
Lecture 23
Code Profiling and Debugging

(Some material adapted from Chris Simmons)

Tuesday, November 24th 2020

Performance Analysis
● Want a solution quickly

○ Some simulations are making predictions about time-sensitive things (hurricanes, disaster
relief, etc).

● Want to resolve currently intractable scientific problems
○ Scientific discovery

● Want efficient code
○ This has a monetary impact

● Predictive science
○ Machine learning, uncertainty quantification, optimization, …
○ These require running many code executions

Why Profile Code?
● You want your program to run faster
● Usually, a program has one or more bottlenecks leading to slow execution

time
● You could diagnose these manually by inserting timers into different parts of

your code
○ This would be a nightmare!

● It would be awfully nice if there were a way to automatically diagnose how fast
/ slow different parts of the code are running

○ This is where code profilers come in

What are the Options?
● For common compiled languages (C, C++, Fortran), have a look at gprof
● In Python, you have cProfile and profile
● cProfile is a good choice as a default option with low overhead

https://sourceware.org/binutils/docs/gprof/
https://docs.python.org/3/library/profile.html

Demo 1

import cProfile

def convert(sentence):
 return sentence.split()

cProfile.run('convert("A very fine sentence.")')

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

There were five total function calls.
It took 0.000 seconds (but not really).

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

Output is sorted by text string in the last column

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

ncalls: The number of times that function was called.

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

tottime: The total time spent in that function.
This does not include time in subfunctions.

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

percall: Time per call (tottime / ncalls).

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

cumtime: Cumulative time spent in this function and all of its subfunctions.

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

percall: cumtime / primitive calls.

A primitive call is a function call that was not induced by recursion.
In our example, everything is a primitive call.

Demo 1 Output
 5 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <stdin>:1(convert)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects}

filename:lineno(function): The data of the function.

Writing and reading performance stats

import pstats

cProfile.run('convert("A very fine sentence.")', 'pstats')

p = pstats.Stats('pstats')

p.print_stats()

Demo 2
import numpy as np
import cProfile

def f(x):
 return x - np.exp(-2.0 * np.sin(4.0*x) * np.sin(4.0*x))

def dfdx(x):
 return 1.0 + 16.0 * np.exp(-2.0 * np.sin(4.0*x) * np.sin(4.0*x)) * np.sin(4.0*x) * np.cos(4.0*x)

def dfdx_h(x, epsilon):
 return (f(x + epsilon) - f(x)) / epsilon

def main():
 # Start Newton algorithm
 xk = 0.0 # Initial guess
 tol = 1.0e-08 # Some tolerance
 max_it = 100 # Just stop if a root isn't found after 100 iterations
 h = 1.0e-09

 root = None # Initialize root
 for k in range(max_it):
 delta_xk = -f(xk) / dfdx(xk) # Update Delta x_{k}
 if (abs(delta_xk) <= tol): # Stop iteration if solution found
 root = xk + delta_xk
 print("Found root at x = {0:17.16f} after {1} iterations.".format(root, k+1))
 break
 print("At iteration {0}, Delta x = {1:17.16f}".format(k+1, delta_xk))
 xk += delta_xk # Update xk

cProfile.run('main()')

Breakout Room (10 minutes)
● Change the script to use the finite difference derivative in the Newton solver
● Run the profiler
● Did anything change?

○ Results?
○ Timing?
○ Function calls?

Debugging
● There is no bug-free code

○ You will introduce bugs
○ Other members of the community will introduce bugs
○ Bugs even live in commercial codes

● Bugs can:
○ Prevent a code from running at all
○ Prevent a code from running well
○ Lead to incorrect results and predictions

● Good debugging skills will make you a more efficient and confident
programmer

Defensive Programming
● Check function return codes for errors (more useful in C, C++, Fortran)
● Check input values

○ We discussed this in our testing unit
○ Check “impossible” values

● Write out the control parameters to a file
○ This helps you keep track of your runs
○ Also helps for experimental repeatability

● Check for “non-physical” results
○ This applies beyond the physical sciences
○ For example, for negative chemical concentrations
○ Or check for negative number of people

● Employ the techniques we’ve discussed throughout the semester
○ Write regression tests, use version control, write modular code, document, error checking

Some common indicators of bugs
● Build errors (for compiled code) 😒
● Improper memory reads / writes (again, usually met in C / C++) 😵
● Illegal operations (division by zero, etc) 😞
● Infinite loops 😬
● I/O errors 😲
● Algorithmic errors 🙀
● Poor performance 😭

The Debugging Process
● Start with defensive programming

○ You will still get bugs, just not nearly as many

● Basic steps:
○ Determine that there is a bug somewhere
○ Isolate the source of the bug (a.k.a. find the bug)
○ Identify the cause of the bug (how did this happen?)
○ Determine a fix for the bug (how do we remove this bug?)
○ Fix the bug and test

● These steps are not always so easy
● A debugger can help

Debuggers
● Command line debuggers are tools to aid in diagnosing problems
● The GNU Debugger Project

○ Very powerful
○ Works with many languages (not Python)
○ “allows you to see what is going on `inside' another program while it executes”

● pdb - The Python Debugger
● These debuggers are a front-end for the application

○ Step though the code and examine: variables, arrays, functions, etc

● Have the opportunity to investigate the run-time behavior of the application

https://www.gnu.org/software/gdb/
https://docs.python.org/3/library/pdb.html

Debugging: Important Commands and Concepts
● Show program backtraces

○ The calling history up to the current point

● Set breakpoints
● Display values of individual names
● Set new values
● Step through the program

Breakpoints
● A breakpoint is a pseudo-instruction that you can insert at any place during a

debugging session
● The debugger will interpret the breakpoint
● The program execution hits a breakpoint, the debugger will pause the

program so you can:
○ Inspect names
○ Set and / or clear breakpoints
○ Continue execution

● There are also conditional breakpoints
○ Program pauses only if the breakpoint’s condition holds
○ e.g. an expression is true, the breakpoint has been crossed “N” times, an expression changed

its value

pdb demo

>>> import pdb # import pdb
>>> import script # import our module
>>> pdb.run('script.main()') # attach debugger

Getting Familiar

>>> pdb.run('script.main()')
> <string>(1)<module>()
(Pdb) continue

● Attach debugger to main script
● Debugger enters module and pauses by default
● We type continue to just run through everything

Stepping Through
(Pdb) s
--Call--
> script.py(14)main()
-> def main():
(Pdb) s
> script.py(16)main()
-> xk = 0.0 # Initial guess

● Take a step to the next line
● We’re at the main function
● Take a step into the main

function
● We’re at the initial guess

Exploring

● Execute line setting initial guess
● Go to next line
● Before executing, print out value of xk just to check

-> xk = 0.0 # Initial guess
(Pdb) s
> script.py(17)main()
-> tol = 1.0e-08 # Some tolerance
(Pdb) p xk
0.0

Getting our bearings

● We stepped through a bunch of lines of code
● Let’s list the lines around the current line
● We can see where we are and we can see a few lines above and below

-> for k in range(max_it):
(Pdb) l
 17 tol = 1.0e-08 # Some tolerance
 18 max_it = 100 # Just stop if a root isn't found after 100 iterations
 19 h = 1.0e-09
 20
 21 root = None # Initialize root
 22 -> for k in range(max_it):
 23 delta_xk = -f(xk) / dfdx(xk) # Update Delta x_{k}
 24 if (abs(delta_xk) <= tol): # Stop iteration if solution found
 25 root = xk + delta_xk
 26 print("Found root at x = {0:17.16f} after {1} iterations.".format(root, k+1))
 27 break

Setting a breakpoint
● We’re worried that our function fk isn’t doing the right things
● Let’s set a breakpoint at line 24
● Then we’ll continue to that point
● Once we get to the breakpoint we can examine things more

(Pdb) b 24
Breakpoint 2 at script.py:24
(Pdb) continue
> script.py(24)main()
-> if (abs(delta_xk) <= tol): # Stop iteration if ...

More exploration

● Have a look at the step value
● Check the output of f()
● Check the output of dfdx()
● Things look fine so far!
● Let’s put in another breakpoint

(Pdb) p delta_xk
1.0
(Pdb) p f(xk)
-1.0
(Pdb) p dfdx(xk)
1.0

Going into the functions

(Pdb) b 23
Breakpoint 3 at script.py:23
(Pdb) continue
At iteration 1, Delta x = 1.0000000000000000
> script.py(23)main()
-> delta_xk = -f(xk) / dfdx(xk) # Update Delta x_{k}

Inspecting the function

(Pdb) s
--Call--
> script.py(4)f()
-> def f(x):
(Pdb) s
> script.py(5)f()
-> return x - np.exp(-2.0 * np.sin(4.0*x) * np.sin(4.0*x))
(Pdb) s
--Return--
> script.py(5)f()->0.6819351651504464
-> return x - np.exp(-2.0 * np.sin(4.0*x) * np.sin(4.0*x))

Other fun things: Exploring names

(Pdb) whatis f
Function f
(Pdb) whatis xk
<class 'numpy.float64'>

Other fun things: listing breakpoints

(Pdb) b
Num Type Disp Enb Where
1 breakpoint keep yes at script.py:24
 breakpoint already hit 4 times
2 breakpoint keep yes at script.py:24
3 breakpoint keep yes at script.py:23
 breakpoint already hit 2 times

Other fun things: disabling breakpoints

(Pdb) disable 1
Disabled breakpoint 1 at script.py:24
(Pdb) b
Num Type Disp Enb Where
1 breakpoint keep no at script.py:24
 breakpoint already hit 4 times
2 breakpoint keep yes at script.py:24
3 breakpoint keep yes at script.py:23
 breakpoint already hit 2 times

Finishing up
(Pdb) continue
At iteration 3, Delta x = 0.0782795784669513
At iteration 4, Delta x = -0.0271256514726681
At iteration 5, Delta x = -0.0012447280598220
At iteration 6, Delta x = -0.0000049668585411
Found root at x = 0.8560316824308374 after 7 iterations.

● In this example, we disable our breakpoints and just ran everything to the end
○ Easy because this is a little code

● Alternatively, when we were done, we could have just quit (q)

(Pdb) q
>>>

Summary / Debrief
● The debugger can make debugging more fun!
● We only covered the most basic tasks today
● There are many other things you can do
● Here are some resources

○ pdb - The Python Debugger
○ pdb cheatsheet
○ Python Call Graph - Pretty nifty way to visualize what your code is doing

https://docs.python.org/3/library/pdb.html
https://kapeli.com/cheat_sheets/Python_Debugger.docset/Contents/Resources/Documents/index
https://pycallgraph.readthedocs.io/en/master/

