
lecture4

September 18, 2020

1 Lecture 4: September 17, 2019
1.1 Branches in Git

1.2 Basic Branching
• We have encountered branches a few times so far but we haven’t really said much about what

they are or why they’re important. They are very important. In fact, they form a core piece
of the git workflow.

• A git branch is a “Sticky Note” on the graph. When you switch branches you are moving
the “Sticky Note”.

• Suppose you have a newly initialized repository. Your first commit is represented by the A

block in the figure below.

A default branch is created and git named it master. The name master has no special meaning
to git.

Now suppose we make a set of two commits (B and C). The master branch (and our pointer) moves

1

along.

So far so good. Suddenly we find a bug! We could work on the bug in master but that’s not
really a good idea. It would make a lot more sense to branch off of master and fix the bug on
its own branch. That way, we don’t interfere with things on master. We’ll discuss the details of
how to create branches in the lecture exercises. For now, suppose we create a new branch called

bug1.

The new branch is a pointer to the same commit as the master branch (commit C) but the pointer
moved from the master branch to the bug1 branch.

We do some work on the bug1 branch and make two more
commits. The pointer and branch now move to commit E.

2

• Now you decide that the bug you found has been fixed.

• You’ve modified a file and maybe even added a new file.

• You can switch back to the master branch.

• What you’ll see is that none of the files that you just fixed and/or created are in your
working directory!

• The first couple of times you see this, it feels really uncomfortable.

• However, this is the correct git workflow: git works with snapshots!

• How do we get the bug fix into our master branch?

• We already know the command. From the master branch, just do git merge bug1.

3

https://git-scm.com/book/en/v1/Getting-Started-Git-Basics

This looks really nice! The merge brought the two change histories together prefectly.

• The only thing left to do is to delete the bug1 branch.

• We don’t need it anymore and so we really don’t want it floating around.

• To delete a branch you simply write git branch -d bug1.

This looks like a nice clean tree now. If only things were always this simple.

1.3 Nonlinear Histories: Workflow Choices
Another common scenario is as follows: * We created our “story branch” off of commit C to address
some bug (not the same bug as before!). Call this branch bug2. * However, some changes have
happened in master since we branched off of C. For example, bug1 has been merged into master.
* We have made a couple of commits on bug2.

Here’s the current graph:

4

Once we’re ready to merge our bug fix, we switch back to master.

Now we attempt to merge. Our attempted merge should connect the new version H to both E and
G (H came from E and G).

5

This merge can be quite unpleasant if there are conflicts.

Now we delete the bug2 branch since the bug fix has been successfully merged into master.

• The graph is now a bit of a mess; the history is nonlinear.

• There’s nothing particularly wrong about this.

• However, such a history makes it hard to see the changes independently.

• What if another branch came off of G? You could have multiple loops!

There is another way to do merges that helps “linearize” the graph. Let’s pick up
with our bug2 branch just before we switched to the master branch for a merge.

6

This time, instead of starting the merge process right away, we’ll first rebase.

git rebase master.

What does rebase do? * Undo the changes we made off of C, but remember what they were *
Re-apply those changes on E instead

Now we proceed as usual: * git checkout master * git merge bug2

• Now we get a nice linear flow.

Comments on rebase

• The actual change set ordering in the repo mirrors what actually happened. That is, F’ and
G’ came after E rather than in parallel to it.

• We have re-written history; this is controversial.

7

Basic Rule: Don’t rebase public history Never rebase commits once they’ve been pushed to
a public repository.

Some Rough rebase guidelines Use an interactive rebase to polish a feature branch before
merging it into the main code base.

1.4 End of Slideshow — Begin lecture exercises
In Lecture 2, you worked with the playground repository. You learned how to navigate the reposi-
tory from the Git point of view, make changes to the repo, and work with the remote repo.

One very important topic in Git involves the concept of the branch. You will work extensively
with branches in any real project. In fact, branches are central to the Git workflow. In this portion
of the lecture, we will discuss branches with Git.

For more details on branches in Git see Chapter 3 of the Git Book: Git Branching - Branches in
a Nutshell.

1.5 Branching
As you might have noticed by now, everything in Git is a branch. We have branches on remote
(upstream) repositories, copies of remote branches in our local repository, and branches on local
repositories which (so far) track remote branches (or more precisely local copies of remote reposi-
tories).

Begin today’s lecture by entering your course repository. Note that the following cell is not
necessary for you. I have to re-clone the repo since I’m in a new notebook. You should just keep
working like usual from the command line.

[3]: %%bash
cd /tmp
rm -rf cs207_david_sondak #remove if it exists
git clone https://github.com/dsondak/cs207_david_sondak.git

Cloning into 'cs207_david_sondak'…

Once you’re in your course repo, you can look at all the branches and print out a lot of information
to the screen.

[4]: %%bash
cd /tmp/cs207_david_sondak
git branch -avv

* master f617a3f [origin/master] FALL 2018 materials.
remotes/origin/HEAD -> origin/master
remotes/origin/ad-project 7574906 Printing out lots of decimal places in the

root.
remotes/origin/gh-pages 36aa8a1 Shifted schedule around.
remotes/origin/master f617a3f FALL 2018 materials.
remotes/origin/tim 4bc23fb Added MathCS207.py

8

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

All of these branches are nothing but commit-streams in disguise, as can be seen above. It’s a very
simple model that leads to a lot of interesting version control patterns.

Since branches are so light-weight, the recommended way of working on software using git is to
create a new branch for each new feature you add, test it out, and if good, merge it into master.
Then you deploy the software from master. We have been using branches under the hood. Let’s
now lift the hood.

1.5.1 branch

Branches can also be created manually, and they are a useful way of organizing unfinished changes.

The branch command has two forms. The first:

git branch

simply lists all of the branches in your local repository. If you run it without having created any
branches, it will list only one, called master. This is the default branch. You have also seen the
use of git branch -avv to show all branches (even remote ones).

The other form of the branch command creates a branch with a given name:

git branch branch_name

It’s important to note that this new branch is not active. If you make changes, those changes
will still apply to the master branch, not branch_name. That is, after executing the git branch
branch_name command you’re still on the master branch and not the branch_name branch. To
change this, you need the next command.

1.5.2 checkout

Checkout switches the active branch. Since branches can have different changes, checkout may
make the working directory look very different. For instance, if you have added new files to one

9

branch and then check another branch out, those files will no longer show up in the directory. They
are still stored in the .git folder, but since they only exist in the other branch, they cannot be
accessed until you check out the original branch.

git checkout my-new-branch

You can combine creating a new branch and checking it out with the shortcut:

git checkout -b my-new-branch

Try this out on your course repository.

[5]: %%bash
cd /tmp/cs207_david_sondak
git branch lecture4_exercise

See what branches we have created.

[6]: %%bash
cd /tmp/cs207_david_sondak
git branch

lecture4_exercise
* master

Notice that you have created the lecture4_exercise branch but you’re still on the master branch.

Jump onto the lecture4_exercise branch.

[7]: %%bash
cd /tmp/cs207_david_sondak
git checkout lecture4_exercise
git branch

* lecture4_exercise
master

Switched to branch 'lecture4_exercise'

Notice that it is bootstrapped off the master branch and has the same files. You can check that
with the ls command.

[1]: %%bash
cd /tmp/cs207_david_sondak
ls

LICENSE
README.md
homework
lectures
legacy
notes

10

project
supplementary-python

Note: You could have created this branch and switched to it all in one go by using git checkout
-b lecture4_exercise.

Now let’s check the status of our repo.

[9]: %%bash
cd /tmp/cs207_david_sondak
git status

On branch lecture4_exercise
nothing to commit, working tree clean

Alright, so we’re on our new branch but we haven’t added or modified anything yet; there’s nothing
to commit.

1.5.3 Adding a file on a new branch

Let’s add a new file. Note that this file gets added on this branch only! Notice that I’m still using
the echo command. Once again, this is only because jupyter can’t work with text editors. If I
were you, I’d use vim, but you can use whatever text editor you like.

[10]: %%bash
cd /tmp/cs207_david_sondak
echo '# Things I wish G.R.R. Martin would say: Finally updating A Song of Ice␣
↪→and Fire.' > books.md

git status

On branch lecture4_exercise
Untracked files:

(use "git add <file>…" to include in what will be committed)

books.md

nothing added to commit but untracked files present (use "git add" to track)

We add the file to the index, and then commit the files to the local repository on the
lecture4_exercise branch.

[11]: %%bash
cd /tmp/cs207_david_sondak
git add books.md
git status

On branch lecture4_exercise
Changes to be committed:

(use "git reset HEAD <file>…" to unstage)

11

new file: books.md

[12]: %%bash
cd /tmp/cs207_david_sondak
git commit -am "Added another test file to demonstrate git features"
git status

[lecture4_exercise 06c0fbd] Added another test file to demonstrate git features
1 file changed, 1 insertion(+)
create mode 100644 books.md
On branch lecture4_exercise
nothing to commit, working tree clean

Pause: Make sure you really understand what the -am option does!

At this point, we have committed a new file (books.md) to our new branch in our local repo. Our
remote repo is still not aware of this new file (or branch). In fact, our master branch is still not
really aware of this file.

Note: There are really two options at this point: 1. Push the current branch to our upstream repo.
This would correspond to a “long-lived” branch. You may want to do this if you have a version
of your code that you are maintaining. 2. Merge the new branch into the local master branch.
Depending on your chosen workflow, this may happen much more frequently than the first option.
You’ll be creating branches all the time for little bug fixes and features. You don’t necessary want
such branches to be “long-lived”. Once your feature is ready, you’ll merge the feature branch into
the master branch, stage, commit, and push (all on master). Then you’ll delete the “short-lived”
feature branch.

We’ll continue with the first option for now and discuss the other option later.

1.5.4 Long-lived branches

Ok, we have committed. Lets try to push!

[14]: %%bash
cd /tmp/cs207_david_sondak
git push

fatal: The current branch lecture4_exercise has no upstream branch.
To push the current branch and set the remote as upstream, use

git push --set-upstream origin lecture4_exercise

␣
↪→---

CalledProcessError Traceback (most recent call␣
↪→last)

12

<ipython-input-14-5c7726728118> in <module>
----> 1 get_ipython().run_cell_magic('bash', '', 'cd /tmp/

↪→cs207_david_sondak\ngit push\n')

~/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py␣
↪→in run_cell_magic(self, magic_name, line, cell)

2319 magic_arg_s = self.var_expand(line, stack_depth)
2320 with self.builtin_trap:

-> 2321 result = fn(magic_arg_s, cell)
2322 return result
2323

~/anaconda3/lib/python3.6/site-packages/IPython/core/magics/script.py in␣
↪→named_script_magic(line, cell)

140 else:
141 line = script

--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:

<decorator-gen-109> in shebang(self, line, cell)

~/anaconda3/lib/python3.6/site-packages/IPython/core/magic.py in␣
↪→<lambda>(f, *a, **k)

185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):

--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):

~/anaconda3/lib/python3.6/site-packages/IPython/core/magics/script.py in␣
↪→shebang(self, line, cell)

243 sys.stderr.flush()
244 if args.raise_error and p.returncode!=0:

--> 245 raise CalledProcessError(p.returncode, cell, output=out,␣
↪→stderr=err)

246
247 def _run_script(self, p, cell, to_close):

13

CalledProcessError: Command 'b'cd /tmp/cs207_david_sondak\ngit push\n''␣
↪→returned non-zero exit status 128.

Fail! Why? Because git didn’t know what to push to on origin (the name of our remote repo)
and didn’t want to assume we wanted to call the branch lecture4_exercise on the remote. We
need to tell that to git explicitly (just like it tells us to).

[15]: %%bash
cd /tmp/cs207_david_sondak
git push --set-upstream origin lecture4_exercise

Branch 'lecture4_exercise' set up to track remote branch 'lecture4_exercise'
from 'origin'.

remote:
remote: Create a pull request for 'lecture4_exercise' on GitHub by visiting:
remote:
https://github.com/dsondak/cs207_david_sondak/pull/new/lecture4_exercise
remote:
To https://github.com/dsondak/cs207_david_sondak.git
* [new branch] lecture4_exercise -> lecture4_exercise

Aha, now we have both a remote and a local for lecture4_exercise. We can use the convenient
arguments to branch in order to see the details of all the branches.

[16]: %%bash
cd /tmp/cs207_david_sondak
git branch -avv

* lecture4_exercise 06c0fbd [origin/lecture4_exercise] Added
another test file to demonstrate git features

master f617a3f [origin/master] FALL 2018 materials.
remotes/origin/HEAD -> origin/master
remotes/origin/ad-project 7574906 Printing out lots of decimal places

in the root.
remotes/origin/gh-pages 36aa8a1 Shifted schedule around.
remotes/origin/lecture4_exercise 06c0fbd Added another test file to

demonstrate git features
remotes/origin/master f617a3f FALL 2018 materials.
remotes/origin/tim 4bc23fb Added MathCS207.py

We make sure we are back on master

[17]: %%bash
cd /tmp/cs207_david_sondak
git checkout master

Your branch is up to date with 'origin/master'.

Switched to branch 'master'

14

What have we done?

We created a new local branch, created a file on it, created that same branch on our remote repo,
and pushed all the changes. Finally, we went back to our master branch to continue work there.

1.5.5 Deliverables

The deliverables for this part are the lecture4_exercise branch in the remote course repo.

Warning: You shouldn’t push to master for this excercise because the file that you created isn’t
really needed in your course repo.

1.5.6 Short-lived branches

Now we’ll look into option 2 above. Suppose we want to add a feature to our repo. We’ll create a
new branch to work on that feature, but we don’t want this branch to be long-lived. Here’s how
we can accomplish that.

We’ll go a little faster this time since you’ve seen all these commands before. Even though we’re
going a little faster this time, make sure you understand what you’re doing! Don’t just copy and
paste!!

[18]: %%bash
cd /tmp/cs207_david_sondak
git checkout -b feature-branch

Switched to a new branch 'feature-branch'

[19]: %%bash
cd /tmp/cs207_david_sondak
git branch

* feature-branch
lecture4_exercise
master

1.5.7 WARNING

Do not copy the next several lines! The example I’m giving here will be slightly different from what
you will do (although all the steps will be the same).

Your requirements Edit your README.md by including a subsection (level 2 Markdown header)
called Content. Under the Content section, create a bulleted list where each bullet is a directory
name (e.g. lectures, homework, etc). Provide a one-sentence description next to each bullet title.

The difference between what I do below and what you will do is that you will be working with the
README.md file and I created a new file called feature.txt.

[20]: %%bash
cd /tmp/cs207_david_sondak
echo '# The collected works of G.R.R. Martin.' > feature.txt

15

[21]: %%bash
cd /tmp/cs207_david_sondak
git status

On branch feature-branch
Untracked files:

(use "git add <file>…" to include in what will be committed)

feature.txt

nothing added to commit but untracked files present (use "git add" to track)

[22]: %%bash
cd /tmp/cs207_david_sondak
git add feature.txt
git commit -m 'George finished his books!'

[feature-branch a10e6ec] George finished his books!
1 file changed, 1 insertion(+)
create mode 100644 feature.txt

At this point, we’ve committed our new feature to our feature branch in our local repo. Presumably
it’s all tested and everything is working nicely. We’d like to merge it into our master branch now.
First, we’ll switch to the master branch.

[2]: %%bash
cd /tmp/cs207_david_sondak
git checkout master
ls

Your branch is up to date with 'origin/master'.
LICENSE
README.md
homework
lectures
legacy
notes
project
supplementary-python
Switched to branch 'master'

The master branch doesn’t have any idea about our new feature yet! We should merge the feature
branch into the master branch.

[24]: %%bash
cd /tmp/cs207_david_sondak
git merge feature-branch

Updating f617a3f..a10e6ec

16

Fast-forward
feature.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 feature.txt

[3]: %%bash
cd /tmp/cs207_david_sondak
git status
ls

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working tree clean
LICENSE
README.md
feature.txt
homework
lectures
legacy
notes
project
supplementary-python

Now our master branch is up to date with our feature branch. We can now delete our feature
branch since it is no longer relevant.

[26]: %%bash
cd /tmp/cs207_david_sondak
git branch -d feature-branch

Deleted branch feature-branch (was a10e6ec).

Finally, let’s push the changes to our remote repo.

[]: %%bash
cd /tmp/cs207_david_sondak
git push

Great, so now you have a basic understanding of how to work with branches. There is much more
to learn, but these commands should get you going. You should really familiarize yourself with
Chapter 3 of the Git book for more details and workflow ideas.

1.5.8 Deliverables

For this part, your deliverable is an updated README.md file on your master branch in your remote
course repo.

17

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

1.6 Merge Conflicts
You already have experience with merge conflicts from the first homework assignment. Let’s do it
one more time under supervision, just a bit faster this time. After this, you’re on your own.

1.6.1 Setting up

Choose a partner to work with. Please add them as a collaborator on your playground repo. One
of you should clone the other’s playground repo. For example, suppose Sally and Joe decide to
work together. Together, they decide that Joe will clone Sally’s playground repo. This should be
done in your Classes/CS207/ directory somewhere. It’s up to you where, just try to be organized.

1.6.2 Making Some Changes

Each partner should make some changes to the playground repo. The easiest way to do this to
start will be to change the title of the README.md file. For the sake of the exercise, each partner
should make the title of the README.md file something different. Feel free to do something more
creative / interesting.

Reminder: One partner will be working from their original playground repo while the other
partner will be working from the newly cloned playground repo.

Once you’ve each made the changes, please try to stage-commit-push. This should work without a
problem for one of the partners. The other partner should get an error similar to:

To https://github.com/dsondak/playground.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/dsondak/playground.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

The second partner realizes that they’ve made a mistake. Always fetch and merge (or pull) from
the remote repo before doing your work for the day or pushing your recent changes. However,
perhaps you’re a little nervous since it only took you a minute to make your changes. You should
realize that someone else probably did a push in the meantime. Nevertheless, you decide to proceed.

1.6.3 Resolving Some Conflicts

The partner who failed to push should try to do a fetch-merge sequence. Try out the following
command:

git fetch
git merge origin/master

Think about what these commands are doing! Can you explain them?

You should get an error message similar to:

Auto-merging intro.md
CONFLICT (add/add): Merge conflict in intro.md

18

Automatic merge failed; fix conflicts and then commit the result.
From https://github.com/dsondak/playground

999fd74..2658cab master -> origin/master

There is a conflict in intro.md [in this particular example, but yours might be slightly different]
and git can’t figure out how to resolve the conflict automatically. It doesn’t know who’s right.
Instead, git produces a file that contains information about the conflict.

Do a cat on the conflicted file. You should see something like:

<<<<<<< HEAD
A Project by Joe
=======
A Project by Sally
>>>>>>> origin/master

The partner with the conflict knows that their partner is working on the same project as they are
(they’re teammates) so don’t be alarmed.

Resolve the conflict Talk to your partner and decide on a new title for the README.md file.
Update the file and do a stage-commit-push sequence (with a good commit message!!) to update
the remote repo.

The merge conflict has been resolved! Of course, the other parter’s local repo doesn’t yet know
about what just happened. They need to fetch and merge to get the updates. Do this now!

You should see output similar to:

Updating 2658cab..51c6b05
Fast-forward
intro.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
From https://github.com/dsondak/playground

2658cab..51c6b05 master -> origin/master

Observe: This is reporting a fast-forward operation. Why wasn’t there another merge conflict?
Please explain.

1.6.4 Comments

So what actually happened here? [Note: We’ll use Joe and Sally to explain what’s going on
for clarity.]

And as expected, git knows how to resolve this conflict. The reason git can resolve this conflict
even though the files differ on the same line is that git has the commit history, too. When Sally
made their original commit, they were given a commit hash (starting with 2658cab). When Joe
resolved the merge conflict, Joe created a new commit hash (51c6b05) which unified the changes
in commit 2658cab (Sally’s original commit) and commit 3b934ee (Joe’s original commit). Then,
when Joe pushed, all of this information was given to the upstream repository. So git has a
record stating that the merge resolution commit 51c6b05 is a subsequent commit to Sally’s original
changes in 2658cab. When Sally fetched the upstream repo, Sally got this information, too. So

19

when Sally executed a merge, Sally was merging a predecessor (2658cab) with its direct successor
(51c6b05), which git handles simply by using the successor.

The tricky conflict resolution that Joe did was effectively a way of taking two separate branches
and tying them together.

One more note on binary files A problem that students sometimes run into occurs when they
try to update their local repo from another repo after some changes to a .pdf file have been made.

One of the big lessons here is that versioning binary files with git requires some special tools. In
this case, the binary file was a .pdf document. In another case it may be an executable file.

The reason why binary files are difficult to version is because git must store the entire file again
after each commit. This is essentially a consequence of the fact that there is no clear way to diff
binary files. Hence, the merging operation has problems.

There is extensive information around for the special tools git has for working with binary files.
For the particular case of .pdf files, you can use some special arguments to the git checkout
command. A nice discussion can be found at https://stackoverflow.com/questions/278081/
resolving-a-git-conflict-with-binary-files.

My recommendation is that you try to stay away from versioning binary files. I put them up on git
because I will not be changing the lectures slides much (if at all) over the course of the semester
and because the lecture slides do not take up much space (and will therefore not have much of an
effect on the speed of git).

1.7 Git habits
** * Commit early, commit often. * **

Git is more effective when used at a fine granularity. For starters, you can’t undo what you haven’t
committed, so committing lots of small changes makes it easier to find the right rollback point.
Also, merging becomes a lot easier when you only have to deal with a handful of conflicts.

** * Commit unrelated changes separately. * **

Identifying the source of a bug or understanding the reason why a particular piece of code exists is
much easier when commits focus on related changes. Some of this has to do with simplifying commit
messages and making it easier to look through logs, but it has other related benefits: commits are
smaller and simpler, and merge conflicts are confined to only the commits which actually have
conflicting code.

** * Do not commit binaries and other temporary files. * **

Git is meant for tracking changes. In nearly all cases, the only meaningful difference between the
contents of two binaries is that they are different. If you change source files, compile, and commit
the resulting binary, git sees an entirely different file. The end result is that the git repository
(which contains a complete history, remember) begins to become bloated with the history of many
dissimilar binaries. Worse, there’s often little advantage to keeping those files in the history. An
argument can be made for periodically snapshotting working binaries, but things like object files,
compiled python files, and editor auto-saves are basically wasted space.

** * Ignore files which should not be committed * **

20

https://stackoverflow.com/questions/278081/resolving-a-git-conflict-with-binary-files
https://stackoverflow.com/questions/278081/resolving-a-git-conflict-with-binary-files

Git comes with a built-in mechanism for ignoring certain types of files. Placing filenames or
wildcards in a .gitignore file placed in the top-level directory (where the .git directory is also
located) will cause git to ignore those files when checking file status. This is a good way to ensure you
don’t commit the wrong files accidentally, and it also makes the output of git status somewhat
cleaner.

** * Always make a branch for new changes * **

While it’s tempting to work on new code directly in the master branch, it’s usually a good idea to
create a new one instead, especially for team-based projects. The major advantage to this practice
is that it keeps logically disparate change sets separate. This means that if two people are working
on improvements in two different branches, when they merge, the actual workflow is reflected in
the git history. Plus, explicitly creating branches adds some semantic meaning to your branch
structure. Moreover, there is very little difference in how you use git.

** * Write good commit messages * **

I cannot understate the importance of this.

** Seriously. Write good commit messages. **

21

	Lecture 4: September 17, 2019
	Branches in Git
	Basic Branching
	Nonlinear Histories: Workflow Choices
	End of Slideshow — Begin lecture exercises
	Branching
	branch
	checkout
	Adding a file on a new branch
	Long-lived branches
	Deliverables
	Short-lived branches
	WARNING
	Deliverables

	Merge Conflicts
	Setting up
	Making Some Changes
	Resolving Some Conflicts
	Comments

	Git habits

