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Advanced Section #2:  
Methods of Regularization and their justifications  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Outline

• Motivation for regularization
• Generalization
• Instability

• Ridge estimator
• Lasso estimator
• Elastic Net estimator
• Visualizations
• Bayesian approach
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Regularization: introduce additional information to solve ill-
posed problems or avoid overfitting.
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MOTIVATION
Why do we regularize?
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Generalization

- Avoid overfitting. Reduce features that have weak predictive 
power.

- Discourage the use of a model that is too complex.
- Do not fit the noise!
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Instability issues
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Instability issues
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var(Y) Inverse of 
Gram 
matrix

 

The variance of the estimator 
is affected by the irreducible 
noise of the model. We have 

no control over this.

But the variance also depends on 
the predictors themselves! This is 
the important part.
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Instability and the condition number
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Perturbations
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Instability visualized

- Instability can be visualized by regressing on nearly colinear 
data, and observing the changes on the same data, slightly 
perturbed:
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Image from “Instability of Least Squares, Least Absolute Deviation and Least Median of Squares 
Linear Regression”, Ellis et al. (1998)
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Motivation in short

- We want less complex models to avoid overfitting and 
increase interpretability.

- We want to be able to solve problems where p = n or p > n, 
and still generalize reasonably well.

- We want to reduce instability (increase min eigenvalue/reduce 
condition number) in our estimators. We need to be better at 
estimating betas with colinear predictors.

- In a nutshell, we want to avoid ill-posed problems (no 
solutions / solutions not unique / unstable solutions)
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RIDGE REGRESSION
Instability destroyer
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What is the Ridge estimator?
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Regularization factor
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Deriving the Ridge estimator
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Eigendecompostion
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Deriving the Ridge estimator
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Properties: shrinks the coefficients
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Properties: closer to the real beta
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Good bias-variance tradeoff. 

OLS
• Higher Variance (instable Betas)
• No Bias
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Ridge 
• Lower Variance
• Adding some Bias
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Different perspectives on Ridge

• So far, we understand Ridge as a penalty on the optimization 
objective:

However, there are multiple ways to look at it:
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Optimization perspective
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Ridge visualized
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The ridge estimator is where the 
constraint and the loss intersect.

The values of the coefficients decrease 
as lambda increases, but they are not 

nullified.

Ridge estimator
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Ridge visualized
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Ridge curves the loss function in colinear problems, avoiding instability.



LASSO REGRESSION
Yes, LASSO is an acronym
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What is LASSO?
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Deriving the LASSO estimator
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No.
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Subgradient to the rescue
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Subgradient to the rescue
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Deriving LASSO
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Deriving LASSO
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Deriving LASSO
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Deriving LASSO
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Deriving LASSO
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Connections of LASSO with OLS
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LASSO visualized
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The Lasso estimator tends to zero out 
parameters as the OLS loss can easily 

intersect with the constraint on one of the 
axis.

The values of the coefficients decrease 
as lambda increases, and are nullified 

fast.

Lasso estimator



ELASTIC NET ESTIMATOR
Estimators, assemble
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Problems with Ridge and LASSO

• Ridge does not perform feature selection.
• Ridge and Lasso are sensible to outliers.
• When p > n, LASSO can choose at most n predictors to use. 

The rest are nullified.
• When there are multiple correlated predictors, LASSO tends 

to indifferently choose one and discard the rest. 
• For example, if you run a problem with large number features 

multiple times, you might have a very different feature set 
each time.
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Combine Ridge and LASSO!
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LASSO Ridge
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Combine Ridge and LASSO!
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Combine Ridge and LASSO!
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GEOMETRY OF ESTIMATORS
Visualization is key
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Elastic Net
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Let’s see it live! 

DEMO TIME



BAYESIAN INTERPRETATIONS
“The right way of looking at it” - Kevin Rader, probably
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A different but useful perspective
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A different but useful perspective
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Ridge and LASSO as MAP estimates
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MAP: Maximum a posteriori estimation
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N=32

Posterior: priors and posteriors as we see more and more data
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• Blue Player: assumes before seeing any data a uniform distribution = Blue is a non-informative Prior
• Red Player: assumes our distribution is close to zero = Red is an informative biased Prior

N=0

N=500

True beta



CS109A, PROTOPAPAS, RADER

Proof of Bayesian interpretations
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Proof of Bayesian interpretations
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Considerations on Bayesian Linear Regression
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Bayesian priors instead of cross-validation
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cross-validation.
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Evidence Procedure: The math in a nutshell

Assume the following model:
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The marginal likelihood can be computed as follows:
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Evidence Procedure: The math in a nutshell
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1 There is an easy formula to automatically obtain the betas as well, available in chapter 13, p. 464 
of Murphy’s “Machine Learning – A Probabilistic Perspective”. 



THANK YOU!
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Practical side: how to check for multicollinearity?
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Augmented problem – Elastic Net
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Augmented problem – Elastic Net
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LASSO 
problem!


