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1 Introduction

Ordinary Linear regression is a simple and well studied model of statistical learning. De-
spite its simplicity, this model has been successfully applied in a wide range of real-world
applications. Nevertheless, there are plenty of situations where the simple linear regres-
sion model fails. The linear regression model assumes that the observations are obtained
by a Normal distribution with mean that linearly depends on predictors, however, this
assumption is not satisfied in many problems. For instance, many real-world observa-
tions are binary, such as data that consists of "yes" or "no" responses. In this case we
could use Bernoulli distribution or, more general, bionomial distribution leading to the
Logistic regression model. Furthermore, there are many times that the observations only
occur on the positive real axis rather than the entirety of the reals. For such situations we
would use exponential or gamma distributions for the observations instead of Normal
distribution. That necessitates and inspires us to develop a more flexible and general
approach in the context of generalized linear models (GLMs). The formulation of GLMs is
based on the generalization of two fundamental assumptions of the linear regression. On
the contrary to linear regression model, GLMs do not require a linear relationship between
the expectation value and the predictors and do not assume Normal distribution for the
error term.

In these notes, we introduce the idea and develop the theory of GLMs. In this general
framework, the observations can be integer-valued, non-negative, categorical, or other-
wise unsatisfactory for a simple linear model. The critical point here is that, although the
observations can be unsatisfactory for a linear model, we can perform a transformation
to the expectation value that is linear to the predictors and thus, we retain the linear
relationship. In section 2.1, we start with a brief overview of the linear regression approach.
The formulation of GLMs is shown in two generalizations of the simple linear regression
model and presented in sections 2.2 and 2.3. In particular, in section 2.2 we perform
the first generalization of the linear regression model where we investigate the general
case that the observations are distributed about a linear predictor with a distribution that
belongs to the exponential family. Normal, Bernoulli, binomial, Poisson, exponential,
gamma, and negative binomial distributions are special cases of the exponential family.
In section 2.3 we make the second generalization in the simple linear regression model
that leads to GLM. In particular, we introduce the Link function that transforms the means
to be linear with the predictors. Linear and Logistic regression models, which are special
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cases of the GLMs, are presented in the end of this section as special examples. Finally, in
section 3, we discuss the maximum likelihood estimation in the overall framework of GLMs
for canonical links (section 3.1) and for general links (section 3.2).

2 Generalized Linear Models

In this section, we formulate the generalized linear models (GLMs) approach by performing
two generalizations in the linear regression model. As examples, we derive the linear and
logistic regression models in the context of the general GLM framework.

2.1 Linear regression

Linear regression is a simple approach for supervised learning for predicting a quantitative
response variable. Although linear regression is a straightforward model, it is a still
useful and widely used statistical learning method. In addition, linear regression serves
as a good jumping-off point for newer and more flexible approaches such as GLMs. In
this section, we give a brief overview of the foundations of linear regression.

We assume a training dataset with n training data-points {yi, xi} (with i = 1, ...,n), where
each pair consists of an one dimensional response variable yi ∈ IR, and a (p+1) dimensional
input (predictor) vector xi ∈ IRp+1, where p indicates the number of the predictors. In a
regression model we aim to find a relationship between the quantitative response yi,
or in matrix representation Y ≡ (y1, ..., yn)T, on the basis of predictor variables matrix
X ≡ (xT

1 , ..., x
T
n)T of the form

Y = f (X) + ε, (1)

where f is some fixed but unknown function of X, and ε ≡ (ε1, ..., εn)T is a random error
term (or stochastic noise) which is considered independent on X. The matrix X is called
the design matrix and essentially it is a matrix of column-vectors xi defined as

X =
(
x0 x1 x2 . . . xn

)T
=


1 x11 · · · x1p

1 x21 · · · x2p
...

...
. . .

...
1 xn1 · · · xnp

 . (2)

We observe that there is essential a 0th column in X, i.e. xi0 = 1 (i = 1, ...,n), that explains
the (p + 1) dimensions of xi row vectors; we will discuss the role of this column later on.

There are two fundamental assumptions in the context of linear regression. The first
assumption states that there is approximately a linear relationship between X and Y, in
other words, a linear relationship between the expected value E

[
yi
]

and the predictors xi.
The second assumption states that each observation yi is independently distributed about
the linear predictors with a Normal distribution with zero mean, that is, εi ∼ N(0, σ2), where
N denotes the Normal distribution and σ2 is the variance. Mathematically, by using the
two above fundamental assumptions of linear regression, the formula (1) is written as the
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linear relationship:

yi = xT
i β + εi or (3)

Y = Xβ + ε, (4)

where β ≡ (β0, β1, ..., βp)T (β ∈ IRp+1) is a vector of coefficients that will be estimated by the
likelihood maximization (see advanced section 2), xT

i β is the dot product

xT
i β =

p∑
j=0

xi jβp, (5)

and Xβ is a matrix product. We notice that there is a 0th element in the vector β, namely
β0, which is called the intercept and corresponds to the constant column of ones x0 of the
design matrix X. This term captures the bias (aka, intercept) in the linear regression model.
The intercept term is required in many statistical inference procedures for linear models,
however, in theoretical considerations β0 is sometimes suggested to be zero.

In linear regression model, the expectation valueµi (first moment) is linearly dependent
on the predictors, as

µi = E
[
yi
]

= xT
i β, (6)

and the variance is
var

[
yi
]

= E
[
(yi − µi)2

]
= σ2, (7)

which can be equivalently written as the conditional Normal distribution of yi on xi as

p(yi|xi) = N(xT
i β, σ

2) = N(µi, σ
2). (8)

The formulation of the GLMs essentially demands the relaxation and generalization of the
two aforementioned assumptions of the linear regression model. Firstly, for the random
component we generalize the error distribution (8) by using the general canonical exponential
family instead of the the Normal distribution, which is included as a special case, thus,

p(yi|xi) = Canonical Exponential Family. (9)

Secondly, we generalize the systematic components of the model, that is, the linear relation
(6) between µi and xi, by introducing the Link function g(µi) which transforms µi to be
linear with the predictors xi, hence,

g(µi) = xT
i β, (10)

where in the linear regression model g is the identity function. These two generalizations
yield GLMs formulation providing a flexible and efficient statistical learning method.

2.2 The Canonical Exponential Family

In this section we perform the first generalization in the linear regression model which
is required for the formulation of GLMs. In particular, we generalize the distribution of
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errors, that is, from the Normal distribution to the more general canonical exponential family
distributions. The exponential family is a pretty wide range of distributions that includes
special cases like many of the known distributions such as Normal, Bernoulli, binomial,
Poisson, exponential, gamma, inverse Gaussian, and negative binomial distributions. The
probability density (or probability mass function) of the canonical exponential family is

fθ(y) = f (y|θ) = exp
(

yθ − b(θ)
φ

+ c(y, φ)
)
, (11)

where y is the dependent variable, θ and φ are parameters, and b(θ) and c(y, φ) are known
functions determined by the distribution. More specifically, θ is called canonical or natural
parameter of the distribution and is the parameter of interest, φ is a scale parameter called
dispersion parameter and related to the variance, b(θ) depends only on θ (not on y) and
completely characterizes the distribution, subsequently it is the cumulant function, and
c(y, φ) is the normalization factor.

In regression modeling situations the distribution of each yi varies by the observation
through the subscript i. It is customary to let the distribution family remain constant,
in our case the exponential distribution family, but allow the canonical and dispersion
parameters to vary by observation by the notation θi and φi, respectively, where the dis-
persion parameter is determined by the prior weights wi. In particular, when the dispersion
parameter varies by observation, it is according to φi = φ/wi, that is, a constant divided
by known weight factors wi. When each pair of the observations has different dispersion
parameter φi we have heteroskedasticity, otherwise when φi = φ we have homoskedastic-
ity. We assume that the observations yi are independent of each other and given by the
distribution density

fθi(yi) = exp
(

yi θi − b(θi)
φi

+ c(yi, φi)
)

(12)

From the density of Eq. (12) and the independence among observations, the Likelihood is

L(yi|θi) =

n∏
i=1

fθi(yi). (13)

The log-likelihood is the fundamental quantity for the statistical inference which is defined
as:

`(yi|θi) = log L(yi|θi) =

n∑
i=1

log fθi(yi), (14)

where log here is the natural logarithm. In general, it is easier and numerically more
stable to work with the log-likelihood instead of the likelihood, since the product turns
to summation. Two important identities regarding the log-likelihood concern the score
function

S(θi) =
∂`(yi|θi)
∂θi

, (15)

where the maximum likelihood estimator determines the root θ̃i of the score function,
S(θ̃i = 0). The two identities regarding the score function, and in turn the log-likelihood,
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read

E [S(θi)] = E

[
∂`
∂θi

]
= 0 (16)

and

I(θi) ≡ −E
[
∂2`

∂θi
2

]
= E

[
∂`
∂θi

]2

= var(S(θi)), (17)

where I(θi) is the Fisher information matrix and E [.]ν denotes the ν moment. For the proof
of the identities (16) and (17) we use the following relations:
The score function can be written as

S(θi) =
∂`
∂θi

=
1
fθi

∂ fθi

∂θi
, (18)

the second derivative of the log-likelihood is

∂2`

∂θi
2 =

1

fθi
2

 fθi

∂2 fθi

∂θi
2 −

(
∂ fθi

∂θi

)2 , (19)

the ν moment of an arbitrary function h in the distribution fθi(yi) is given by

E [h]ν =

∫
yi

hν fθi(yi)dyi. (20)

Due to the fact that yi are independent of each other the variance is defined by

var [h] = E
[
(h − E [h])2

]
= E

[
h2

]
− E [h]2 , (21)

and finally for a well defined probability density we require∫
yi

fθi(yi) dyi = 1. (22)

Proof of identity (16):

E [S(θi)] = E

[
∂`
∂θi

]
=

∫
yi

1
fθi

∂ fθi

∂θi
fθidyi =

∂
∂θi

∫
yi

fθi dyi = 0,

where we use the regularity condition to take the derivative out of the integral. �
Proof of identity (17):

E

[
∂2`

∂θi
2

]
= E

[
1
fθi

∂2 fθi

∂θi
2

]
− E

( 1
fθi

∂ fθi

∂θi

)2 ,
where the first term in the right-hand is zero:

E

[
1
fθi

∂2 fθi

∂θi
2

]
=

∫
yi

1
fθi

∂2 fθi

∂θi
2 fθidyi =

∂2

∂θi
2

∫
yi

fθidyi = 0,
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while the second term in the right-hand reads

E

( 1
fθi

∂ fθi

∂θi

)2 = E

( ∂`∂θi

)2 = E

[
∂`
∂θi

]2

= var(S(θi)),

since E [∂`/∂θi] = 0 the second moment gives the variance. Subsequently, we prove that

E

[
∂2`

∂θi
2

]
= −E

[
∂`
∂θi

]2

. �

Having in our disposal the identities (16) and (17) we can derive the general formulas for
the mean and variance in the exponential family distributions:

µi = E
[
yi
]

= b′(θi), (23)

and
var

[
yi
]

= E
[(

yi − µi
)2
]

= φib′′(θi), (24)

where primes denote derivatives with respect to θi. Hence, both the mean and the
variance are functions of the canonical parameter θi. From Eqs. (23) and (24) we read
that b(θi) is the cumulant function of the distribution, since it completely determines the
first two moments. In addition, the expression (24) states that for a given positive φi,
which is usually true, the cumulant function is strictly concave (b(θi) > 0) since its second
derivative is always positive (variance is positive by definition). Furthermore, using the
prior weights wi (φi = φ/wi), Eq. (24) is written as var

[
yi
]

= φb′′(θi)/wi and states that a
larger weight wi implies a smaller variance. For the proof of the relations (23) and (24)
we use the following expressions for the derivatives of log-likelihood of the exponential
density:

` = log fθi =

n∑
i=1

yiθi − b(θi)
φi

+

n∑
i=1

c(yi, φi), (25)

∂`
∂θi

=

n∑
i=1

yi − b′(θi)
φi

, (26)

and
∂2`

∂θi
2 = −

n∑
i=1

b′′(θi)
φi

. (27)

Proof of Eq. (23):
Starting from the identity (16),

E

[
∂`
∂θi

]
= E

 n∑
i=1

yi − b′(θi)
φi

 =

n∑
i=1

E

[
yi − b′(θi)

φi

]
=

n∑
i=1

1
φi
E

[
yi
]
−

n∑
i=1

1
φi
E [b′(θi)] = 0

⇒ µi ≡ E
[
yi
]

= b′(θi),
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we note that the expectation value is defined by an integral over yi and thus, the summation
can be taken out of the E [.]. Moreover, b depends only on θi hence, E [b′(θi)] = b′(θi). �
Proof of Eq. (24):
Starting from identity (17),

E

( ∂`∂θi

)2 = −E

[
∂2`

∂θi
2

]
⇒ E


 n∑

i=1

yi − b′(θi)
φi

2 = −E

− n∑
i=1

b′′(θi)
φi


⇒

n∑
i=1

1
φi

2E
[(

yi − µi
)2
]

=

n∑
i=1

1
φi
E [b′′(θi)]

⇒ var
[
yi
]
≡ E

[
(yi − µi)2

]
= φib′′(θi). �

Let us point out that the exponential family distributions are completely characterized by
a relation between the mean and variance. In particular, from the formulas (23) and (24)
it derives that

var
[
yi
]

= φi
∂
∂θi

µi. (28)

As examples we show below that Normal and Bernoulli distributions are special cases
of the general exponential family.

Normal distribution:
The Normal distribution has the density

f (yi|ȳ, σ2) =
1

√
2πσ2

exp
(
−

(yi − ȳ)2

2σ2

)
. (29)

where ȳ is the center of the distribution and σ is the standard deviation. Expanding
the square and raising the normalization factor in the exponent we bring (29) in the
exponential family form (12) as

f (yi|ȳ, σ2) = exp

yi ȳ − 1
2 ȳ2

σ2 −
yi

2

2σ2 −
1
2

log(2πσ2)

 , (30)

where we read
θi = ȳ and b(θi) = θi

2/2, (31)

φi = σ2, and c(yi, φi) = −(2yi
2 + φi log(2πφi))/4φi. By using the formulas (23) and (24) we

find that E
[
yi
]

= θ = ȳ and var
[
yi
]

= σ2, which are the correct moments for the Normal
distribution and agree with the relation (28). The result E

[
yi
]

= θi, that is, the expectation
value is proportional to the canonical parameter, reflects the identity link function of the
linear regression model which naturally derives from the Normal distribution; this will
be discussed extensively in the next section.

Bernoulli distribution:

Last Modified: October 13, 2020 7



Bernoulli distribution is the discrete probability distribution of a random variable that
takes the values 0 and 1 and has the density

f (yi|p) = pyi(1 − p)1−yi , (32)

which is written, after some algebra, as

f (yi|p) = exp
(
yi log

p
1 − p

+ log(1 − p)
)
, (33)

where we read for the canonical parameter

θi = log
p

1 − p
. (34)

Solving for p we obtain p = eθi/(1 + eθi) and substituting in Eq. (33) yields

f (yi|θi) = exp
(
yiθi − log(1 + eθi)

)
, (35)

where we read for the cumulant function

b(θi) = log(1 + eθi), (36)

as well as, φi = 1 and c(yi, φi) = 0. Using the equations (23) and (24) we recover the well
known mean and variance for the Bernoulli distribution namely, E

[
yi
]

= eθi/(1 + eθi) = p,
and var

[
yi
]

= eθi/(1 + eθi)2 = p(1 − p), respectively. Bernoulli distribution is a special
case of the binomial distribution where a single experiment/trial is conducted. Binomial
distribution belongs to the general family of exponential distributions as well. We observe
that in Bernoulli distribution the expectation value is not proportional to the canonical
parameter θi. Subsequently, the linear relation between the expectation value and the
predictors is broken. In order to recover the linear relationship we need to generalize
the model by introducing the Link function which transforms the expectation value to
depends linearly on the canonical parameter θi and, in turn, on the predictors xi. This is
the second step for the formulation of GLMs and discussed below.

2.3 Link function

In this section we develop the second generalization step for the GMLs formulation.
We introduce the link function g(µi) that transforms the expectation values to be linear
with the predictors. Specifically, we introduce a one-to-one continuous differentiable
transformation g(.) and require

ηi = g(µi) = xT
i β, (37)

where ηi is called the linear predictor. We point out that we do not transform the observation
data yi but its expectation value µi. For instance, a model where log yi is linear on xi is
not the same as a GLM where logµi is linear to xi. Examples of link functions that are
investigated in this section include the identity and logit functions that correspond to the
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linear and logistic regression models, respectively. Since the link is a one-to-one function,
we can invert it to obtain

µi = g−1(xT
i β). (38)

When the link function makes the linear predictor the same as the canonical parameter
(ηi = g(µi) = θi), we say that we have a canonical link. Subsequently, investigating the
relation between θi and µi yields the link function. An additional relationship that is
revealed by using the formula (23) for a canonical link is

g(µi) = θi ⇒ µi = g−1(θi)⇒

b′(θi) = g−1(θi) or g(θi) = (b′)−1(θi), (39)

which maps the canonical transformation g(.) to the cumulant function b revealing that b
has to be an invertible function. Some examples of the natural pairing between the error
distribution and the canonical link function are summarized in the table 1.

Distribution: fθi Mean Function: µ = b′(θ) Canonical Link: θ = g(µ)

Normal θ µ
Bernoulli/Binomial eθ/(1 + eθ) log(µ/(1 − µ))

Poisson eθ logµ
Gamma −1/θ −1/µ

Inverse Gaussian (−2θ)−1/2
−1/(2µ2)

Table 1: Natural pairing between distribution of observations and link functions.

As examples, we calculate the canonical links for the Normal and Bernoulli distributions:
Normal distribution & Linear regression:
From Eq. (31) we have θi = µi, subsequently

θ = g(µ) = µ⇒

g = Identity. �

Bernoulli distribution & Logistic regression:
From Eq. (34) we have θi = log[µi/(1 − µi)], thus

θi = g(µi) = log
µi

1 − µi
⇒

g = Logit. �

In the last example we recover the very useful logistic regression model that is used when
the observations come from binary data. In that case we put the logistic regression in a very
general and broad family in the context of exponential distributions proving that linear
and logistic regression models are formulated in the same overall framework. Working
in such a general framework is a great advantage since there are theory and inferential
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methods associated with general GLMs that can be applied afterwards in each specific
distribution and regression model. For instance, in the next section we discuss about
the maximum likelihood estimation in the very general framework of GLMs and recover
the normal equations for the likelihood maximization for the linear and logistic regression
models.

3 Maximum Likelihood Estimation

In the last section we discuss about reverse engineering, that is, we have a dataset of
observations {yi, xi} and aim to find a conditional distribution that describes them. We
derive in general regression models, in the context of likelihood, in which the maximizer is
not given by a closed-form and hence we need to use optimization algorithms to compute
the maximizer (see advanced section 2).

Let {yi, xi}
n
i=1 be n independent random pairs such that the conditional distribution

given f (yi|xi) has density in the canonical exponential family (12). Thus, the likelihood is
given by:

L(yi|θi) =

n∏
i=1

exp
(

yiθi − b(θi)
φi

+ c(yi, φi)
)

(40)

and the log-likelihood reads

`(yi|θi) =

n∑
i=1

yiθi − b(θi)
φi

+

n∑
i=1

c(yi, φi), (41)

where the last term is the normalization constant and does not play any role in the maxi-
mization of `, hence it can be neglected. Our aim is to determine the β of a linear predictor
xT

i β that maximizes the log-likelihood (41). We keep the same vector of coefficients β
(independent on i) for many pairs of (yi, xi), as more the training dataset (yi, xi) as better
the estimation of β. We first describe maximum likelihood estimation for canonical links
and find the normal equations that maximize the likelihood function. That gives us the
intuition to work with general links and derive to the generalized estimating equations that
maximize the likelihood. In general, the solution of the normal and generalized estimat-
ing equations does not have a closed-form and hence, it can be computed by iterated
numerical methods such as Fisher score and weighted least squares, or by using regression
modeling packages such as the Python library Scikit-learn; the discussion of these iteration
methods is out of the scope of these notes.

3.1 Maximum Likelihood Estimation for Canonical Links

When g is the canonical link, and hence the canonical parameter is θi = xT
i β, the log-

likelihood takes the simple form

`(yi|xT
i β) =

1
φ

n∑
i=1

wi

(
yixT

i β − b(xT
i β)

)
, (42)
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where wi shows the weights of the dispersion parameter, i.e. φi = φ/wi. Inspecting the
Eq. (42) and using Eq. (24), we observe that the second derivative of log-likelihood with
respect to β,

∂2`
∂2β2 =

n∑
i=1

0 −
wib′′(xT

i β)x2
i

φ
= −

1
φ2

n∑
i=1

w2
i var

[
yi
]

x2
i < 0,

is strictly concave, since the variance is always positive, and subsequently, ` can be
maximized. Taking the partial derivative with respect to β yields the score function:

∂`
∂β

=
1
φ

n∑
i=1

wi

(
yi − b′

(
xT

i β
))

xT
i (43)

According to the Eq. (23), µi = b′(θi) = b′
(
xT

i β
)
. Now, we can require ∂β` = 0 and solve

for the maximum likelihood estimators of β through the normal equations
n∑

i=1

wi
(
yi − µi

)
xT

i = 0. (44)

We are seeking for the µi that satisfies the above equations. Remember that for canonical
links µi = g−1(θi) = g−1(xT

i β), hence by solving the equations (44) we essentially estimates
the vector of the coefficients β, which typically has a unique solution.

For example, in the Normal distribution the canonical link is µi = xT
i β (see table table 1).

Thus, the formula (44) yields the linear regression model
n∑

i=1

wi

(
yi − xT

i β
)

xT
i = 0.

Furthermore, in Bernoulli distribution, where the canonical link is the logit and the mean is
given in the table (1), the expression (44) yields the logistic regression model

n∑
i=1

wi

(
yi −

exT
i β

1 + exT
i β

)
xT

i = 0.

3.2 Maximum Likelihood Estimation for General Links

Rather than canonical, the link can be any function that transforms the expectation value
to be linear to the input xi. For general links, where µi = b′(θi) and g(µi) = xT

i β (but
g(µi) , θi), the score function reads

∂
∂β j

`(yi|θi) =

n∑
i=1

1
φi

(
yi
∂θi

∂β j
−
∂b(θi)
∂β j

)
=

n∑
i=1

1
φi

(
yi
∂θi

∂β j
−
∂b(θi)
∂θi

∂θi

∂β j

)
=

n∑
i=1

1
φi

∂θi

∂β j

(
yi − µi

)
. (45)
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Using the chain rule along with the relations µi = b′(θi) and var
[
yi
]

= φib′′(θi), we get

∂µi

∂β j
=
∂b′(θi)
∂β j

=
∂b′(θi)
∂θi

∂θi

∂β j

= b′′(θi)
∂θi

∂β j
=

var
[
yi
]

φi

∂θi

∂β j
,

hence,
1
φi

∂θi

∂β j
=

1
var

[
yi
] ∂µi

∂β j
. (46)

Substituting the relation (46) into the score function (45) and maximizing (request Eq. (45)
to be zero), we obtain the generalized estimating equations

n∑
i=1

1
var

[
yi
] ∂µi

∂β

(
yi − µi

)
= 0, (47)

where the roots imply the maximum likelihood estimates. It is easy to confirm that in the
case of a canonical link where µi = b′(θi) = b′(xT

i β), the generalized estimating equations
(47) yield the normal equations (44).
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