinear dimension reduction methods.
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Mean/Variance are sufficient 
In applying PCA, we assume that means and covariance matrix are 
sufficient for describing the distributions of the predictors. 
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This is only exactly true if the predictors are drawn from a multivariable Normal 
distribution, but works approximately for many situations.

When a predictor deviates heavily from being 
Normally distributed, an appropriate nonlinear 
transformation may solve this problem.

Wikipedia – multivariate normal distribution
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High Variance indicates importance

Assumption: The eigenvalue       is measures the “importance” of 
the ith principal component.
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It is intuitively reasonable that lower variability components 
describe the data less, but it is not always true.
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Principal Components are orthogonal 

PCA assumes that the intrinsic dimensions are orthogonal.
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When this assumption fails, we 
need to assume non-orthogonal 
components which are not 
compatible with PCA.

Balaji Pitchai Kannu (on Quora)
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Linear Change of Basis

PCA assumes that data lie on a lower dimensional linear manifold. 
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When the data lie on a nonlinear manifold in the predictor space, 
then linear methods are likely to be ineffective.

projectrhea.org Alexsei Tiulpin

vs
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Kernel PCA for Nonlinear Dimensionality Reduction 

Applying a nonlinear map Φ (called  feature map) on data yields 
PCA kernel:
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Centered nonlinear representation:

Apply PCA to the modified Kernel:

Alexsei Tiulpin
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Summary

• Dimensionality Reduction Methods 
1. A process of reducing the number of predictor variables under 

consideration.
2. To find a more meaningful basis to express our data filtering the 

noise and revealing the hidden structure.

• Principal Component Analysis
1. A powerful Statistical tool for analyzing  data sets and is formulated 

in the context of Linear Algebra.
2. Spectral decomposition: We reduce the dimension of predictors by 

reducing the number of principal components and their eigenvalues.
3. PCA is based on strong assumptions that we need to check.
4. Kernel PCA for nonlinear dimensionality reduction.
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Advanced Section 4: Dimensionality Reduction, PCA

Thank you
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