
lecture4

September 18, 2020

1 Lecture 4: Version Control with git

This lecture borrows content from https://github.com/rdadolf/git-tutorial. It has
been edited for cs109 and for various versions of cs207.

Version control is a way of tracking the change history of a project. Even if you have never used
a version control tool, you’ve probably already done it manually: copying and renaming project
folders (“paper-1.doc”, “paper-2.doc”, etc.) is a form of version control. If you did the first
homework, then you’ve definitely started playing around with git commands and probably have a
lot of questions!

git is a tool that automates and enhances a lot of the tasks that arise when dealing with larger,
longer-living, and collaborative projects. It has also become the common underpinning to many
popular online code repositories, GitHub being the most popular. Others include GitLab and
Bitbucket.

We’ll go over the basics of git, but we should point out that a lot of talented people have given
git tutorials, and we won’t do any better than they have. In fact, if you’re interested in learning
git deeply and have some time on your hands, I suggest you read the Git Book. Scott Chacon
and Ben Straub have done a tremendous job, and if you want to understand both the interfaces
and the mechanisms behind git, this is the place to start.

2 Table of Contents
• Section ??

– Section 2.1
– Section 2.2
– Section ??

∗ Section 2.3.1
∗ Section 2.3.2
∗ Section 2.3.3
∗ Section 2.3.7
∗ Section 2.3.11

– Section 2.4

1

https://github.com/rdadolf/git-tutorial
https://github.com/
https://gitlab.com/
https://bitbucket.org/product/
http://git-scm.com/book/en/v2

2.1 Why should you use version control?
If you ask 10 people, you’ll get 10 different answers, but one of the commonalities is that most
people don’t realize how integral it is to their development process until they’ve started using it.
Still, for the sake of argument, here are some highlights:

• You can undo anything: git provides a complete history of every change that has ever
been made to your project, timestamped, commented, and attributed. If something breaks,
you always have the choice of going back to a previous state.

• You won’t need to keep undoing things: One of the advantages of using git properly
is that by keeping new changes separate from a stable base, you tend to avoid the massive
rollbacks associated with constantly tinkering with a single code.

• You can identify exactly when and where changes were made: git allows you to
pinpoint when a particular piece of code was changed, so finding what other pieces of code a
bug might affect or figuring out why a certain expression was added is easy.

• git forces teams to face conflicts directly: On a team-based project, many people are
often working with the same code. By having a tool which understands when and where files
were changed, it’s easy to see when changes might conflict with each other. While it might
seem troublesome sometimes to have to deal with conflicts, the alternative—not knowing
there’s a conflict—is much more insidious.

2.2 Git Basics
The first thing to understand about git is that the contents of your project are stored in several
different states and forms at any given time. If you think about what version control is, this might
not be surprising: in order to remember every change that’s ever been made, you need to store a
record of those changes somewhere, and to be able to handle multiple people changing the same
code, you need to have different copies of the project and a way to combine them.

You can think about git operating on four different areas:

• The working directory is what you’re currently looking at. When you use an editor to
modify a file, the changes are made to the working directory.

• The staging area is a place to collect a set of changes made to your project. If you have
changed three files to fix a bug, you will add all three to the staging area so that you can
remember the changes as one historical entity. It is also called the index. You move files
from the working directory to the index using the command git add. Changes in files in the
staging area are still not part of any repository!

• The local repository is the place where git stores everything you’ve ever done to your
project. Even when you delete a file, a copy is stored in the repo (this is necessary for
always being able to undo any change). It’s important to note that a local repository doesn’t

2

look much at all like your project files or directories. Git has its own way of storing all
the information, and if you’re curious what it looks like, look in the .git directory in the
working directory of your project. Files are moved from the index to the local repository via
the command git commit.

• When working in a team, every member will be working on their own local repository.
– An upstream repository allows everyone to agree on a single version of history. If two

people have made changes on their local repositories, they will combine those changes
in the upstream repository. In our case this upstream repository is hosted by GitHub.
∗ Note: This need not be the case; SEAS provides git hosting, as do companies like
Atlassian (bitbucket).

– This upstream repository is also called a remote in git parlance.
– The standard GitHub remote is called the origin: it is the repository which is given a

web page on GitHub.
– One usually moves code from local to remote repositories using git push, and in the

other direction using git fetch.

You can think of most git operations as moving code or metadata from one of these areas to
another.

2.3 Common Tasks in the version control of files.
2.3.1 Forking a repository

Forking a repository is performed on GitHub. You did this already in homework 1.

Forking brings a repository into your own namespace. It’s really a cloning process (see below), but
it’s done between two remotes on the server. In other words it creates a second upstream repository
on the server, called the origin.

The forking process on GitHub will ask you where you want to fork the repository. Choose your
own GitHub id.

In this tutorial, wherever you see dsondak, substitute your own GitHub id.

The forking procedure leaves you with your own repository, <user_name>/playground.

3

2.3.2 Cloning a repository

Now that we have a fork of the playground repository, let’s clone it down to our local machines.
Again, you already did this in homework 1. Now we’re going to work through the meaning of the
commands that you used. You will be asked to repeat a lot of the steps from homework 1, but this
time the exact details will be explained.

In case you’re wondering why you didn’t just do this tutorial for your homework, here is a brief
explanation. There is evidence that people learn very well and retain knowledge best when concepts
are introduced and then re-iterated and recalled at a later time Make it Stick: The Science of
Successful Learning. In this class, we first showed you some of the git mechanics. Now we’ll redo
everything to help reinforce the mechanics and shed light on the actual process. This time around,
please pay very close attention to the steps you’re taking and try to relate them to the concepts
described in the tutorial text.

Getting organized

1. Create a CS207 directory: ~/Classes/CS207/. Some of you have probably already created a
similar directory structure. If not, please create one now. Inside this directory, you should
put your course repo, the playground repo, and any other CS207-related directories and files.

2. Inside ~/Classes/CS207/ (or similar directory) create a directory called git_tutorial.
3. Move into the git_tutorial/ directory.

clone

4

https://www.amazon.com/dp/B00JQ3FN7M/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/dp/B00JQ3FN7M/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

Cloning a repository does two things: 1. It takes a repository from somewhere (usually an up-
stream repository) and makes a local copy (your new local repository) 2. It creates the most
recent copy of all of the files in the project (your new working directory).

This is generally how you will start working on a project for the first time.

Clone your forked playground repo to your CS207/git_tutorial/ directory. Cloning a
repository depends a lot on the type of repository you’re using. If you’re cloning out of a directory
on the machine you’re currently on, it’s just the path to the <project>.git file.

NOTE: From this point on, you will see cells containing code. You should type those commands
into your terminal, NOT a Jupyter notebook. We use a notebook simply for demo purposes and
to help you follow the steps.

WARNING! The code in the following cells is always preceeded by a combination of the following
commands: 1. %%bash and 2. cd /tmp or cd /tmp/playground.

DO NOT type any of those commands into your terminal. They are used only in the notebook
environment!

[1]: %%bash
cd /tmp
rm -rf playground #remove if it exists
git clone https://github.com/dsondak/playground.git

Cloning into 'playground'…

[2]: %%bash
ls -a /tmp/playground

.

..

.git

.gitignore
README.md

2.3.3 Poking around

We have a nice smelling fresh repository. We’ll explore the repo from the Git point of view using
Git commands.

2.3.4 log

Log tells you all the changes that have occured in this project as of now.

[3]: %%bash
cd /tmp/playground
git log

commit 1a6fb857d43a74cbb9e5fe45ff19f772eac278ba
Author: David Sondak <dsondak@users.noreply.github.com>

5

Date: Wed Aug 28 18:10:30 2019 -0400

Update README.md

commit 3673e326d853eb6d315d72215eacc0a3f936e2fb
Author: David Sondak <dsondak@users.noreply.github.com>
Date: Wed Aug 28 18:10:04 2019 -0400

Initial commit

Each one of these “commits” is an SHA hash. It uniquely identifies all actions that have happened
to this repository previously. The long string of hex digits next to commit is the long hash and
identifies the unique commit. There is some interesting history here: How much of a git sha is
generally considered necessary to uniquely identify a change in a given codebase?

Getting help with commands If you ever need help on a command, you can find the git man
pages by hyphenating git and the command name.
Try it!

man git-log

Press the spacebar to scoll down and q to quit.

2.3.5 status

Status is your window into the current state of your project. It can tell you which files you have
changed and which files you currently have in your staging area. You should use git status
every other command in git! This is especially true in the beginning when you’re just learning to
understand how things work. (Eventually you can probably relax on this.)

[5]: %%bash
cd /tmp/playground
git status

On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

Pay close attention to the text above! It says we are on the master branch of our local
repository, and that this branch is up-to-date with the master branch of the upstream reposi-

6

https://stackoverflow.com/questions/18134627/how-much-of-a-git-sha-is-generally-considered-necessary-to-uniquely-identify-a
https://stackoverflow.com/questions/18134627/how-much-of-a-git-sha-is-generally-considered-necessary-to-uniquely-identify-a

tory or remote named origin. We know this as clone brings down a copy of the remote branch:
origin/master represents the local copy of the branch that came from the upstream repository
(nicknamed origin in this case). Branches are different, co-existing versions of your project. Here
we have encountered two of them, but remember there is a third one in the repository we forked
from, and perhaps many more, depending on who else made these forks. We’ll have much more to
say about branches later in this lecture or the next lecture.

Branches represent a snapshot of the project by someone at some particular point in time. In general
you will only care about your own branches and those of the “parent” remotes you forked/cloned
from.

Configuration information is stored in a special file called config, in a hidden folder called .git in
your working directory. (The index and the local repository are stored there as well…more on that
in a bit.)

Reminder: Hidden files and directories are preceded by a dot. The only way to see them is to
type ls -a where the a option tells the ls command to list hidden files and directories.

2.3.6 A few special files and directories

[6]: %%bash
cd /tmp/playground
cat .git/config

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
ignorecase = true
precomposeunicode = true

[remote "origin"]
url = https://github.com/dsondak/playground.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

Notice that this file tells us about a remote called origin which is simply the Github repository we
cloned from. So the process of cloning left us with a remote. The file also tells us about a branch
called master, which “tracks” a remote branch called master at origin.

Finally, I set us up with a .gitignore file hidden in the repository folder. It tells us what files
to ignore when adding files to the index and comitting to the local repository. We use this file to
ignore temporary data files and such when working in our repository. Folders are indicated with a
/ at the end, in which case all files in that folder are ignored.

For example, one of the lines in the .gitignore file is *.so. That line tells Git to ignore all files
with the extension .so.

Note that this particular .gitignore file is specialized to the Python language. Note too that

7

when creating a GitHub repo, you are asked if you want to create a .gitignore file. You don’t
have to create one, but it’s a good idea. Of course, you can always add one later if you so desire.

[7]: %%bash
cd /tmp/playground
cat .gitignore

Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

C extensions
*.so

Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

PyInstaller
Usually these files are written by a python script from a template
before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov/
.tox/
.coverage

8

.coverage.*

.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/

Translations
*.mo
*.pot

Django stuff:
*.log
local_settings.py
db.sqlite3

Flask stuff:
instance/
.webassets-cache

Scrapy stuff:
.scrapy

Sphinx documentation
docs/_build/

PyBuilder
target/

Jupyter Notebook
.ipynb_checkpoints

pyenv
.python-version

celery beat schedule file
celerybeat-schedule

SageMath parsed files
*.sage.py

Environments
.env
.venv
env/
venv/
ENV/

9

env.bak/
venv.bak/

Spyder project settings
.spyderproject
.spyproject

Rope project settings
.ropeproject

mkdocs documentation
/site

mypy
.mypy_cache/

2.3.7 Making changes

Ok! Enough poking around. Let’s get down to business and add some files into our folder.

Now let’s say that we want to add a new file to the project. The canonical sequence is “edit–add–
commit–push”.

[8]: %%bash
cd /tmp/playground
echo '# Hello world!' > world.md
git status

On branch master
Your branch is up to date with 'origin/master'.

Untracked files:
(use "git add <file>…" to include in what will be committed)

world.md

nothing added to commit but untracked files present (use "git add" to track)

We’ve created a file in the working directory, but it hasn’t been staged yet. Make sure you read
and understand the output.

• Your local master branch does not contain anything that is not on the remote master branch.
So git says: Your branch is up to date with origin/master.

• You have some untracked files in your local directory that git is not keeping track of. Git
senses this and informs you of this fact and goes one more step to inform you of what those
untracked files are. Sometimes you want to stage these files and sometimes you don’t. The
decision is yours.

• Git also tells you that there is nothing to commit but that there are some untracked files and
maybe you want to start tracking them.

10

2.3.8 add

When you’ve made a change to a set of files and are ready to create a commit, the first step is to
add all of the changed files to the staging area. That is what add is for. Remember that what you
see in the filesystem is your working directory, so the way to see what’s in the staging area is with
the status command. This also means that if you add something to the staging area and
then edit it again, you’ll need to add the file to the staging area again if you want to
remember the new changes. See the Staging Modified Files section at Git - Recording Changes
to the Repository.

[9]: %%bash
cd /tmp/playground
git add world.md
git status

On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>…" to unstage)

new file: world.md

Now our file is in the staging area (Index) waiting to be committed. The file is still not even in our
local repository.

Cautionary note Instead of doing git add world.md you could use git add . in the top level
of the repository. This adds all new files and changed files to the index, and is particularly useful
if you have created multiple new files. Of course, you should be careful with this because it’s a
very annoying if you decide that you didn’t want to add a file. I usually avoid this if I can, but
sometimes it’s the way to go. Note: The git add . sequence is far over-used and can
cause collaboration problems. Please refrain from using it, especially if you’re new to
git.

11

https://git-scm.com/book/id/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/id/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/id/v2/Git-Basics-Recording-Changes-to-the-Repository

2.3.9 commit

When you’re satisfied with the changes you’ve added to your staging area, you can commit those
changes to your local repository with the commit command. Those changes will have a permanent
record in the repository from now on.

Every commit has two features you should be aware of: 1. The first is a hash. This is a unique
identifier for all of the information about that commit, including the code changes, the timestamp,
and the author. We saw this already when we used git log earlier. 2. The second is a commit
message. This is text that you can (and should) add to a commit to describe what the changes
were.

Good commit messages are important!

Commit messages are a way of quickly telling your future self and your collaborators what a commit
was about. For even a moderately sized project, digging through tens or hundreds of commits to
find the change you’re looking for is a nightmare without friendly summaries.

By convention, commit messages start with a single-line summary, then an empty line, then a more
comprehensive description of the changes.

This is an okay commit message. The changes are small, and the summary is sufficient to describe
what happened.

This is better. The summary captures the important information (major shift, direct vs. helper),
and the full commit message describes what the high-level changes were.

This. Don’t do this.

[10]: %%bash
cd /tmp/playground
git commit -m "Hello world file to make sure things are working."

[master f20913b] Hello world file to make sure things are working.
1 file changed, 1 insertion(+)
create mode 100644 world.md

[11]: %%bash
cd /tmp/playground
git status

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

12

https://github.com/rdadolf/clangtool/commit/bdd8f1290146c28a4cb05b62ccb0ffbaaa314ff7
https://github.com/rdadolf/protos/commit/9fcbe1084b17027e003c62043d764ed5551ddadc
https://github.com/rdadolf/autopaxos/commit/d43dd9b0a699c98bd142ba7cbc1836fbc4eba2ac

(use "git push" to publish your local commits)

nothing to commit, working tree clean

The git commit -m version is just a way to specify a commit message without opening a text
editor. If you use a text editor you just say git commit.

Another nice command is to use git commit with the -a option: git commit -a. Note that git
commit -a is shorthand to stage and commit a file which is already tracked all at once. It will
not stage a file that is not yet tracked!

[12]: %%bash
cd /tmp/playground
git branch -av

* master f20913b [ahead 1] Hello world file to make sure
things are working.

remotes/origin/HEAD -> origin/master
remotes/origin/TFtestbranch 86f51da dummy testfile
remotes/origin/aditya_karan 959639c Revert "Adding another message"
remotes/origin/aditya_karan_2 1db1013 Adding name.
remotes/origin/master 1a6fb85 Update README.md

We see that our branch, master, has one more commit than the origin/master branch, the local
copy of the branch that came from the upstream repository (nicknamed origin in this case). Let’s
push the changes.

2.3.10 push

The push command takes the changes you have made to your local repository and attempts to
update a remote repository with them. If you’re the only person working with both of these (which
is how a solo GitHub project would work), then push should always succeed.

[]: %%bash
cd /tmp/playground
git push
git status

You can go to your remote repo and see the changes!

13

2.3.11 Remotes and fetching from them

If you’re working with other people, then it’s possible that they have made changes to the remote
repository between the time you first cloned it and now. push may fail!

In our particular case of the playground repository, this is not going to happen, since you just
cloned it and presumably haven’t invited anyone to collaborate with you on it.

However you can imagine that the original repository dsondak/playground, which you are now
divorced from, has changed, and that you somehow want to pull those changes in.

That’s where fetch and merge come in.

2.3.12 remote

We have seen so far that our repository has one “remote”, or upstream repository, which has been
identified with the word origin, as seen in .git/config. We now wish to add another remote,
which we shall call course, which points to the original repository we forked from. We want to do
this to pull in changes, in case something changed there. This is a very useful workflow to know
how to execute and understand.

[1]: %%bash
cd /tmp/playground
git remote add course https://github.com/dsondak/playground.git
cat .git/config

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
ignorecase = true
precomposeunicode = true

[remote "origin"]
url = https://github.com/dsondak/playground.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

[remote "course"]
url = https://github.com/dsondak/playground.git
fetch = +refs/heads/*:refs/remotes/course/*

Notice that the master branch only tracks the same branch on the origin remote. The example
in this notebook is a little silly because the origin and course remotes are the same. It will make
more sense when you do it on your own. Your origin will be your fork of the original repo and
your course will be the original repo. We haven’t set up any connection with the course remote
as yet.

Now let’s figure out how to get changes from an upstream repository, be it our origin upstream

14

that a collaborator has pushed to, or another course remote to which one of the teaching staff has
posted a change.

2.3.13 fetch

Let’s say a collaborator has pushed changes to your shared upstream repository while you were
editing. Their local repository and the upstream repository now both contain their changes, but
your local repository does not. To update your local repository, you run fetch.

But what if you’ve committed changes in the meantime? Does your local repository contain your
changes or theirs? The answer is that it contains a record of both, but they are kept separate.
Remember that git repositories are not copies of your project files. They store all the contents of
your files, along with a bunch of metadata, but in its own internal format.

Let’s say that you and your collaborator both edited the same line of the same file at the same time
in different ways. On your respective machines you both add and commit your different changes
and your collaborator pushes theirs to the upstream repository before you do. When you run fetch,
git adds a record of their changes to your local repository alongside your own. These are called
branches, and they represent different, coexisting versions of your project. The fetch command
adds your collaborator’s branch to your local repository, but keeps yours as well.

[2]: %%bash
cd /tmp/playground
git fetch course

From https://github.com/dsondak/playground
* [new branch] TFtestbranch -> course/TFtestbranch
* [new branch] aditya_karan -> course/aditya_karan
* [new branch] aditya_karan_2 -> course/aditya_karan_2
* [new branch] master -> course/master

A copy of a new remote branch has been made. To see this, provide the -avv argument to git
branch.

[3]: %%bash
cd /tmp/playground
git branch -avv

* master f20913b [origin/master: ahead 1] Hello world
file to make sure things are working.

15

remotes/course/TFtestbranch 86f51da dummy testfile
remotes/course/aditya_karan 959639c Revert "Adding another message"
remotes/course/aditya_karan_2 1db1013 Adding name.
remotes/course/master 1a6fb85 Update README.md
remotes/origin/HEAD -> origin/master
remotes/origin/TFtestbranch 86f51da dummy testfile
remotes/origin/aditya_karan 959639c Revert "Adding another message"
remotes/origin/aditya_karan_2 1db1013 Adding name.
remotes/origin/master 1a6fb85 Update README.md

Indeed, the way git works is by creating copies of remote branches locally. Then it just compares
to these “copy” branches to see what changes have been made.

Sometimes we really do want to merge the changes. In this tutorial, we want to merge the change
from remotes/course/master. Eventually, we’ll consider a case where you want to simply create
another branch yourself and do things on that branch.

2.3.14 merge

Having multiple branches is fine, but at some point you’ll want to combine the changes that you’ve
made with those made by others. This is called merging.

There are two general cases when merging two branches: 1. First, the two branches are different
but the changes are in unrelated places. 2. Second, the two branches are different and the changes
are in the same locations in the same files.

The first scenario is easy. Git will simply apply both sets of changes to the appropriate places
and put the resulting files into the staging area for you. Then you can commit the changes and
push them back to the upstream repository. Your collaborator does the same, and everyone sees
everything.

The second scenario is more complicated. Let’s say the two changes set some variable to different
values. Git can’t know which is the correct value. One solution would be to simply use the more
recent change, but this very easily leads to self-inconsistent programs. A more conservative solution,
and the one git uses, is to simply leave the decision to the user. When git detects a conflict that
it cannot resolve, merge fails, and git places a modified version of the offending file in your project
directory. This is important: the file that git puts into your directory is not actually either of
the originals. It is a new file that has special markings around the locations that conflicted. We
shall not consider this case yet, but will return to dealing with conflicts soon.

16

Let’s merge in the changes from course/master: (The next 2-3 inputs only make sense if
dsondak/playground master has been edited since you did the first fork.)

[4]: %%bash
cd /tmp/playground
git merge course/master
git status

Already up to date.
On branch master
Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working tree clean

We seem to be ahead of our upstream-tracking repository by some commits..why?

[5]: %%bash
cd /tmp/playground
git log -3

commit f20913ba0e39ccc704a31d200c8fee57a0bff44c
Author: David Sondak <dsondak@seas.harvard.edu>
Date: Wed Sep 11 13:48:54 2019 -0400

Hello world file to make sure things are working.

commit 1a6fb857d43a74cbb9e5fe45ff19f772eac278ba
Author: David Sondak <dsondak@users.noreply.github.com>
Date: Wed Aug 28 18:10:30 2019 -0400

Update README.md

commit 3673e326d853eb6d315d72215eacc0a3f936e2fb
Author: David Sondak <dsondak@users.noreply.github.com>
Date: Wed Aug 28 18:10:04 2019 -0400

Initial commit

In the case you had edited the README.md at the same time and committed locally, you would have
been asked to resolve the conflict in the merge (the second case above).

These changes are only on our local repo. We would like to have them on our remote repo. Let’s
push these changes to the origin now.

[]: %%bash
cd /tmp/playground
git push
git status

17

You can combine a fetch and a merge together by simply doing a git pull. This will fail if you and
your collaborator have worked on the same file (since you will have to merge by hand), but is a
great shortcut when the files worked on are different. I use it all the time on a personal level too,
to shift work between two different machines, as long as I am not working on both at the same
time. The usual use case is day work on a work computer, and then evening work at home on the
laptop. Read the docs if you are interested.

The safest thing to do is to first do the fetch followed by a merge. This is especially useful if you’re
new to git. It forces you to think about the steps instead of getting shocked by a pull that yells
at you for a merge conflict.

2.3.15 Note to Mac Users

At this point, please add the .DS_Store file into your .gitignore file. You shouldn’t version this
annoying file. Here’s what it does: .DS_Store.

Then, do a git rm .DS_Store in each directory that contains .DS_Store. Note: You should try
to use your new-found Unix skills to execute a single Unix command line to recursively remove all
.DS_Store files!

Please do this both for your playground and course repos. Be sure to commit and push!

2.4 Git habits
** * Commit early, commit often. * **

Git is more effective when used at a fine granularity. For starters, you can’t undo what you haven’t
committed, so committing lots of small changes makes it easier to find the right rollback point.
Also, merging becomes a lot easier when you only have to deal with a handful of conflicts.

** * Commit unrelated changes separately. * **

Identifying the source of a bug or understanding the reason why a particular piece of code exists is
much easier when commits focus on related changes. Some of this has to do with simplifying commit
messages and making it easier to look through logs, but it has other related benefits: commits are
smaller and simpler, and merge conflicts are confined to only the commits which actually have
conflicting code.

** * Do not commit binaries and other temporary files. * **

Git is meant for tracking changes. In nearly all cases, the only meaningful difference between the
contents of two binaries is that they are different. If you change source files, compile, and commit
the resulting binary, git sees an entirely different file. The end result is that the git repository
(which contains a complete history, remember) begins to become bloated with the history of many
dissimilar binaries. Worse, there’s often little advantage to keeping those files in the history. An
argument can be made for periodically snapshotting working binaries, but things like object files,
compiled python files, and editor auto-saves are basically wasted space.

** * Ignore files which should not be committed * **

18

https://en.wikipedia.org/wiki/.DS_Store

Git comes with a built-in mechanism for ignoring certain types of files. Placing filenames or
wildcards in a .gitignore file placed in the top-level directory (where the .git directory is also
located) will cause git to ignore those files when checking file status. This is a good way to ensure you
don’t commit the wrong files accidentally, and it also makes the output of git status somewhat
cleaner.

** * Always make a branch for new changes * **

While it’s tempting to work on new code directly in the master branch, it’s usually a good idea to
create a new one instead, especially for team-based projects. The major advantage to this practice
is that it keeps logically disparate change sets separate. This means that if two people are working
on improvements in two different branches, when they merge, the actual workflow is reflected in
the git history. Plus, explicitly creating branches adds some semantic meaning to your branch
structure. Moreover, there is very little difference in how you use git.

** * Write good commit messages * **

I cannot understate the importance of this.

** Seriously. Write good commit messages. **

19

	Lecture 4: Version Control with git
	Table of Contents
	Why should you use version control?
	Git Basics
	Common Tasks in the version control of files.
	Forking a repository
	Cloning a repository
	Poking around
	log
	status
	A few special files and directories
	Making changes
	add
	commit
	push
	Remotes and fetching from them
	remote
	fetch
	merge
	Note to Mac Users

	Git habits

