
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section #1: 
Linear Algebra and Hypothesis Testing 

1Presentation prepared by Will Claybaugh & Cecilia Garraffo for CS109A 2020



CS109A, PROTOPAPAS, RADER

Advanced Section 1

WARNING
This deck uses animations to focus attention and break apart complex concepts. 

Either watch the section video or read the deck in Slide Show mode.

2



CS109A, PROTOPAPAS, RADER

Advanced Section 1

Today’s topics:
Linear Algebra (Math 21b, 8 weeks)
Maximum Likelihood Estimation (Stat 111/211, 4 weeks)
Hypothesis Testing (Stat 111/211, 4 weeks)

Our time limit: 75 minutes
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• We will move fast
• You are only expected to catch the big ideas
• Much of the deck is intended as notes
• We will recap the big ideas at the end of each section



LINEAR ALGEBRA
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Interpreting the dot product
What does a dot product mean?

1,5,2 � 3,−2,4 = 1 � 3 + 5 � −2 + 2 � 4
• Weighted sum: We weight the entries of one vector by the entries of the other

• Either vector can be seen as weights
• Pick whichever is more convenient in your context

• Measure of Length: A vector dotted with itself gives the squared distance from (0,0,0) to the 
given point
• 1,5,2 � 1,5,2 = 1 � 1 + 5 � 5 + 2 � 2 = 1 − 0 2 + 5 − 0 2 + 2 − 0 2 = 28
• 1,5,2 thus has length 28

• Measure of orthogonality: For vectors of fixed length, 𝑎𝑎 � 𝑏𝑏 is biggest when 𝑎𝑎 and 𝑏𝑏 point are 
in the same direction, and zero when they are at a 90° angle

Question: how could we get a true measure of orthogonality (one that ignores length?)
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Figure credit CCSU

𝑎𝑎 � b/(| 𝑎𝑎 | | 𝑏𝑏 |) = 𝑎𝑎 � b/( 𝑎𝑎 � 𝑎𝑎 𝑏𝑏 � 𝑏𝑏)
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Product for Matrices

Matrix multiplication is a bunch of dot products
• In fact, it is every possible dot product, nicely organized
• Matrices being multiplied must have the shapes (𝑛𝑛,𝑚𝑚)𝑥𝑥 (𝑚𝑚,𝑝𝑝) and the result is of size (𝑛𝑛,𝑝𝑝)

• (the middle dimensions have to match, and then drop out)
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Column by Column

• Since matrix multiplication is a dot product, we can think of it as a weighted sum
• We weight each column as specified, and sum them together
• This produces the first column of the output
• The second column of the output combines the same columns under different weights

• Rows?
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3 1
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Row by Row

• Apply a row of A as weights on the rows of B to get a row of output
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𝛽𝛽3𝛽𝛽2

Span and Column Space

• Span: every possible linear combination of some vectors
• If vectors are the columns of a matrix we call it the column space of that matrix
• If vectors are the rows of a matrix it is the row space of that matrix

• Q: what is the span of {(-2,3), (5,1)}? what is the span of {(1/4,1/3), (1/2,2/3)}? What 
is the span of {(1,2,3), (-2,-4,-6), (1,1,1)}
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Bases
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Basis Basics

• Given a space, we’ll often want to come up with a set of vectors that span it
• If we give a minimal set of vectors, we’ve found a basis for that space
• A basis is a coordinate system for a space

• Any element in the space is a weighted sum of the basis elements
• Each element has exactly one representation in the basis

• The same space can be viewed in any number of bases - pick a good one
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Function Bases
• Bases can be quite abstract:

• Taylor polynomials express any analytic function in 
the infinite basis 1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3, …

• The Fourier transform expresses many functions in 
a basis built on sines and cosines

• Radial Basis Functions express functions in yet 
another basis

• In all cases, we get an ‘address’ for a particular 
function

• In the Taylor basis, sin(𝑥𝑥) = (0,1,0, 1
6

, 0, 1
120

, … )

• Bases become super important in feature engineering
• y may depend on some transformation of x, but we 

only have x itself
• We can include features 1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3, … to 

approximate

13

Taylor approximations to y=sin(x)
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Interpreting Transpose and Inverse
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Transpose

• Transposes switch columns and rows. Written 𝐴𝐴𝑇𝑇

• Better dot product notation: 𝑎𝑎 � 𝑏𝑏 is often expressed as 𝑎𝑎𝑇𝑇𝑏𝑏

• Interpreting: The matrix multiplilcation 𝐴𝐴𝐴𝐴 is rows of A dotted with columns of B
• 𝐴𝐴𝑇𝑇𝐵𝐵 is columns of 𝐴𝐴 dotted with columns of 𝐵𝐵
• 𝐴𝐴𝐴𝐴𝑇𝑇 is       rows of 𝐴𝐴 dotted with        rows of 𝐵𝐵

• Transposes (sort of) distribute over multiplication and addition: 
𝐴𝐴𝐴𝐴 𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇 𝐴𝐴 + 𝐵𝐵 𝑇𝑇 = 𝐴𝐴𝑇𝑇 + 𝐵𝐵𝑇𝑇 𝐴𝐴𝑇𝑇 𝑇𝑇 = 𝐴𝐴
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Presenter
Presentation Notes
Note: AB is rows dotted with columns, that order. If a transpose is there, switch that part of the phrase from rows to columns
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Inverses

• Algebraically, 𝐴𝐴𝐴𝐴−1 = 𝐴𝐴−1𝐴𝐴 = 1
• Geometrically, 𝐴𝐴−1 writes an arbitrary point 𝑏𝑏

in the coordinate system provided by the 
columns of 𝐴𝐴

• Proof (read this later): 
• Consider 𝐴𝐴𝑥𝑥 = 𝑏𝑏. We’re trying to find weights 𝑥𝑥

that combine 𝐴𝐴’s columns to make 𝑏𝑏
• Solution 𝑥𝑥 = 𝐴𝐴−1𝑏𝑏 means that when 𝐴𝐴−1

multiplies a vector we get that vector’s 
coordinates in A’s basis

• Matrix inverses exist iff columns of the matrix 
form a basis

• 1 Million other equivalents to invertibility: 
Invertible Matrix Theorem

16

How do we write (-2,1) in this basis? 

Just multiply 𝐴𝐴−1 by (-2,1)

http://mathworld.wolfram.com/InvertibleMatrixTheorem.html
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Eigenvalues and Eigenvectors
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Eigenvalues
• Sometimes, multiplying a vector by a matrix 

just scales the vector
• The red vector’s length triples
• The orange vector’s length halves
• All other vectors point in new directions

• The vectors that simply stretch are called 
eigenvectors. The amount they stretch is their 
eigenvalue

• Anything along the given axis is an 
eigenvector; Here, (-2,5) is an eigenvector 
so (-4,10) is too

• We often pick the version with length 1

• When they exist, eigenvectors/eigenvalues can 
be used to understand what a matrix does

18

Original vectors:

After multiplying by 
2x2 matrix A:

Presenter
Presentation Notes
Spoiler alert: matrices stretch and rotate space
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Interpreting Eigenthings

Warnings and Examples:
• Eigenvalues/Eigenvectors only apply to square matrices
• Eigenvalues may be 0 (indicating some axis is removed entirely)
• Eigenvalues may be complex numbers (indicating the matrix 

applies a rotation)
• Eigenvalues may be repeat, with one eigenvector per 

repetition (the matrix may scales some n-dimension subspace)
• Eigenvalues may repeat, with some eigenvectors missing 

(shears)

• If we have a full set of eigenvectors, we know everything 
about the given matrix S, and S = 𝑄𝑄𝑄𝑄𝑄𝑄−1

• Q’s columns are eigenvectors, D is diagonal matrix of 
eigenvalues

• Question: how can we interpret this equation?
19

Presenter
Presentation Notes
This says: write all points in terms of the eigenvectors. Scale everything. Convert back to the original coordinate system.
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Calculating Eigenvalues

• Eigenvalues can be found by:
• A computer program

• But what if we need to do it on a blackboard?
• The definition 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆

• This says that for special vectors x, multiplying by the 
matrix A is the same as just scaling by 𝜆𝜆 (x is then an 
eigenvector matching eigenvalue 𝜆𝜆)

• The equation det 𝐴𝐴 − 𝜆𝜆𝐼𝐼𝑛𝑛 = 0
• 𝐼𝐼𝑛𝑛 is the n by n identity matrix of size n by n. In effect, 

we subtract lambda from the diagonal of A
• Determinants are tedious to write out, but this 

produces a polynomial in 𝜆𝜆 which can be solved to 
find eigenvalues

20

• Eigenvectors matching known eigenvalues can be found by solving A − 𝜆𝜆𝐼𝐼𝑛𝑛 𝑥𝑥 = 0 for x
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Matrix Decomposition
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Matrix Decompositions

• Eigenvalue Decomposition: Some square matrices can be decomposed into 
scalings along particular axes

• Symbolically: S = 𝑄𝑄𝑄𝑄𝑄𝑄−1;            D diagonal matrix of eigenvalues; Q made up of 
eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)

• Polar Decomposition: Every matrix M can be expressed as a rotation (which 
may introduce or remove dimensions) and a stretch

• Symbolically: M = UP or M=PU;    P positive semi-definite, U’s columns orthonormal

• Singular Value Decomposition: Every matrix M can be decomposed into a 
rotation in the original space, a scaling, and a rotation in the final space

• Symbolically: 𝑀𝑀 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇;      U and V orthonormal, 𝛴𝛴 diagonal (though not square)

22

Presenter
Presentation Notes
Polar: stretch is in the smaller space, rotation may introduce or remove dimensions
PSD: no reflection. All vectors end up within the same side of their normal plane
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Where we’ve been
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Vector dot product and Matrix product

Invertibility 
𝐴𝐴𝐴𝐴 = 𝑏𝑏 ; 𝑥𝑥 = 𝐴𝐴−1𝑏𝑏

Basis as a coordinate system for a space
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Span

Other decompositions
M = UP or M=PU
𝑀𝑀 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇

Eigenvalues
𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆

S = 𝑄𝑄𝑄𝑄𝑄𝑄−1
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Reading

• What about all the facts about inverses and dot products I’ve forgotten since 
undergrad? [Matrix Cookbook] [Linear Algebra Formulas]

24

https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf
http://www.cs.cmu.edu/%7Ejingx/docs/linearalgebra.pdf
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Notes

• Matrix multiplication: every dot product between rows of A and columns of B
• Important special case: a matrix times a vector is a weighted sum of the matrix columns

• Dot products measure similarity between two vectors: 0 is extremely un-alike, bigger is pointing in the 
same direction and/or longer

• Alternatively, a dot product is a weighted sum
• Bases: a coordinate system for some space. Everything in the space has a unique address
• Matrix Factorization: all matrices are rotations and stretches. We can decompose ‘rotation and stretch’ in 

different ways
• Sometimes, re-writing a matrix into factors helps us with algebra

• Matrix Inverses don’t always exist. The ‘stretch’ part may collapse a dimension.  𝑀𝑀−1 can be thought of 
as the matrix that expresses a given point in terms of columns of M

• Span and Row/Column Space: every weighted sum of given vectors
• Linear (In)Dependence is just “can some vector in the collection be represented as a weighted sum of the 

others” if not, vectors are Linearly Independent

26
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Review and Practice: Linear Regression

• In linear regression, we’re trying to write our response data y as a linear function of our 
[augmented] features X

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛽𝛽1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 + 𝛽𝛽2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2 + 𝛽𝛽3𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓3 +…
�𝑦𝑦 = 𝑋𝑋𝛽𝛽

• Our response isn’t necessarily a linear function of our features, so we instead find betas that 
produce a column �𝑦𝑦 that is as close as possible to 𝑦𝑦 (in Euclidean distance): (𝑦𝑦 − �𝑦𝑦)

min
𝛽𝛽

(𝑦𝑦 − �𝑦𝑦)𝑇𝑇(𝑦𝑦 − �𝑦𝑦) = min
𝛽𝛽

(𝑦𝑦 − 𝑋𝑋𝛽𝛽)𝑇𝑇(𝑦𝑦 − 𝑋𝑋𝛽𝛽)

• Goal: find that the optimal 𝛽𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦
• Steps:

1. Drop the sqrt [why is that legal?]
2. Distribute the transpose
3. Distribute/FOIL all terms
4. Take the derivative with respect to 𝛽𝛽 (Matrix Cookbook (69) and (81): derivative of 𝛽𝛽𝑇𝑇𝑎𝑎 is 𝑎𝑎𝑇𝑇, …)
5. Simplify and solve for beta

28
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Interpreting LR: Algebra

• The best possible betas, 𝛽̂𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦 can be viewed in two parts:
• Numerator (𝑋𝑋𝑇𝑇𝑦𝑦): columns of X dotted with (the) column of y; how related are the feature vectors 

and y?
• Denominator (𝑋𝑋𝑇𝑇𝑋𝑋): columns of X dotted with columns of X; how related are the different features? 

• Roughly, our solution assigns big values to features that predict y, but punishes features 
that are similar to (combinations of) other features

• Bad things happen if 𝑋𝑋𝑇𝑇𝑋𝑋 is uninvertible (or nearly so)

29

𝛽̂𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦
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Interpreting LR: Geometry

• The only points that CAN be expressed as X𝛽𝛽 are those in the span/column space of X. 
• By minimizing distance, we’re finding the point in the column space that is closest to the actual y 

vector

• The point X𝛽̂𝛽 is the projection of the observed y values onto the things linear regression can 
express

• Warnings: 
• Adding more columns (features) can only make the span bigger and the fit better
• If some features are very similar, results will be unstable

30

�𝑦𝑦 = 𝑋𝑋𝛽̂𝛽 = 𝑋𝑋 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

Observed response values

Best we can do with a
linear combination of  
features
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Interpreting LR: MLE

What if we we want to know more about how the data was generated? More interpretability.  We would 
like to know not only the optimal 𝛽̂𝛽 but their error bars. How good are other sets of 𝛽̂𝛽. 

If need to make a few assumptions: 

31

𝛽̂𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

Figure credit Medium

𝑦𝑦
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Interpreting LR: MLE

Likelihood function: 

Optimal β: 

Optimal σ2:

32

P(Y=y| X, β,σ2 ) = Ν(X β, σ2 Ιn) = 1

2𝜋𝜋(σ2In )
𝑒𝑒
− 1
2 𝑦𝑦−𝑋𝑋𝛽𝛽 𝑇𝑇 𝑦𝑦−𝑋𝑋𝛽𝛽

(𝜎𝜎2𝐼𝐼𝑛𝑛)

𝛽̂𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦

σ2 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜β
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

This allows us to attach error bars to our parameter estimates



CS109A, PROTOPAPAS, RADER

Linear Regression: Review

• LR offers a closed form solution for the optimal parameters β
• By making assumptions about where the data came from, we get 

richer statements from our model

• A likelihood function tells us how likely any given data set is under 
our model and for a set of parameters. 

• MLE finds the parameters that maximize is, making our data as 
likely as possible

• Finding the MLE can be hard, sometimes possible via calculus, 
often requires computer code… depending on our assumptions. 

33
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STATISTICS: HYPOTHESIS TESTING
OR: WHAT PARAMETERS EXPLAIN THE DATA

34

Presenter
Presentation Notes
What did our assumptions buy us?



CS109A, PROTOPAPAS, RADER

Inaccessible Truth

• We can only rule models out. 
• It’s impossible to prove a model is 

correct
• Can you prove increasing a 

parameter by .0000001% is 
incorrect?

35
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Model Rejection

• Important: a ‘model’ is a (probabilistic) story about 
how the data came to be, complete with specified 
values of every parameter.

• The model could produce many possible datasets
• We only have one observed dataset

• How can we tell if a model is wrong?
• If the model is unlikely to reproduce the aspects of 

the data that we care about and observe, it has to go
• Therefore, we have some real-number summary of 

the dataset (a ‘statistic’) by which we’ll compare 
model-generated datasets and our observed dataset

• If the statistics produced by the model are clearly 
different than the one from the real data, we reject 
the model

36
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Stat 
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D

Presenter
Presentation Notes
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Recap: How to understand any statistical test

• A statistical test typically specifies:
1. A ‘hypothesized’ (probabilistic) data generating process
2. A summary we’ll use to compress/summarize a dataset
3. A rule for comparing the observed and the simulated summaries

• Example: t-test
1. The y data are generated via the estimated line/plane, plus Normal(0, σ2) noise, 

EXCEPT a particular coefficient is assumed to actually be zero!
2. The coefficient we’d calculate for that dataset (minus 0), over the SE of the coefficient

t statistic = 
�𝛽𝛽0bserved−0
�𝑆𝑆𝑆𝑆(�𝛽𝛽0bserved)

3. Declare the model bad if the observed result is in the top/bottom α/2 of simulated 
results (commonly top/bottom 2.5%)

37

(Jargon: the null hypothesis)
(Jargon: a statistic)
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The t-test
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1.6

3

4.3

3.6

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 x1+ 𝛽𝛽2 x2 + …. +ε

5.3

0.875

4.3

3.6

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛽̂𝛽/σ�𝛽𝛽

t-stat

𝛽̂𝛽0

𝛽̂𝛽1

𝛽̂𝛽2

𝛽̂𝛽3

𝛽̂𝛽0

𝛽̂𝛽1

𝛽̂𝛽2

𝛽̂𝛽3

How do we interpret this? We know the relative parameter dependence, but how good is good enough? 
Which of these features really matter? 
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The t-test

Walkthrough:
• We set a particular 𝛽𝛽 (or set of 𝛽𝛽’s) we care 

about to zero (call them 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛).
• We simulate 10,000 new datasets using 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

as truth.
• In each of the 10,000 datasets, fit a 

regression against X and plot the values of 
the 𝛽𝛽 we care about (the one we set to zero).

• Plotting the t statistic in each simulation 
is a little nicer

• The t statistic calculated from the 
observed data was 17.8. Do we think the 
proposed model generated our data?

39

• One more thing: Amazingly, ‘Student’ knew what results we’d get from the simulation. 

𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [2.2, 5, 0, 1.6]

𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠 … 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,000

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = [2.2, 5, 3, 1.6]T-test for 𝜷𝜷𝟑𝟑 = 0 

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠 … 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,000

𝑋𝑋𝛽𝛽 𝜎𝜎

Presenter
Presentation Notes
Important: how do we set the SE
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The t-test
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1.6

3

4.3

3.6

�𝑦𝑦 = 𝛽̂𝛽0+ 𝛽̂𝛽1 x1+ 𝛽̂𝛽2 x2 + …. +ε

5.3

0.875

4.3

3.6

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛽𝛽/σ𝛽𝛽

t-stat

𝑁𝑁(0, σ) σ2
~ χ2Student’s distribution

𝛽̂𝛽0

𝛽̂𝛽1

𝛽̂𝛽2

𝛽̂𝛽3

𝛽̂𝛽0

𝛽̂𝛽1

𝛽̂𝛽2

𝛽̂𝛽3

𝜐𝜐 = 𝑛𝑛 − 1

# of observations

𝑡𝑡𝛽𝛽1 𝑡𝑡𝛽𝛽2Figure credit Wikipedia Figure credit SPH-BU 𝑡𝑡𝛽𝛽𝛽𝑡𝑡𝛽𝛽3

Presenter
Presentation Notes
\hat\\hat \hat. 
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The Value of Assumptions

• Student’s clever set-up let’s us skip the simulation
• In fact, all classical tests are built around working 

out what distribution the results will follow, 
without simulating

• Student’s work lets us take infinite samples at almost 
no cost

• These shortcuts were vital before computers, and 
are still important today

• Even so, via simulation we’re freer to test and reject 
more diverse models and use wilder summaries

• However, the summaries and rules we choose still 
require thought: some are much better than others

41

Define Model

Get Simulated 
Datasets/Statistics

Compare to 
Observed Data

Decision
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p-values
• Hypothesis (model) testing leads to comparing a 

distribution against a specific value
• α is the significance level: the probability to make a 

mistake by rejecting the null hypothesis 
• A natural way to summarize: report what 

percentage of results are more extreme than the 
observed data

• Basically, could the model frequently produce 
data that looks like ours?

• This is the p value: p=0.031 means that your 
observed data is in the top 3.1% of extreme results 
under this model (using our statistic)

• There is some ambiguity about what ‘extreme’ 
should mean

Jargon: p-values are “the probability, assuming the null model is true, 
of seeing a value of [your statistic] as extreme or more extreme than 
what was seen in the observed data”
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Results From Simulation

Fr
eq

ue
nc

y

Distribution of Simulation Results

Simulations more 
extreme than the 
observed data

?

α

Results from observed 
dataset



CS109A, PROTOPAPAS, RADER

p Value Warnings

• p values are just one possible measure of the evidence against a 
model

• Rejecting a model when p<threshold is only one possible decision 
rule

• Even if the null model is exactly true, 5% of the time, we’ll get a 
dataset with p<.05

• p<.05 doesn’t prove the null model is wrong, it just suggests it.
• It does mean that anyone who wants to believe in the null must explain 

with why something unlikely happened

43
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Recap

• We can’t rule models in (it’s difficult); we can only rule them out (much 
easier)

• We rule models out when the data they produce is different from the 
observed data

• We pick a particular candidate (null) model
• A statistic summarizes the simulated and observed datasets
• We compare the statistic on the observed data to the [simulated or 

theoretical] sampling distribution of statistics the null model produces
• We rule out the null model if the observed data doesn’t seem to come 

from the model (disagrees with the sampling distribution).
• A p value summarizes the level of evidence against a particular null

• “The observed data are in the top 1% of results produced by this 
model… what’s more reasonable: we got lucky, or the model was wrong?

44



STATISTICS: HYPOTHESIS TESTING
CONFIDENCE INTERVALS AND COMPOSITE HYPOTHESES

45
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Recap

• Let’s talk about what we just did
• That t-test was ONLY testing the model where the coefficient in question is set to zero
• Ruling out this model makes it more likely that other models are true, but doesn’t tell 

us which ones
• If the null is β = 0, getting p<.05 only rules out THAT ONE model

• When would it make sense to stop after ruling out β = 0, without testing β = .1?
46

Dawn of Time

β = -.3 β = -.2 β = -.1 β = 0 β = .1 β = .2 β = .3

Our Data

β = -.4 β = -.4
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Composite Hypotheses: Multiple Models

• Often, we’re interested in trying out more 
than one candidate model

• E.g. Can we disprove all models with a 
negative value of beta?

• This amounts to simulating data from each 
of those models (but there are infinitely 
many…)

• Sometimes, ruling out the nearest model is 
enough; we know that the other models have 
to be worse

• If a method claims it can test θ<0, this is how

47

β
β=MLEβ=0

Can we rule these out?

β=0 will be closer to matching the data (in 
terms of t statistic) than any other model in 
the set*; we only need to test β=0
* Non-trivial; true for student’s t but not for other measures
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β = -.2β = -.4

THE Null vs A Null

• What if we tested LOTS of possible values of beta?
• We end up with a set/interval of surviving values, e.g. [.1,.3]
• Since each beta was tested under the rule “reject this beta if the observed results are in the 

top 5% of weird datasets under this model”, we have [.1,.3] as a 95% confidence interval

48

Dawn of Time

Our Data

β = 0 β = .1 β = .2 β = .3β = -.1β = -.3 β = -.4

Presenter
Presentation Notes
Criteria: how much do you know about the results of the next test, given results (data?) from all previous tests
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HW Preview

• The 209 homework touches on another kind of confidence interval
• Class: “How well have I estimated beta?”
• HW: “How well can I estimate the mean response at each X?”
• Bonus: “How well can I estimate the possible responses at each X”?

49
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Remember those assumptions?

50

Dawn of Time

β = -.2 β = -.1 β = 0 β = .1 β = .2

Our Data

Dawn of Time

All other betas have their MLE values Other betas have different values

Dawn of Time

World is not linear World has non-Gaussian 
noise

World is linear w/ 
MLE Gaussian noise

β = -.2 β = -.1 β = 0 β = .1 β = .2

Our Data

• We rejected the null model(s) as tested, not the idea that β=0 – assumptions matter



CS109A, PROTOPAPAS, RADER

Review

• Ruling out a single model isn’t much in general
• Sometimes, if we are lucky, ruling out a single model is enough to 

rule out a whole class of models
• Assumptions our model makes are weak points that should be 

justified and checked for accuracy

51



STATISTICS: REVIEW
You made it!

52



CS109A, PROTOPAPAS, RADER

Review

• To test a particular model (a particular set of parameters) we must:
1. Specify a data generating process
2. Pick a way to measure whether our data plausibly comes from the process
3. Pick a rule for when a model cannot be trusted (when is the range of simulated 

results too different from the observed data?)

• What features make for a good test?
• We want to make as few assumptions as possible, and choose a measure that is 

sensitive to deviations from the model
• If we’re clever, we might get math that lets us skip simulating from the model
• Tension: more assumptions make math easier, fewer assumptions make results 

broader

• There is no such thing as THE null hypothesis. It’s only A null hypothesis.
• A p value only tests one null hypothesis, and is rarely enough

53
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Going forward

As the course moves on, we’ll see
• Flexible assumptions about the data generating process

• Generalized Linear Models

• Ways of making fewer assumptions about the data generating 
process:

• Bootstrapping
• Permutation tests

• Easier questions: Instead of ‘find a model that explains the world’, 
‘pick the model that predicts best’

• Validation sets and cross validation
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THANK YOU!
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